

# On the Use of Manufactured Solutions for Code Verification of RANS Solvers Based on Eddy-viscosity Models

L. Eça (TU-Lisbon, IST) M. Hoekstra (MARIN) G. Vaz (MARIN)



## Contents

- 1. Introduction
- 2. Manufactured Solutions
- 3. Flow Solvers
- 4. Grid Sets
- 5. Results
- 6. Final Remarks



- 1. Introduction
  - Assess the (discretization) convergence properties of RANS solvers based on eddy-viscosity models
  - Determination of discretization error requires
    analytical (exact) solutions
  - Manufactured Solutions that resemble real turbulent flows
  - Present examples are for the Spalart & Allmaras one-equation model and for the TNT version of the *k*-ω two-equation model



- 2. Manufactured Solutions
  - The flow field is defined as a function of the Reynolds number, allowing the choice of values in the range of 10<sup>6</sup> to 10<sup>9</sup>,  $Re = \frac{U_1L}{v}$
  - Bottom boundary of the domain is a "wall"
  - Velocity field is divergence free
  - Mean velocity profiles include a "viscous sub-layer" in the near wall region

- 2. Manufactured Solutions
  - Skin-friction coefficient matches an empirical correlation for a flat plate boundary-layer

$$C_f = \frac{\tau_w}{1/2\rho U_1^2} = 0.058 (Re_x)^{-0.2}, \quad Re_x = Re\frac{x}{L}$$

- Flow field tends to a uniform flow with the increase of the "distance to the wall"
- Alternative MS's obtained from superposition with a perturbation flow that does not change the near wall region
- Pressure field matches typical boundary conditions of practical applications



- 2. Manufactured Solutions
  - Turbulence quantities are defined from available expressions for "automatic wall functions" combined with an exponential decay in the outer region
  - Free-stream values are adjustable
  - Supported turbulence quantities:  $\tilde{v}, k, \omega$  and  $\Phi$
  - Alternative functions defined for  $k, \omega$



- 2. Manufactured Solutions
- Mimic of a flat plate boundary-layer

Mean flow field  $Re = 10^7$ 





- 2. Manufactured Solutions
- Flow with a "weak perturbation"

Mean flow field  $Re = 10^7$ 





- 2. Manufactured Solutions
- Flow with a "strong perturbation"

Mean flow field  $Re = 10^7$ 





- 2. Manufactured Solutions
- Mimic of a flat plate boundary-layer

Turbulence quantities

 $Re = 10^{7}$ 





 $Re = 10^{7}$ 

- 2. Manufactured Solutions
- Alternative definition of  $k, \omega$  MSa

Turbulence quantities





- 3. Flow Solvers
  - PARNASSOS
    - Finite differences
    - Non-orthogonal, curvilinear, structured grids
    - Coupled solution (momentum and continuity)
    - Continuity solved in its original form  $\vec{\nabla} \cdot \vec{V} = 0$
  - ReFRESCO
    - Finite volumes
    - Face-based volumes of arbitrary shape
    - Segregated solution
    - SIMPLE-like solution of continuity equation



- 4. Grid Sets
  - Sets of 21 geometrically similar stretched Cartesian grids,  $(51 \times 51 \text{ to } 801 \times 801)$
  - Different stretching functions tested with similar near-wall spacing  $(y_2^+)$  or same stretching function with different near-wall grid line spacings
  - $L_{\infty}$ ,  $L_{2}$  and  $L_{1}$  norms of the errors of  $u_{x}, u_{y}, C_{p}$   $e(\phi) = \phi_{i} - \phi_{exact} \cong e_{o} + \alpha h_{i}^{p}$  $V_{t}, \widetilde{V}, k, \omega y^{2}$
  - $e_o(\phi)$ , p and  $\alpha$  obtained in the least squares sense from the data of the six finest grids



- 4. Grid Sets
- GS1, GS2 and GS3 Different  $y_2^+$
- GS1, GS4, GS5, GS6 and GS7 Different stretching

function





#### 4. Grid Sets

- GS1, GS2 and GS3 Different  $y_2^+$
- GS1, GS4, GS5, GS6 and GS7 Different stretching







- 5. Results
- Calculations with manufactured eddy-viscosity field MSt (PARNASSOS, ReFRESCO)
- Calculations with manufactured mean velocity field MSm (PARNASSOS)
- Calculations of all equations with two turbulence models: Spalart & Allmars (SPAL), TNT k-ω (PARNASSOS)
- Friction resistance coefficient,  $C_F$ , error norms of  $u_x, V_t, k, \omega y^2$



- 5. Results
- Friction resistance coefficient,  $C_F$ Sets with different  $y_2^+$ , MS1t





- 5. Results
- Friction resistance coefficient,  $C_F$ All sets, PARNASSOS





- 5. Results
- Friction resistance coefficient, C<sub>F</sub>
  All sets, PARNASSOS



![](_page_19_Picture_0.jpeg)

- 5. Results
- Friction resistance coefficient, C<sub>F</sub>
  All sets, PARNASSOS

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

- 5. Results
- Horizontal velocity component, u<sub>x</sub>
  GS1 set, different MSt

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

- 5. Results
- Horizontal velocity component, u<sub>x</sub>
  All sets, PARNASSOS

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_0.jpeg)

- 5. Results
- Horizontal velocity component, u<sub>x</sub>
  All sets, PARNASSOS

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_0.jpeg)

- 5. Results
- Horizontal velocity component, u<sub>x</sub>
  All sets, PARNASSOS

![](_page_23_Figure_3.jpeg)

![](_page_24_Picture_0.jpeg)

- 5. Results
- Eddy-viscosity, v<sub>t</sub>
  All sets, PARNASSOS

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

- 5. Results
- Eddy-viscosity, v<sub>t</sub>
  All sets, PARNASSOS

![](_page_25_Figure_3.jpeg)

![](_page_26_Picture_0.jpeg)

- 5. Results
- Eddy-viscosity, v<sub>t</sub>
  All sets, PARNASSOS

![](_page_26_Figure_3.jpeg)

- 5. Results
- Turbulence kinetic energy, k
  All sets, PARNASSOS

![](_page_27_Figure_3.jpeg)

- 5. Results
- Turbulence kinetic energy, *k* All sets, PARNASSOS

![](_page_28_Figure_3.jpeg)

- 5. Results
- Turbulence frequency, ωy<sup>2</sup>
  All sets, PARNASSOS

![](_page_29_Figure_3.jpeg)

- 5. Results
- Turbulence frequency, ωy<sup>2</sup>
  All sets, PARNASSOS

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

#### 6. Final Remarks

- Convergence properties with manufactured eddy-viscosity follow the expected behaviour
- Turbulence quantities transport equations do not exhibit the expected properties for all the MS tested
- For the most complicated mean velocity field (MS3) it was not possible to obtain any solution of the turbulence quantities transport equations
- Solutions obtained with the TNT k-ω model are extremely sensitive to the near-wall grid line distribution

![](_page_32_Picture_0.jpeg)

#### 6. Final Remarks

 All these manufactured solutions are available to the CFD community!