Show all publications

Large-scale wave impact of a boiling liquid

AuthorsEzeta, R., Palacios Muniz, B., Fan, Y. L., Kim, N., Couty, N., Brosset, L., Meer, D. van der
Conference/JournalJournal of Fluid Mechanics
Date3 Apr 2025
Volume1008
Wave impact on solid structures is a well-studied phenomenon, but almost exclusively for the case that the impacting liquid (e.g. water) is surrounded by a non-condensable gas (such as air). In this study we turn to wave impact in a boiling liquid, a liquid that is in thermal equilibrium with its own vapour, which is of key relevance to the transport of cryogenic liquids, such as liquified natural gas and liquid hydrogen in the near future. More specifically, we use the Atmosphere facility at MARIN, NL, to prepare water/water vapour systems at different temperatures along the vapour curve. Here, we perform wave impact experiments by generating a soliton in a flume contained within the autoclave of the facility. A bathymetry profile interacts with the soliton, leading to a breaking wave that impacts onto a vertical wall, where we measure the pressures occurring during impact by means of 100 embedded pressure sensors. In boiling liquids, we report wave impact pressures that are up to two orders of magnitude larger than those measured in comparable water–air experiments. We trace these pressures back to the collapse of the entrapped vapour pocket, which we semi-quantitatively describe using a simplified hemicylindrical vapour bubble model, which is in good agreement with the experimental findings. Finally, this allows us to predict the relevance of our findings for the transport of cryogenic liquids in huge overseas carriers where wave impact due to sloshing is the dominant cause of hydrodynamic load of containment systems in cargo tanks.

Contact

Contact person photo

Rodrigo Ezeta

senior researcher

You will need an account to view this content

To view this content you will need a login account. If you already have an account you can sign in below. If you want an account then you can create one.

Tags
waves, impacts and hydrostructuraldata sciencewave measurements