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Preface 

 This book is essentially a second edition of Verification and Validation in Computational Science and 
Engineering (V&V1), although with about 1/3 new material it deserves the new title. As I begin writing, it 
is a decade since the first book was published, and a century since Richardson’s first paper. The reception 
of the first book, published in 1998, has been gratifying. In the subsequent decade substantial progress has 
been achieved in three senses. First, new methods have been developed and evaluated, notably the Least 
Squares GCI (Grid Convergence Index) for Solution Verification by Eça and Hoekstra, and the application 
of the internationally accepted approach for experimental uncertainty to total Validation uncertainty as 
described in ASME ANSI Standard V&V 20. Second, the methods presented in the first book, already 
having been demonstrated to be successful, have been further applied extensively, notably the MMS 
(Method of Manufactured Solutions) for Code Verification, and the original GCI, which now has been 
accepted as a publication standard (not required) by the ASME Journal of Fluids Engineering. Third, there 
have been significant new publications, including the book on Code Verification by my colleagues Knupp 
and Salari, the ASME V&V 10 for Computational Solid Mechanics, the ASCE Monograph for V&V of 
Free Surface Flow Models (with a wealth of physical data and examples) the three Proceedings of the 
Lisbon V&V Workshops, the second edition of the Handbook of Numerical Heat Transfer, the 
(forthcoming) book by Oberkampf and Roy, and especially ASME V&V 20.  
 While attempting to maintain the organization of the first book where possible, I have noted significant 
departures. Notably, the Least Squares GCI required a new Section (5.11), and the V&V 20 methodology 
for Validation Uncertainty required a new Chapter (11), moving the old Chapter 11 on “Code Quality 
Assurance and Certification” to new Chapter 12 (abbreviated).  
 To alert those readers who have previously used the first book, I have noted with symbol Δ any Section 
that contain significant changes (new or corrected material), and with symbol § any completely new 
Section, Chapter, or Appendix. Several of the original Appendices have been deleted because of 
diminishing value. 
 The new Appendix D gathers the simplest V&V formulas together for easy reference. Combined with 
the new Chapter 11 on V&V 20 methodology for Validation Uncertainty, this should serve as a usable 
summary outline of the entire V&V procedure proposed herein. 
 The book layout is designed for readability rather than cosmetics. For example, page 199 is half blank 
so the reader can consider the next 3½ pages of graphics before reading the Section summary. I hope the 
reader appreciates it this way. 
 Errata and Addenda for this book are posted on www.hermosa-pub.com. 

                                                
 Full citations will be given in Ch. 1. 
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Preface to V&V1 

 The title of this book, like most titles, is a compromise. Most of my experience, and therefore most of 
the examples in this book, are taken from that branch of Computational Science (or Computational 
Engineering, or Computational Physics, or Computational Mathematics) known as Computational Fluid 
Dynamics or CFD, and the closely related Computational Heat Transfer or CHT. Often, this term CFD is 
taken to apply to only computational aerodynamics, but I use it here more broadly to include computational 
aeroacoustics, groundwater flow and transport, ocean modeling, meteorological modeling, combustion 
modeling, free convection heat transfer, neutron transport, magnetohydrodynamics, etc. I also have some 
experience in computational electrodynamics, examples from which appear in this book as well, and some 
experience in (only) the V&V aspects Computational Solid Mechanics. However, the principles covered in 
the book are much more general, applying to virtually all numerical solutions of partial differential 
equations, including solid mechanics, structural dynamics, chemistry, etc., even some finance models. [In 
this second book, I have adopted the convenient description computational PDEs for computational partial 
differential equations]. Use of the term “partial differential equations” in the title would be descriptive but 
would have led to an overly long title, and perhaps would have seemed too mathematical. Much of the book 
would be properly covered in the title “Computational Mathematics”, but “Validation” (as used herein - see 
Chapter 2) strictly speaking is not a mathematical issue (as is “Verification”) but is an issue of physical 
science. Also, the related issue of “Certification” is most obviously an engineering term, related to 
somewhat specific engineering projects. 
 Within the broader realm of Computational Science and Engineering, or PDEs, I do not treat “real 
time” problems, e.g. on-line nuclear reactor simulations, which need robust input error checking. This is 
not a Verification and Validation issue in Computational Physics or Mathematics. (It certainly is a 
consideration for code quality, but not for Verification and Validation, as defined herein.) The term 
“Computer Science” as used in university departments would sometimes cover this material as well, but 
more often refers to issues of hardware and system software, rather than applications codes for partial 
differential equations as considered herein. The somewhat amorphous term “Computational Science and 
Engineering” includes applications codes but also (in one definition) is concerned with providing “total 
problem-solving environments” (i.e., computer systems), and this book would not qualify for such an 
inclusive definition. In the end, I chose the more inclusive title, and the text will use “computational PDEs” 
as the descriptive term covering partial differential equations in science and engineering. 
 The examples used herein obviously cannot cover the entire range of computational solutions of 
physically important partial differential equations. Some notable omissions are radiation equations, 
Kortweg-de Vries equations, molecular modeling, etc. But most readers of the Journal of Computational 
Physics, or the SIAM Numerical journals, or the AIAA and ASME and AIChE Journals, should have an 
interest in the book’s subject. 
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 Topics other than Verification and Validation are treated, such as Confirmation, Certification, 
Benchmarks, and Quality Assurance. These are related to but distinct from Verification and Validation. 
The terms are not as universally defined nor as centrally important as Verification and Validation. 
“Quantification of Uncertainty” is an excellent inclusive term; frankly, the main reason I did not use it is 
that I already have two other publications with that title. (Also, some authorities now suggest that it should 
not be used synonymously for errors that are not due to lack of physical information.) 
 The background required for a reader of this book includes a first level course in partial differential 
equations and basic numerical methods including some linear algebra and some numerical solutions for 
partial differential equations. It should not be necessary to be an expert in any particular discipline within 
computational PDEs. The methods and issues discussed are applicable to general purpose commercial 
codes, as well as specialized scientific codes. For the specific examples, it would be advantageous to have 
some background in either aerodynamics, fluid dynamics, heat transfer, groundwater flow and transport, or 
electrodynamics. I do not by any means intend to discourage applied mathematicians, but the discussions of 
validation would benefit if the reader had some minimal experience with physical experiments. I do not 
consider “CFD Lab” courses, as valuable as they may be, to be an adequate substitute for all physical 
experimental courses. (I understand that it is now possible at some universities to earn a bachelor’s degree 
in engineering without ever taking a physical laboratory course; it is my opinion that the recipients of these 
degrees have been cheated in their education.) 
 Many readers will feel that I have not done justice to the extensive literature on error estimation in 
Finite Element methods. As described in Chapters 4 and 7, my opinion is that these methods are useful for 
guiding grid adaptation but less useful for the title subject of this book. More basically, I hope to excuse 
myself by quoting the legendary mathematical physicist S. Chandrasekhar, explaining why, in his classic 
Hydrodynamic and Hydromagnetic Stability (Oxford, 1961), he had no reference to viscous shear flow. 
“[T]his is a large and highly specialized field and I have not felt myself competent to write about it. This 
argument is indeed a general one: in the last analysis an author chooses to write about only those matters in 
which he has some confidence of his understanding.” 
 I have taken two minor liberties when quoting sources. In this book, I have capitalized terms like 
Validation, Verification, Calibration, etc. in order to emphasize that the terms are used in a limited 
technical (vs. general) context - a major theme, especially in Chapter 2. To maintain consistent emphasis, I 
have capitalized these terms in quotations even when the original authors did not. Also, I have replaced 
underlines appearing in the original sources with italics, just because it looks better in type. The emphasis 
of the original authors is maintained. 
 In my reading of papers by respected colleagues in the title area, my experience has invariably been 
mixed. Even when reading what I consider to be the very best papers, those which provide significant 
insights and which I have quoted extensively in this book, I find many points of disagreement. Sometimes 
these points are minor or semantic, but often they are major and substantive. It has not seemed to be 
worthwhile, or even feasible, to discuss each of these points individually with citations of the original 
papers, as would be done in a review (e.g., for AIAA Journal or Applied Mechanics Reviews). I know for a 
fact that some of the disagreement is due simply to time-lag in the evolution of the concepts in the 
communities, and that many of the authors would now change their position (and terminology) upon further 
thought. This has certainly been my own experience. Extrapolating, I am confident that I will change my 
opinion on some of my ideas expressed herein. As a corollary, I am sure that this book contains internal 
inconsistencies. I ask the reader’s tolerance.
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PART  I 
 

OVERVIEW 
 
 
 

Part I will present an overview of the subject, approached by way of historical 
development. The context in all of this book is that of non-real-time numerical solution 
of partial differential equations. The history will include not only ideas but attitudes, 
and involves several controversies. Considerations of terminology and semantics have 
proven to be essential, as attested by confusion in the literature. However, unraveling 
the semantics can be tiresome, and the reader could proceed directly to the more 
substantive material in Part II if preferred. 
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CHAPTER  1 
 

INTRODUCTION 
 
 
 

1.1 SKETCH OF HISTORICAL DEVELOPMENT OF COMPUTATIONAL SCIENCE AND 
ENGINEERING 

 As noted in the Preface, the subject of numerical solution of partial differential equations or 
Computational Science and Engineering, is broad. I will use the description “computational PDEs” (for 
computational partial differential equations) to include computational fluid dynamics, aeroacoustics, heat 
transfer, groundwater flow, electrodynamics, plasma dynamics, solid mechanics, structural dynamics, heat 
conduction, neutron transport, groundwater flow and transport, ocean modeling, meteorological modeling, 
combustion modeling, free convection heat transfer, neutron transport, magnetohydrodynamics, chemistry, 
enhanced oil recovery processes, etc., even some finance models. The methods and issues to be discussed 
are equally applicable to general purpose commercial codes and to specialized scientific codes.  
 The historical roots of computational PDEs can be traced to Richardson’s 1910 paper on the 
computation of stresses in a masonry dam. Although performed with hand calculations by “computing 
boys,” paid piecework, the work was truly multidimensional, and the paper itself is highly recommended 
reading for any practitioners interested in their own cultural heritage. See also the brief history in Roache 
(1972b, 1998b). The paper by Emmons (1970) was a landmark study for its systematic approach. The 
popular science article by Harlow and Fromm (1965) alerted many in the scientific community to the 
potential of the computer simulation approach, presenting at least qualitatively accurate solutions of 
previously intractable problems without the constricting assumptions used by theoreticians. By the time of 
the publication of the first book with “CFD” in the title (Roache, 1972b) it was beginning to be realized 
that we were in the midst of a revolution, in fluid dynamics and indeed in all areas of science and 
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engineering. The traditional categories of “theoretical” and “experimental” were being forced to make way 
for a third category: “computational.” For a while, people tried to fit the computational work into the old 
“theoretical” category, but it did not work. As I wrote in 1972, “it is this author’s contention that 
computational fluid dynamics is a separate discipline, distinct from experimental fluid dynamics and from 
theoretical fluid dynamics, with its own techniques, its own difficulties, and its own utility.” 
 The revolution was enabled by the phenomenal progress in computing power, which continues today. 
Yet it cannot be emphasized too much that progress was and is equally achieved by improvements in 
algorithms. For example, Cramer’s method for solving linear systems of equations, which I was taught in 
high school and undergraduate school, is so inefficient for large systems that its operation count is literally 
astronomical. For modern problems with O(106) grid points, the algorithmic improvement over Cramer’s 
rule (and other primitive algorithms, e.g. the naive discrete Fourier transform replaced by the modern Fast 
Fourier Transform) can overshadow the hardware increases spanning the age of the abacus to parallel 
architecture supercomputers. 
 Nevertheless, we are now living with the historical heritage of marginal computing power. As 
computing power increased exponentially, perhaps doubling every two to three years, the vision of the 
practitioners increased even faster, abetted by the increase in complexity of the physics modeled and by the 
dimensionality. If one could solve (to at least qualitative accuracy) a two-dimensional incompressible 
steady laminar separated flow problem on a grid of O(100  100) nodes at some calendar date (say 1970), 
then one could swallow up a two-order of magnitude increase in computing power by going to three-
dimensional flows, another two orders of magnitude by going to time-dependent flows, another one order of 
magnitude by going to turbulent flow with Reynolds-Averaged Navier-Stokes (RANS) equations and a 
two-equation model of turbulence, another order of magnitude with a Large Eddy Simulation of turbulence, 
another one or two orders of magnitude with brute-force calculation of turbulence by Direct Numerical 
Simulations (DNS) in square channels at low Reynolds numbers. Further generations of computing power 
can be eaten up, several orders of magnitude at a time, by increases in Reynolds numbers and by 
engineering geometries (easily one order of magnitude, two for full aircraft). Grid resolution also has a 
healthy appetite; for a three-dimensional time-dependent problem, a factor of 2 increase in computer speed 
is eaten up by merely a 19% increase in resolution, even assuming optimally efficient methods (in which 
computing cost is merely proportional to the number of unknowns). In fact, the commonly used methods 
are far from the promise of optimally efficient methods promised by true Multigrid Performance (Brandt, 
1977), and the result is another order of magnitude penalty for increased resolution.1 Even with optimally 
efficient methods, an order of magnitude increase in computer speed does not allow even a doubling of 
resolution, but only a 78% increase. There is more. Going from analysis to design optimization is good for 
a minimum of one order of magnitude for even the simplest system with one or two design parameters; two 
or even three orders of magnitude are more realistic. In groundwater flow and transport, a geologic disposal 
site for radioactive waste originally designed with back-of-the-envelope calculations was finally analyzed 
with thousands of geostatistical realizations of property fields and scenarios, each calculation involving 
two-dimensional and three-dimensional time dependent calculations with three different computational 
PDEs codes (WIPP PA Dept., 1992). Detailed geochemistry calculations in groundwater remediation 
studies, coupled with groundwater flow, could saturate any conceivable computer system. As is now well 
                                                
1 This penalty is optimistic because it applies to increments. The base comparison is terrible. True 
Multigrid Performance (Brandt, 1977) somewhat idealistically set the benchmark at 10-20 iterations to 
achieve convergence, regardless of problem size. But good Multigrid codes have indeed achieved O(100) 
even for large and difficult problems. Currently, aerodynamics publications shamelessly cite O(10,000) to 
O(100,000) iterations. The Multigrid literature is enormous. For references to earlier literature, see 
McCormick (1989) or Roache (1998b, Ch. 10). 



Chapter 1   Introduction 
 

27 

recognized, the post-processing of data, especially from time-dependent simulations, demands more 
computing power than previous levels of simulations. That is, the computer resources devoted in 2000 to 
visual post-processing probably exceeded the power devoted to performing the simulations themselves in 
1980. In many installations, “antique” computers purchased 3 to 5 years earlier as computing engines are 
kept around for post-processing tasks. 
 The point is that the universe of possible problems is so extensive, and the power of simulations is so 
great, that  practitioners have often focused on qualitative simulation of the next more difficult problem 
class, rather than on achieving quantitative accuracy on the previous problem class. The result of this 
situation sometimes has been to cause a decrease in the quality of simulations published. 
 It is easy to be sympathetic to the wave of virtually unbridled optimism accompanying this revolution. 
In the aerodynamics community, the touchstone was the 1975 article in Aeronautics and Astronautics by 
Chapman, Mark and Pirtle (1975), which predicted (and called for) computational PDEs (specifically 
CFD) to “supplant” wind tunnel experiments. The lack of restraint was perhaps due in part to the natural 
necessity of “selling” the CFD potential to management, composed as always of an older generation of 
technocrats who were not directly involved in the newer technical field of CFD, and who were more 
inclined to skepticism than to enthusiasm, who held the purse-strings, and who were to make the decisions 
about relative funding of CFD vs. experimental facilities. 
 To the credit of the CFD community, the ensuing debate was not simply characterized by “us vs. 
them,” i.e. by CFD practitioners vs. experimentalists. From the CFD community, there were two immediate 
and critical responses to the Chapman et al article, one by Bradshaw (1975) and one by myself (Roache, 
1975). Bradshaw pointed out the naiveté of the “supplanting” philosophy especially in regards to 
turbulence modeling, while I emphasized the limitations inherent in the mathematical approximations. 
Interestingly, we now recognize these as issues of the two title categories of this book, i.e. Validation and 
Verification, respectively. (See Chapter 2 for definitions.) This more cautious and realistic philosophy was 
reiterated by other conscientious CFD practitioners in a division of opinion that persisted for years, 
arguably to this day. Especially noteworthy were the editorial comments of three successive editors of the 
Proceedings of the AIAA Computational Fluid Dynamics Conferences. J. Rakich (1973), R. T. Davis 
(1975), and F. G. Blottner (1977) each took unequivocal stands against the overly optimistic view of 
Chapman, Mark and Pirtle (1975). (Rakich, 1973 anticipated the latter article.) Each explicitly stated that 
wind tunnels would not be replaced by computers, invited participation by experimentalists in the CFD 
conferences, and called for collaboration between computational, experimental, and analytical fluid 
dynamicists. Implicitly, they took stands against the even more aggressively optimistic salesmanship of 
others during this time.2 
 At the round table discussion of the 1988 AGARD conference on Validation in CFD (AGARD, 1988), 
H. Hornung noted approvingly that numerical performance had improved over previous years, yet the 
claims were more modest, and that “reduction of the extreme claims is a very healthy sign.” In the same 
round table discussion, P. Sacher noted that “Nobody talks anymore of replacement of wind tunnels by the 
computer. I am really happy to find that.” 
 The salesmanship persists today in the arena of CFD commercial codes. There exists a deleterious 
Darwinistic effect here. Most potential customers want to hear only good news. The more conscientious 
salespeople will point out limitations of their products, and often lose sales to less scrupulous salespeople. 
The best support one can give to the conscientious salespeople is to encourage enlightened customers, 
which is a thrust of this book. 
                                                
2 An anonymously authored parody of the situation appeared in the mid 1980’s, and was reproduced in 
Appendix D of V&V1 with additional comments. 
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 The division of opinion persisted but not so much in a spirit of debate. Unfortunately, as is often the 
case in human affairs, the opinions solidified and there arose separate camps that did not much talk to each 
other. The effects were very significant, with the optimists largely winning the day in the management 
struggles. While arguably good for computing power and computors like myself, the result for fluid 
dynamics as a whole was deleterious. Aeschliman et al (1995) also attribute to the Chapman, Mark and 
Pirtle (1975) article the widely recognized historical trend (especially in the U.S.A.) of reduced funding for 
experimental work, to the point where irreplaceable facilities were scrapped, graduate students went 
unfunded, and cultural skills were almost lost. As they noted, it became possible at some colleges for one to 
obtain a Bachelors Degree in engineering or physics and “never witness, let alone actively participate in an 
actual experiment,” the genuine physical laboratory courses having been totally “supplanted” with “CFD 
Labs.” We obviously believe in CFD education and CFD Labs, but We agree with Aeschliman, 
Oberkampf, and Blottner (1995): “Modelers who have no laboratory experience are unlikely to appreciate 
the true complexity of the real world.” 
 Aeschliman, Oberkampf, and Blottner (1995) also noted that the optimistic predictions of Chapman, 
Mark and Pirtle (1975) failed to materialize, even though the actual increase in computing power exceeded 
their requirements. Likewise, Rizzi and Vos (1996), noted “the fundamental question of how well available 
RANS codes and turbulence models predict the maximum lift of a simple transport aircraft remains largely 
unanswered.” Also, Aeschliman et al (1995) noted that the continued closing of experimental facilities 
would result in “increasing dependence on new and unvalidated CFD codes for solutions to the most 
difficult remaining flow problems. The National Aerospace Plane, which was to be designed and developed 
with a very heavy reliance on CFD, and the ensuing programmatic fiasco surrounding NASP after the truth 
became known, was not necessarily a unique event.” 

1.2 THE NEW IMPETUS TOWARD HIGHER QUALITY SOLUTIONS 

 The Stanford Turbulence “Olympics” (Kline et al, 1981) made a tremendous effort to establish high 
standards of turbulence simulations, and the organizational aspects still stand as a paradigm for this type of 
workshop or community endeavor (e.g., see Rizzi and Vos, 1996). Unfortunately, the first conclusion of the 
Review Committee (chaired by Howard Emmons) was that the numerical quality of the solutions was so 
poor that it was impossible to draw meaningful conclusions about the relative merits of various turbulence 
models. This same story has been repeated many times in conferences, symposia and workshops since then. 
 Needless to say, there have always been some individuals and groups who produced high quality, 
reliable CFD calculations. Two decades before V&V1 was written, Blottner (1977) stated the present issue 
with clarity. After distinguishing the two distinct sources of error from “either inappropriate governing 
equations or inaccurate numerical solution procedure” (i.e., the issues now named Validation and 
Verification; see Chapter 2), Blottner introduced the term “credibility” and noted its necessary requirement: 
“Computational fluid dynamicists must perform grid refinement studies whenever they present numerical 
studies as experimentalists are expected to put error bounds on their results. Only if this is done can the 
needed credibility of computational fluid dynamics be established.”  
 However, individuals like Blottner were the exception, and the general level of quality even as late as 
the mid-1980’s was unacceptable, in our opinion. This evaluation is based not only on reading of final 
published articles, but on my experience on the Review Committee of the Stanford Turbulence “Olympics” 
(Kline et al, 1981) and as an editor and reviewer. In 1985, Frank White, the Editor of the American Society 
of Mechanical Engineers (ASME) Journal of Fluids Engineering created the position of Associate Editor 
for Numerical Methods, which formally recognized the special needs of this discipline. In 1986, we 
published (Roache, Ghia and White, 1986) in JFE an “Editorial Policy Statement on the Control of 
Numerical Accuracy” which instituted “higher standards on the control of numerical accuracy.” Since the 
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rationale and needs (in 1986) for the policy statement are explained in the announcement, it is repeated 
below. 

 1.2.1 ASME Journal of Fluids Engineering 1986 - 
  “Editorial Policy Statement on the Control of Numerical Accuracy” 

 A professional problem exists in the computational fluid dynamics community and in the broader area 
of computational physics. Namely, there is a need for higher standards on the control of numerical 
accuracy. 
 The numerical fluid dynamics community is aware of this problem but, although individual researchers 
strive to control accuracy, the issue has not to our knowledge been addressed collectively and formally by 
any professional society or journal editorial board. The problem is certainly not unique to the JFE and came 
into even sharper focus at the 1980–81 AFOSR HTTM-Stanford Conference on Complex Turbulent 
Flows. It was a conclusion of that conference’s Evaluation Committee that, in most of the submissions to 
the conference, it was impossible to evaluate and compare the accuracy of different turbulence models, 
since one could not distinguish physical modeling errors from numerical errors related to the algorithm and 
grid. This is especially the case for 1st-order accurate methods and hybrid methods. 
 The practice of publishing comparisons based on coarse grid solutions, without systematic truncation 
error testing, may have been acceptable in the past. Certainly 10–15 years ago any calculation was of 
interest, and much of the exploratory work deserved publication, as many researchers lacked the 
computational power or funds to do a thorough and systematic error estimation. We are of the opinion that 
this practice, however understandable in the past, is outmoded and that, with powerful computers becoming 
more common, standards should be raised. Consequently, this journal hereby announces the following 
policy: 
 
The Journal of Fluids Engineering will not accept for publication any paper reporting the numerical 
solution of a fluids engineering problem that fails to address the task of systematic truncation error 
testing and accuracy estimation. 
 
Although the formal announcement of this journal policy is new, it has been the practice of many of our 
conscientious reviewers. Thus the present announcement is not a change in policy so much as a 
clarification and standardization. 
 Methods are available to accomplish this task, such as Richardson Extrapolation (when applicable), 
calculations with a high- and low-order method on the same grid, and straightforward repeat calculations 
with finer or coarser grids. As in the case of experimental uncertainty analysis, “…any appropriate analysis 
is far better than none as long as the procedure is explained.” Whatever the authors use will be considered 
in the review process, but we must make it clear that a single calculation in a fixed grid will not be 
acceptable, since it is impossible to infer an accuracy estimate from such a calculation. Also, the editors 
will not consider a reasonable agreement with experimental data to be sufficient proof of accuracy, 
especially if any adjustable parameters are involved, as in turbulence modeling. 
 We recognize that it can be costly to do a thorough study, and that many practical engineering 
calculations will continue to be performed on a single fixed grid. However, this practice is insufficient for 
publication in an archival journal. 
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1.2.2   Later Policy Statements and Other Initiatives 

 Although apparently innocuous, this policy was not universally welcomed nor was it implemented 
without difficulty. See Appendix A, a reprint of Roache (1990), for my experiences with the 
implementation of this policy, including the objections put forth on its practicality. The ASME Journal of 
Heat Transfer implemented a similar policy in 1994 (see Appendix B). In 1988 and 1989, there were 
special sessions at the ASME Winter Annual Meetings on numerical accuracy. In June 1989, Clark Lewis 
organized a session of invited papers at the AIAA Thermophysics Conference on CFD “code 
validation/verification/certification.” The papers from this well attended session were published in an issue 
of the AIAA Journal of Spacecraft and Rockets (Vol. 27, No. 2, March-April 1990). In his introductory 
comments as JSR editor-in-chief, Lewis (1990) noted that “computational fluid dynamics has reached the 
age where those who practice it and publish the results of code development and applications must 
demonstrate the accuracy and value of their work.” In October 1989, Tinsley Oden organized a workshop 
at the Texas Institute for Computational Mechanics on the somewhat broader issue of reliability. In the 
early 1990’s, the ASME Coordinating Group on Computational Fluid Dynamics sponsored several 
Symposia on the general subjects of “Quantification of Uncertainty in CFD” and benchmarking, with 
motivation principally provided by Ismail Celik and Christopher Freitas; e.g., see Celik and Freitas (1990), 
Celik et al (1993), Freitas (1993b, 1995b), Johnson and Hughes (1995). In 1994, the International Journal 
of Numerical Methods in Fluids published its statement (Gresho and Taylor, 1994). In 1993 the AIAA 
Fluid Dynamics Technical Committee, with the encouragement of the Chairman David Walker, passed 
(almost unanimously) its recommendation for a similar policy, which was adopted for all AIAA 
publications and first published in January 1994. (See also Appendix B of V&V13 for reprints.) 
 The AIAA Policy Statement was admirable on at least four accounts. First, it included requirements for 
both computational and experimental uncertainty in a single statement, thus indicating that nothing special 
is being required of the computational work beyond simple good engineering practice. Second, the policy 
statement is to be re-published yearly. Third, the statement is included with instructions to journal 
manuscript reviewers. Fourth, the core statement  is now included in the “Information for Contributors to 
Journals of the AIAA” published in every issue. An expanded version was published in AIAA (2006). 

  In 1994, the impetus for quality work reached a new plateau. The ASME Journal of Fluids 
Engineering editor, D. P. Telionis, accepted the recommendation of the ASME Coordinating Group for 
CFD and its Chairman, C. J. Freitas, and published a much expanded and more specific Policy Statement 
(supplanting Roache et al, 1986) which included the categorical rejection from publication of 2-point first-
order upstream methods. That policy statement and the introduction by Freitas were reproduced in 
Appendix B of V&V11. Once again, and more understandably, the new policy caused considerable 
discussion; see Leonard (1995a,b), Leonard and Drummond (1995), Freitas (1995a), Roache (1995). In 
1998, the AIAA CFD Committee on Standards published the Guide for the Verification and Validation of 
Computational Fluid Dynamics Simulations (AIAA, 1998), and in 2006 the ASME Committee PTC-60 
published ASME V&V 10-2006. Guide on Verification and Validation in Computational Solid Mechanics, 
(V&V10), inspired by the AIAA Guide. These are both valuable over-views of the V&V processes and 
philosophies (differing sometimes significantly from those of this book) and are probably most valuable for 
V&V management of large engineering projects, but they do not present any procedures (e.g., they contain 

                                                
 3 Shorthand references will be used for four publications: V&V1 for the first edition of this V&V book, 

Roache (1998a); V&V10 for ASME Committee PTC-60 (2006), now known as ASME Committee V&V 
10; V&V20 for ASME Committee PTC-61 (2009), now known as ASME V&V 20; and AIAA Guide for 
(AIAA, 1998). 
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no equations). The book by Oberkampf and Roy (2010) is also recommended especially for current views 
on management issues (although my opinion differs from theirs on some points).  
 In 2005 the journal Clinical Biomechanics published its first policy statement on V&V (Burton et al, 
2005). Although this initial policy statement confused some V&V terminology, it was a significant 
contribution to setting quality standards for CSM (Computational Solid Mechanics) in difficult 
biomechanical problems. For example, Validation is complicated by the aging of animal tissues during the 
experiments. 
 In 2009, the ASCE/EWRI Task Committee published 3D Free Surface Flow Model Verification / 
Validation, (ASCE/EWRI, 2009) that contains detailed presentations of the procedures for verifications of 
codes and calculations, and extensive experimental data for benchmark exercises. Finally, in 2009 the 
ASME Committee PTC-61 published ASME-ANSI Standard V&V 20, Guide on Verification and 
Validation in Computational Fluid Dynamics and Heat Transfer (V&V20). This document covers all the 
details of the entire V&V process, including the refinement of the Validation Uncertainty concepts initiated 
by H. Coleman based upon internationally accepted terminology and concepts used in experimental work, 
including ASME PTC-19.1 (ASME 2005). (I had the pleasure of working on the ASME and ASCE/EWRI 
committees that produced these last three publications.) The new Chapter 11 of this book presents a short 
version of this V&V20 Validation Uncertainty concept, which is a significant addition to the first edition of 
this book (V&V1).  

  The Grid Convergence Index or GCI (see Chapter 5) presented in the first edition now has been 
exercised on many hundreds of cases and has proven to be reliable. An important single paper is that of 
Cadafalch et al. (2002); see also Roache (2003b). Because of this extensive experience, the GCI has been 
recognized as a standard approach for reporting numerical uncertainty by the ASME Journal of Fluids 
Engineering (Celik et al., 2008) and in the ASME-ANSI Standard V&V 20. A significant addition is the 
Least-Squares version of GCI developed by Eça and Hoekstra, as well as the other V&V methods 
evaluated in their exemplary three Lisbon Workshops of V&V (see Section 5.11 for references). 
 In a visionary editorial in the ASME Journal of Fluids Engineering, Telionis (1995) described how the 
revolution in Internet information technology can be used to favorably affect all these issues and broader 
ones of the review process and publication lag, critical comments, author revisions, etc. For example, gory 
details of Verification (see the succeeding chapters) could be relegated to a longer electronic version of a 
paper, with only a short summary statement in the printed version. Besides shortening the printed version 
and removing clutter for readers interested primarily in the results, the electronic mode provides another 
tremendous advantage. No longer will authors have to struggle to reduce the electronic paper to 6 pages, so 
no longer will they have that excuse for not providing convincing evidence of grid convergence. Reviewers 
can, in good conscience, be more demanding of numerical quality. Likewise for the expository aspects of 
the papers. Electronic versions can provide a multi-level publication, and the longer, more leisurely 
versions can avoid what G. H. Douglas has called the “cobblestone writing” style, in which the requirement 
for brevity fosters staccato statements of fact – subject, verb, object; subject, verb, object; ...– one after 
another, like an old wagon bouncing along on a cobblestone street from one hard unyielding fact to the 
next. Wouldn’t it be wonderfully ironic if electronic on-line publishing became responsible for a return to 
Victorian prose style? 

1.2.3   Commercial Codes and Users 

 New aspects of the problem are caused by the now extensive use of general purpose commercial codes. 
In 1972, when my first CFD book was published, there were no general purpose CFD commercial codes. A 
third of a century later, Hutton (2006) cited estimates of the worldwide number of commercial CFD code 
users of 25-30,000, including 2/3 of the Fortune 500 companies, and licensing revenues growing at 15-20% 
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annually. From a V&V viewpoint, this situation is intimidating. Industry colleagues tell me that the Code 
Verification exercises provided to users by vendors are neither as convincing for the individual cases as the 
examples given here in Chapter 3, nor as extensive in option coverage as users would like. With recent 
corporate consolidation of commercial CFD vendors, the Code Verification quality is not likely to improve. 
 In 1972, a few researchers had distributed their codes (including source code) to a select audience. 
Usually, the authors had negative experiences with misuse and mostly became discouraged with the idea of 
wide use of their codes. The codes were used without sufficient knowledge of either the sensitivity to 
iteration convergence parameters or the fluid dynamics, were applied without conscientious grid resolution 
studies, and were applied outside the regime of physical parameters intended. In the worst cases, the users 
modified the source code, reducing the accuracy, and then published inaccurate results attributed to the 
original code author. In fairness to the users, it must be noted that the code documentation (both internal 
and external, and both theory and users manuals) was usually atrocious; only slowly did the CFD 
community develop an appreciation for the significant work required to produce adequate documentation. 
In the groundwater flow discipline, in 1988 the U. S. Geological Survey published and released into the 
public domain its code which became known universally as MODFLOW (McDonald and Harbaugh, 
1988). Its clear documentation, both internal and external, became the standard of performance and 
contributed to the code’s immense popularity and use. 
 The difficulties change and compound as one considers in turn  
(a)  research codes for a limited class of problems, developed and used only by the authors and their 
  close colleagues (described as the “cottage industry” phase by Kleb and Wood, 1988), 
(b)  public domain codes for a limited class of problems and for which source code is released,  
(c)  commercial codes for a limited class of problems and for which source code is not accessible, and,  
(d)  the toughest case, general purpose commercial codes for which source code is not accessible. 
 The methods for Verification and Validation (V&V) to be described in this book are applicable to 
general purpose commercial codes, but the user must have confidence that the numerical methods as 
described in the manuals are actually those implemented in the code, with no undocumented special case 
“switches,” “fixes,” etc. This is especially true in the difficult area of turbulence modeling. Even for 
thoroughly documented codes, the most conservative Verification techniques may be required because of 
the unfortunate prevalence in general purpose commercial codes of using “hybrid” methods. The details 
will be discussed in later chapters; for now, suffice it to say that CFD algorithm developers have long 
known that there is a trade-off between code robustness and accuracy, and CFD code marketers know that 
there is little market for numerical accuracy but much demand for bullet-proof code robustness. General 
purpose CFD codes must be treated with skepticism in any new application by any conscientious user. See 
the results of early “CFD Triathlons” organized by C. J. Freitas (Freitas, 1993c, 1995b) for an indication 
of use of CFD general purpose commercial codes on laminar problems. This skepticism is supported by 
the experiences of the three Lisbon V&V Workshops (Eça and Hoekstra, 2004, 2006, 2008; Eça et al, 
2005, 2007, 2009). Also, note that it is very difficult to devise test cases for non-trivial industrial problems 
and to obtain quality data for Validation comparisons; e.g., see the CFD World Users Association 
publications (Muller, 1994; de Vahl Davis, 1995; Muller and Loffler, 1996). See also Chapter 9. 
 In the same vein, the issue of user education must be addressed - not education in code use, but in 
whatever scientific discipline is involved (e.g. fluid dynamics). It is asking too much of a code vendor to 
make up for lack of technical training (or plain sloppy thinking) of a user. A CFD code is not an 
“aerodynamicist on a chip” or a “groundwater analyst on a chip.” The folklore of both communities abound 
with horror stories of technically unqualified users who care little for the accuracy of the results, and who 
obtain from CFD codes answers that are either patently absurd, or that are correct but could have been 
obtained with elementary calculations by hand or handbook.   
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 It is apparently the case that user education is more of a practical concern in fluid dynamics than in 
some other disciplines, notably structural analysis. It is obvious that there is no analogue of fluid 
turbulence in structures, but the more significant distinction may be that the simplest level of analysis for 
structures (involving linear stress-strain, small deformations, steady state, etc.) happens to be very useful, 
whereas the analogous level in fluid dynamics (potential flow) by itself has few practical applications. 
However, Prof. G. Sinclair (2006) has pointed out how common it is to ignore the major effects of corner 
singularities in FEM solid mechanics stress calculations. 
 Likewise, user (and management) expectations are often unrealistic, and should be corrected whenever 
possible. In this regard, let me state the bad news right now.  
 
 It is totally unrealistic to expect that an analyst can approach a new problem (not close to a 
previously calculated problem) that is difficult (not potential flow, etc.) and expect to achieve reliably 
accurate answers with a single calculation. 

1.3 PERSONAL ANECDOTE ILLUSTRATING THE IMPORTANCE OF SYSTEMATIC CODE 
VERIFICATION 

 I would like to introduce and hopefully motivate the subject of code Verification (and more generally, 
reliability) with a personal anecdotal example (Roache, 1982). The subject area is not fluid dynamics, but 
electrostatics. 
 In the mid 1980’s, working with colleagues at the Tetra Corporation, I developed the ELF (for 
ELectric Field) codes for the design of laser electrodes and high power switches (Roache et al, 1984). 
Later (after the experience described below) commercial versions known as the TetraELF codes were 
marketed. The problems involved boundary fitted coordinate generation in two-dimensional and three-
dimensional geometries using elliptic grid generation methods (Thompson et al, 1974), and variants by 
Steger and Sorenson (1979) and Thomas and Middlecoff (1980), solved by semidirect elliptic marching 
methods (Roache, 1995). The codes ultimately included time-dependent strongly nonlinear source terms, 
solution adaptive grid generation, interior boundaries of dielectric materials, and other complications 
(Roache et al, 1984). 
 An early production version of the two-dimensional ELF code certainly produced plausible, intuitively 
appealing solutions, both for the nonorthogonal boundary-fitted grid generation and for the solution of the 
“hosted” equations for the electric potential . The code had been exercised over a variety of problems for 
several years. It had failed to converge in the boundary-fitted grid generation task only on one class of 
electrodes with a slit-like geometry, which failure was inexplicable. Other than this failure to achieve a 
solution (which is not the same, nor as dangerous, as achieving a false solution) the codes were used with 
much confidence; the answers looked good, even compared to an exact solution. 
 I had ostensibly benchmarked the code by comparison to the classical solution for the Rogowski family 
electrode case (Lorrain and Corson, 1962) based on traditional complex variable theory, and restricted to 
linear steady two-dimensional problems (vacuum solution). The code solved the (transformed) Laplacian 
equation for potential  with an error of 0.4% using only a 13  13 cell grid. This I considered excellent 
performance for a relatively coarse grid, and I believe that most practitioners would be confident in such a 
code. Certainly, many codes are in use that have not been benchmarked as well and are used with 
confidence. 
 My colleague at Tetra Corporation, Henry J. Happ, was not so confident. I patiently explained how the 
code could not be expected to produce the exact results, that 0.4% was to be expected for this coarse level 
of discretization, and was certainly adequate for engineering design and analysis. Ignoring my explanation 
and greater experience, Happ proceeded to perform a systematic grid convergence study of the old 
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fashioned kind, described for one-dimensional problems in any old numerical analysis textbook. This 
required considerable work for a two-dimensional problem using the computers of the day. Starting with a 
more coarse grid of 5  5 cells, as the grid was refined, the solution converged at the expected rate for a 
2nd-order numerical method. Unfortunately, it did not converge to the correct answer. The error from the 
Rogowski solution was reduced, as expected, but the error did not approach zero. Rather, the asymptote for 
the error appeared to be about 0.2%. The code accuracy was zeroth order, i.e., wrong. 
 Chastened by this numerical experiment, I investigated the source code thoroughly, looking for some 
subtle error, perhaps in a boundary condition implementation near the logical corners of the grid, that might 
cause this small error in the results. What I found instead was a gross error, namely, a factor of 2 error in 
the stencil coefficient for the cross derivative term in the transformed equations. The error appeared in both 
the equations for the grid generation, and in the discretization of the hosted equation. (At least I had been 
consistent!) 
 When the code was corrected, the solution error did asymptote to zero. The factor of 2 error in cross-
derivatives affected the grid generation by less than 0.01% in the location of any x and y of the nodes, and 
the electric field by 0.016%. Note that the electric field, being the gradient of the solution for the potential 
, is a difficult quantity to predict since the maximum occurs at the curved boundary. 
 This insensitivity of the solution and its gradient to a gross error in coding was an affront to intuition. 
However, intuition was salved by re-running the previously failed grid generation for slit-like geometries. 
With the error, iteration convergence of this nonlinear problem (the nonlinearities are introduced by the 
coordinate transformation) was obtained only with extreme measures of 20 continuation steps plus the use 
of extensive under-relaxation. The resulting “mesh” was a “mess,” with coordinate lines that crossed and 
extended outside the physical domain. When the coding error was corrected, the code converged to a good 
grid with only 2 continuation steps. 
 How could such a gross error have escaped detection in so many previous exercises? The answer is, the 
same way that such a gross error could make so little difference (maximum 0.016% in the gradient) in the 
solution; the test problems had not sufficiently exercised the terms in the equations. 
 The insensitivity originated in the mathematics of the grid generation procedure, which was based on 
the homogeneous Thompson-Thames-Mastin (Thompson et al, 1974) or the original Winslow (1967) 
method. For this generator, the continuum interior equations are identical to those of an orthogonal and 
indeed conformal, angle-preserving transformation. The discrete coordinate transformation generated is 
close to the conformal transformation, differing only because of truncation error and the distribution of 
boundary values of the grid. (The boundary nodes were located by equidistribution in arc length, but this 
distribution is not far from that of a conformal transformation grid.) For a conformal transformation, the 
cross derivative terms in the transformed Laplacian operator are identically zero. Thus, the gross error 
of a factor of 2 occurred in terms that were very small for the problem studied, and thus escaped detection 
when only absolute size of the error for a single grid solution was examined. However, when a systematic 
grid convergence study was performed, the presence of an error was quickly indicated. My experience has 
been that such systematic grid convergence testing is remarkably sensitive; other examples will be given in 
Chapter 3. 
 Why is not this kind of systematic grid convergence study used more often? Certainly, it has been used 
since the early 20th century in ordinary differential equations (ODEs). Virtually anyone who has taught 
numerical methods for ODEs has had the experience of students obtaining a good answer with their own 
Runge-Kutta integration code, but observing that the method does not converge with 4th-order rate on their 
problem, but only at 2nd-order rate. (Their are half a dozen errors in understanding and coding the RK4 
algorithm that yield a consistent 2nd-order method but are still in error.) I believe that the bad habit of not 
performing systematic grid convergence studies to Verify the convergence rate of a multidimensional code 
developed historically because of limited computer resources. We certainly now have adequate resources 
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available to do the job, but practitioners have lowered the standards from the old days of ODE solutions 
and are often content with superficial Verification exercises, or none at all. (Another reason was the lack of 
general exact solutions for difficult PDEs like the Navier-Stokes equations. This reason is now obsolete; 
see the Method of Manufactured Solutions in Chapter 3.) 
 What was frequently done was to appeal directly to agreement with physical experiments. (In the terms 
to be described more specifically in the next chapter, practitioners passed over Verification and went 
directly to Validation.) The general inadequacy of this practice is clear, considering the previous example 
on an important class of problems with only a 0.4% error arising from a gross coding mistake. In many 
experiments (certainly most aerodynamics and all groundwater flow experiments) this level of error would 
not be detectable with confidence. It is now the dominant opinion (see citations in Chapter 10) that there is 
a “continuing need for high quality experiments that are designed specifically for CFD code [Validation]” 
(Melnick et al, 1996). 
 It is clear to all who have thought and wrote seriously about V&V that  
 Verification and Validation are separate activities,  
 Verification should precede Validation, and  
 These two terms had best be defined with some specificity in a technical context. 
Verification and Validation must be defined, distinguished, and contrasted to other activities in the arena 
generally described as “confidence building” or “Quantification of Uncertainty” These necessary semantic 
distinctions are the subject of the next chapter. 

1.4 §  V&V CREDIBILITY CHECKLIST FOR NON-SPECIALISTS 

 Conscientious scientists and engineers will want to do credible V&V for their computational work but 
are not usually V&V specialists. Understandably and properly, they are more concerned with their own 
technical interests. The following (partial) checklist of Table 1.4.1 is provided both as a reminder to check 
before publications or presentations, and as motivation for topics to be covered in this book. Being careful 
in terminology will make you more credible and will be easier on your audience. 
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 Do not equate V&V with Quality Assurance (QA). 
 Do not equate V&V or QA with organization charts or QA forms. 
 Distinguish between Verification and Validation. 
 Distinguish between Verification of Codes vs. Verification of Calculations (Solutions). 
 (Note from the two items above that V&V comprises three subjects, not two.) 
 Do not claim impossibility of Code Verification because there are no nonlinear exact solutions. 
 Do not confuse Calibration with Validation. 
 Distinguish between numerical uncertainty and numerical error estimate. 
 Do not say just uncertainty when you mean parametric uncertainty. 
 Do not confuse parametric uncertainty in Validation with that in design studies. 
 Do not just say convergence -  
 distinguish between iteration convergence and grid convergence (or discretization convergence) 
 Do not assume that grid convergence means grid doubling. 
 Do not assume that grid convergence means grid refinement rather than grid coarsening. 
 Do not assume that cost of grid convergence scales linearly with number of parameters.  
 Do not assume that trend predictions from coarse grid studies will be qualitatively correct. 
 To really impress your audience, distinguish between strong and weak senses of model. 
 Experimentalists: always present estimates, however rough, of experimental uncertainties (error bars). 
 Experimentalists: strive to mostly run controlled and measured experiments. 
 
 

Table 1.4.1. V&V Credibility Checklist for Non-Specialists. 
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 CHAPTER  2 
 

  SEMANTICS: 
TERMINOLOGY, TAXONOMIES, DEFINITIONS 

 
The purpose of a fish trap is to catch fish, and when the fish are caught, the trap is forgotten. 

The purpose of a rabbit snare is to catch rabbits. When the rabbits are caught, the snare is forgotten. 
The purpose of words is to convey ideas. When the ideas are grasped, the words are forgotten. 

Where can I find a man who has forgotten words? He is the one I would like to talk to. 
 

“Means and Ends,” The Way of Chuang Tzu, Thomas Merton 
(New Directions Publishing Corporation, New York, 1965) 

 

2.1 INTRODUCTION4 

 Background discussion, definitions and descriptions will be given for some terms related to confidence 
building in computational PDEs. Examples will be given of worthwhile semantics vs. worthless semantics, 
and practical definitions vs. effete philosophizing. The critical distinction is made between Verification vs. 
Validation. Distinctions will be made between numerical errors vs. conceptual modeling errors; iteration 
convergence vs. grid convergence (or residual “accuracy” vs. discretization accuracy); adequate and 
inadequate error taxonomies; Confirmation, Calibration, Tuning, and Certification; Verification of 
numerical accuracy of codes vs. Verification of individual calculations; truncation error vs. discretization 
error; customer illusions vs. customer care; and Quality Assurance vs. quality work.  

                                                
4  This chapter is based on Roache (1995), “Verification of Codes and Calculations” and Roache (1997), 
“Quantification of Uncertainty in CFD” with significant new material in Section 2.3. 
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 The editorial “we” or “our opinion” will be used herein to refer to an opinion held not just by myself 
but by a significant number of practitioners in the field, although not necessarily a majority. The more 
restricted “I” will be used to indicate more individual opinion, although not necessarily unique. The 
definitions and distinctions have developed over years, with less standardization in the earlier years. The 
definitions did not flow inexorably from the etymology or the common use (as some philosophers would 
have us believe) but rather developed as the need arose to make the distinctions. None of the terms has 
enjoyed a pristine use in the literature, i.e., all have been used by authors (including myself) in ways 
inconsistent with the present definitions, and some continue to be so. Nevertheless, the definitions and usage 
proposed herein are becoming standardized, enabling communications to become more efficient and 
precise. Also, the ideas behind the words are important. 
 “Verification and Validation” and the broader area of confidence building in computational PDEs is a 
curious subject. The growing recognition of its importance is attested to by the policy statements given by 
professional journals and societies, as noted in Chapter 1. See Roache (1990) reproduced herein as 
Appendix A for my experience in implementing the policy in Roache et al (1986). The tone of articles can 
be fairly legalistic, yet the area is quite subjective, dependent on opinions, world-view, philosophy of 
science, philosophy of engineering, and appeals based on common sense as much as mathematics. This is 
partly due to the semantics involved. 

2.2 SEMANTICS 

 I fear that many readers will not be interested in this discussion, but will dismiss it as “mere 
semantics.” But it is important, and in my experience can have major consequences to projects. 
“Semantics,” after all, is “the study of meaning, especially in language,” and would seem to be a 
worthwhile activity if people want to know what it is they are arguing about. The negative connotation of 
“mere semantics” arises when people argue uselessly about words without looking beyond, to the ideas 
behind the words. For example, the choice of “Verification” or “Validation” was originally arbitrary (in our 
opinion), and is now recommended solely because of common developing use. (I have published articles 
using the opposite definition.) In a common English thesaurus, “verify,” “validate,” and “confirm” are all 
synonyms, but the words are used herein, and generally in code Quality Assurance (QA), as technical 
terms with more context-specific meaning. 
 Such technical terms are preferably related to common use, although regrettable exceptions occur. (For 
example, I have always found the term “moment” as used in mechanics to be annoying because its technical 
meaning is orthogonal to common usage, whereas “torque” is adequate and commonly understood.) But the 
term’s technical meaning is defined independent of common use, and in a specific technical context. The 
same word can have different technical meanings in different technical contexts. Biologists use the word 
“model” for a laboratory rat with a human-like disease, dentists speak of a “calculus” that Leibnitz would 
not claim, and “Confirmation” is a religious rite. Even the word “error,” which a non-technical person 
would never suspect of ambiguity, has multiple meanings depending on context. Programming errors are 
mistakes but discretization errors are not; in common terminology, “error” and “mistake” are virtually 
synonymous. 
 This is not a universally accepted attitude toward semantics. In a widely quoted paper described as 
“brilliant” in an otherwise excellent Scientific American article (Horgan, 1995), Oreskes et al (1994) think 
that we can find the real meaning of a technical term by inquiring about its common meaning. They make 
much of supposed intrinsic meaning in “verify” and “validate” and, like a Greek morality play, agonize 
over “truth.” They come to the remarkable conclusion that it is impossible to verify or validate a numerical 
model of a natural system. 
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 Most of their concern is with groundwater flow codes, and indeed, in geophysics problems, Validation 
is very difficult. But the authors extended this to all physical sciences. They even stated the following: “We 
are left with the conclusion [from their flawed syllogism] that we can never verify a scientific hypothesis of 
any kind.” They clearly have no intuitive concept of error tolerance, or of range of applicability, or of 
common sense. My impression is that they, like most lay readers, actually think Newton’s Law of gravity 
was proven wrong by Einstein, rather than that Einstein defined the limits of applicability of Newton. But 
Oreskes et al (1994) go much further, quoting with approval (in their endnote 36) various modern 
philosophers (especially Popper, 1980) who question not only whether we can prove any hypothesis true, 
but also “whether we can in fact prove a hypothesis false.” They are talking about physical laws (not just 
codes, but any physical law). Specifically, we can neither validate nor invalidate Newton’s Law of Gravity. 
One might expect that even a philosopher who would not accept “proof” of Newton’s inverse-square law 
could at least accept that one could disprove a “direct-square law” hypothesis, i.e. that gravitational 
attraction increases with the square of distance. But not so; to these philosophers, neither Newton nor anti-
Newton can be “proven.” See also Konikow and Bredehoeft (1992) for a similar outrageous claim. (What 
shall we do? No hazardous waste disposals, no bridges, no airplanes, no construction codes for earthquake 
areas, no analysis or predictions of atmospheric pollution, no...) 
 If one insisted on reserving an overly rarefied concept of “proof” only for mathematics, one could still 
reasonably use the word “validate” with a common-sense (or more precise) concept of specified accuracy 
uncertainty. One could say with Hull (1997) (in the context of creationism arguments against the 
“unproved theory” of evolution) that “Newton’s celestial mechanics...is a well-validated theory (in the 
sense of explaining or predicting the result of an observation) that is unproved and incomplete. We even 
know its successorgeneral relativity. Nevertheless, we launch Mars probes, among other space voyagers, 
confidently using Newton’s mechanics. Unproved (but validated) theories are quite useful! The electric 
power industry is based on Maxwell’s theory of electricity and magnetism, unproved and incomplete as it 
is.” 
 As Rykiel (1996) noted of this Popperian philosophical approach, “In effect, Validation is equated with 
certainty rather than a degree of belief.” It is important to recognize that these controversies are not just the 
stuff of academic debates, but have serious consequences, especially on public policy. For example, it can 
(and has) happened that ill-conceived legalistic (regulatory) definitions of Validation could, if applied 
rigidly and without the leaven of common sense, categorically eliminate a geologic repository as a 
possibility for hazardous or radioactive waste disposal. It is not necessary to argue here the relative merits 
of different system categories, but we can at least allow the possibility that such a geologic repository 
could, at least in principal, be the best (safest and cheapest) method of disposal. The problem here with 
regard to overly legalistic definitions of Validation is time and spatial data. The time scale legislated for 
low-level radioactive waste containment is 10,000 years and clearly no tests can be run to “Validate” a 
model at this time scale. Likewise, the spatial data regime for one site (WIPP, now operational) covers 
hundreds of square kilometers to a depth of at least 700 meters, and pumping tests at length scales of 10’s 
of meters to completely cover the area are clearly not possible (WIPP PA, 1992; Helton et al, 1995,1996). 
Unless common sense and good engineering practice prevail, the legalistic definition of “Validation” could 
categorically eliminate this potentially best category of waste disposal. For the benefit of those who would 
prefer to eliminate it, with a feeling of moral superiority, I note two additional facts. (1) The pseudo-
intellectual agonizing over “truth” and impossibly rarefied definitions of “Validation” will ultimately 
eliminate all conceivable disposal schemes, not just geologic systems. (2) The dangerous waste already 
exists, it will not go away, and in fact is presently stored in systems which are fragile and dangerous even 
by common-sense standards. Also, this sophomoric attitude towards semantics likewise would eliminate 
bridges (built, after all, on ground, with unknown data) and aircraft; the atmosphere provides the “open 
system” which Oreskes et al (1994) claimed eliminates any possibility of “Validation.”  
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 A legitimate and well-meaning concern of Popper and the related philosophical community including 
Oreskes et al is to avoid misleading the public with overwhelming claims of specialized knowledge. Oreskes 
et al think “verification” etc. are too strong, implying certainty or truth to the public. But their suggested 
replacement (from Popper) of “corroboration” is no better in this regard. They call for a neutral language 
to avoid such implications, but as Rykiel (1996) observed, “It is hard to see how this translation to a 
neutral language could be accomplished. ... the better choice may be to educate the audience.” 
 For a mild but worthwhile criticism of Oreskes et al (1994), see Rykiel (1994). However, the same 
author (Rykiel, 1996) has given a penetrating discussion of these issues and others related to Validation. 
The focus is on ecological modeling, but is highly recommended reading for those in any discipline. (See 
also Section 9.2.3 for excerpts from Rykiel.) For my complete criticism of Oreskes et al (1994), see 
Appendix C of V&V1. For criticisms of Konikow and Bredehoeft (1992), see de Marsily et al (1992) and 
Leijnse and Hassanizadeh (1994). This latter paper is important for unraveling the semantics associated 
with the word “model,” in particular, whether “model” includes parameter values. They make the 
worthwhile distinction of “strong” and “weak” definitions of “model” (based on whether or not it includes 
parameters or is only a conceptual model), and corresponding narrow and broad senses of Validation. See 
also related discussion of modeling philosophy in Tsang (1991) and in the entire Special Issue of Advances 
in Water Resources (Gray, 1993) devoted to “Research Perspectives in Hydrology.” Further criticism of 
the science philosophy of Popper will be presented in Sections 9.2.2 and 9.2.3. 
 The Konikow and Bredehoeft (1992) paper, entitled “Groundwater Models Cannot be Validated,” 
asserted that “In the end, action concerning waste disposal will be a judgment; a professional judgment by 
the scientific community and a judgment by society.” We assert that questions like “Can groundwater 
models be Validated?” and “Do we or don’t we model?” are phony questions. The fundamental and 
meaningful question is, “Do we make decisions qualitatively or quantitatively?” All the geological 
information and insight possible (age of rocks, chemical composition, color, ...) cannot provide the 
quantitative information on groundwater flows that are necessary for decisions on important subjects like 
hazardous and/or radioactive waste disposal. Once we decide to make decisions quantitatively (and we 
must), then we do model. The next question is one of scale of the model; a “back of the envelope” 
calculation, based on geological insight etc., is a model. It is a model using the limit of crude resolution, a 
single cell or control volume, or what chemical engineers refer to as a “batch model.” Whether such a batch 
model is adequate, or if high-resolution computer solutions of partial differential equations are required, 
depends on the accuracy required. In any case, the models must be Validated in some sense, at some level 
of accuracy, no matter how crude, in order to be quantitatively useful. 
 Clearly, we are interested in normal speech and practical definitions, applied in the context of 
engineering and science accuracy, not in such worthless semantics and effete philosophizing. 
 Below, descriptions and definitions are given for some terms related to confidence building in 
computational PDEs. (I will not try to define “confidence building” with any precision.) To reiterate, these 
are technical terms described or defined in a technical context, not just common language. 

2.3   VERIFICATION AND VALIDATION: 
NUMERICAL VS. CONCEPTUAL MODELING 

 First and foremost, we must make the essential distinction between Verification and Validation. 
Following Boehm (1981) and Blottner (1990), we adopt the succinct description (not definition) of 
“Verification” as “solving the equations right,” and of “Validation” as “solving the right equations.”  
 

“Verification” ~ solving the equations right. 
“Validation” ~ solving the right equations. 
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 The code author defines precisely what continuum partial differential equations and continuum 
boundary conditions are being solved, and convincingly demonstrates that they are solved correctly, i.e. 
usually with some order of accuracy, and always consistently, so that as some measure of discretization 
(e.g., the mesh increments)   0, the code produces a solution to the continuum equations; this is 
Verification. Whether or not those equations and that solution bear any relation to a physical problem of 
interest to the code user is the subject of Validation.5 
 In a meaningful though perhaps overly scrupulous sense, a “code” cannot be Validated, but only a 
calculation (or range of calculations with a code, for a specific class of problems) can be validated. In my 
experience, dealing with other than algorithm developers, this is a difficult concept and requires continual 
reiteration. 
 Another way to make the distinction (i.e., to get to the idea behind the words, beyond “mere” 
semantics) is to speak of numerical errors vs. conceptual modeling errors. An example of conceptual 
modeling vs. numerical modeling is the assumption of incompressibility. This is clearly a conceptual 
modeling assumption. Is it the code builder’s fault, or any criticism of a commercial code itself, if the user 
incorrectly applies it? For example, dynamic stall of helicopter rotor blades involves compressibility at a 
surprisingly low free-stream Mach number. Results from an incompressible code may not agree with 
experiment very well, but we cannot say that the code fails Validation because it was applied to 
compressible flow, although we may have some sympathy for the user who is fooled by dynamic stall. But 
no one would have sympathy for a user who applied an incompressible flow code to a reentry vehicle at 
Mach 20. In this example, and in many practical cases, the lack of agreement with experiment is not a code 
problem, but a conceptual modeling problem. 
 “Model” includes more than the code. “Model” includes conceptual modeling assumptions (e.g., 
incompressibility, symmetry, etc.). “Model” in this specific or strong sense also includes data input to the 
code, e.g., geometry data (which are not so easy to determine accurately as many people assume) and 
boundary conditions and initial conditions). These can lead to failure of Validation of a model, with 
possibly no criticism of the code. 
 Another way to make the distinction between Verification and Validation is to follow the classical 
distinction between mathematics and science. Mathematics is a tool of science, often the predominant 
language of science. But mathematics exists by itself. It would be “true” regardless of any correspondence 
to the natural world. Verification is seen to be essentially and strictly an activity in mathematics, the 
mathematics of numerical analysis. Validation is essentially and strictly an activity in science and 
engineering science: physics, chemistry, fluid dynamics, even the “soft” sciences of economics, sociology, 
etc. 

“Verification” ~ mathematics 
“Validation” ~ science/engineering 

 
 The typical Computer Science view of “code Verification” is not that of engineering science. 
“Verification” in the present view does not include all aspects of code QA. For example, it does not include 
the important and nagging concerns of version control, or archiving of input data, or documentation 
(external and internal). Less obviously, it does not include reading of source code. Blottner (1990) 
described his verification of a Navier-Stokes code and included the fact that the Fortran source code was 
examined. Although perhaps useful, and contributes to confidence building, we do not consider it to be part 
of Code Verification per se (nor of “Confirmation”; see below). Even as part of Code QA, the practice is of 
less value than it might appear at first glance. Consider the ridiculousness of regulatory agency personnel 

                                                
5 Possibly the first such distinction in modern terminology was made by Fishman and Kiviat (1968), who 
also used descriptions rather than definitions. 
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reading source code when they cannot comprehend the algorithms. Or consider how difficult it is, even if 
one comprehends the algorithm, to read someone else’s source code for a three-dimensional semicoarsening 
multigrid method, or a full spectral element code, or a block-7 implicit multi-equation turbulence model. 
We can read source code, either our own or someone else’s, interminably and still not be able to claim 
Verification. On the other hand, if the grid convergence tests prove that the code is (say) 2nd-order 
accurate, it would take some strange coding to nullify this test. (Perhaps some in-line limit on the parameter 
range that was not “hit” in the grid convergence test is possible.) Except for these unusual cases, reading of 
the code appears to be neither necessary nor sufficient for Verification. 
 Surely few would claim that reading of code is any substitute for Verification via grid convergence 
testing (although some of my clients have tried). If we included reading of the source code as part of Code 
Verification, then the code author’s reading could be claimed as a “partial Verification.” We know it does 
not prove a thing. In our view, “Verification” (in this restricted, technical meaning) should treat the code as 
a “black box,” without reference to its internal organization. Note, then, that the present “Verification” has 
nothing in common with the type of software systems that perform internal consistency checks, look for 
“dead code” (i.e., un-exercised code segments, which might be left-over artifacts from early stages of code 
development), and otherwise perform computer-science-type of code “Verification” by consideration of the 
internal code. 
 As reading source code does not constitute partial Verification, neither does extensive use of a code, 
nor publication, as some authors have claimed. Especially in groundwater flow codes, where the physical 
parameters and initial conditions are so poorly known, extensive experience with so-called “real world” 
calculations (even hundreds of cases calculated by many different users) would be an inefficient and, more 
importantly, inconclusive way to approach Verification. Likewise, journal publication and wide code 
distribution do not constitute Verification. Code Verification is not some kind of exercise in democracy, 
anymore than proving a theorem is. First one verifies a code’s accuracy, then one publishes. (Note that, 
when codes with many options combinations are considered, no journal would publish a complete set of 
Verifications, nor would most journal referees consider the test in sufficient detail.) Extensive code use and 
journal publication certainly have value. They add to confidence building, and are worthwhile for general 
code QA, and are helpful to improve code documentation, garner suggestions for input/output 
improvements, obtain data on performance measures for a wide range of problem parameters, demonstrate 
robustness and portability, etc. They are just not part of Verification as technically defined herein. 
 On the issue of robustness, note we do not consider a code bomb (i.e., a divide by zero, or instability) 
to be a failure of Code Verification in the present context. As long as the code does not lie to the user, Code 
Verification has not been breached. Code robustness is certainly desirable, and is properly part of QA and 
overall code evaluation. From a QA “customer” point of view, robustness is often paramount, 
unfortunately sometimes to the point that it trumps all other considerations. (Frankly, users often do not 
care about accuracy, so long as the computational results are smooth, and are obtained with no intelligent 
interaction required.) But in our use of the terms, robustness is not an issue in Verification. (Besides, it is 
well known that robustness is often achieved at the expense of numerical accuracy, as noted in Chapter 1.) 

2.3.1 §  Definitions and Interpretations of Validation 

 We now go beyond mere description of Validation and begin consideration of some attempts at actual 
definition of Validation. This has proven to be a surprisingly contentious issue in the literature, as will be 
seen. 
 Since Validation involves comparisons with experiment, there is necessarily an error tolerance involved 
somewhere in the process, and what level is acceptable depends on the use intended. Whether or not the 
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acceptable level is to be included in Validation, or relegated elsewhere, is a major issue. Such 
considerations were incorporated into Mehta’s (1995) more expanded definition.  
 “Validation is defined as the process of assessing the credibility of the simulation model, within its 
domain of applicability, by determining whether the right simulation model is developed and by estimating 
the degree to which this model is an accurate representation of reality from the perspective of its intended 
uses.” (Mehta, 1995) 
 This definition used by Mehta in the aerospace industry is in fair agreement with that accepted by 
Tsang (1991) in the groundwater modeling community, as given originally by Schlesinger (1979). 
 Validation: “substantiation that a computerized model within its domain of applicability possesses a 
satisfactory range of accuracy consistent with the intended application of the model.” 
 Tsang (1991) also explicitly included the specification of performance metrics in the definition of 
(groundwater flow) model Validation, and noted that “almost by definition, one can never have a Validated 
computer model without further qualifying phrases.” Tsang also noted the different aspects of Validation 
with respect to (a) a process (i.e., governing equations) and (b) a “site-specific system,” which includes 
geometric structure, stratigraphy, fractures and other geologic characteristics, plus boundary and initial 
conditions (both of which are notoriously vague in groundwater modeling). Tsang also took the ostensibly 
precise approach of only speaking of Validation of computer models rather than codes. Tsang stated that 
the term “code Validation” is illogical, but close reading shows that his problem arises from not 
distinguishing Validation from Verification (a term he did not use at all). Likewise, some of his “other 
Validation methods” (other than the basic approach of comparing model predictions with laboratory or field 
data) would be classified as Verification or model sensitivity studies in present terminology, and the rest are 
simply variants of the basic approach. (Given this relatively minor caveat on semantics, Tsang’s paper is 
highly recommended reading for modelers of groundwater flow and transport.) 
 The most commonly used definition of Validation is the following. 
 
 Validation: The process of determining the degree to which a model {and its associated data} is an 
accurate representation of the real world from the perspective of the intended uses of the model. 
 
  Unfortunately, considerable disagreement exists on what this definition means, or should mean. This 
definition of validation has been cited extensively in computational modeling fields, and is widely accepted, 
e.g. DoD (2003), AIAA Guide, V&V10, NASA (2008). (The last adds “or a simulation” in place of the 
bracketed words.) Despite the apparent clarity of this concise one-sentence definition using common terms, 
there are at least three contested issues: whether degree implies acceptability criteria (pass/fail); whether 
real world implies experimental data; and whether intended use is specific or general (even by those who 
think it is needed at all). This gives 23 = 8 possible interpretations of the same definition, without even 
getting into arguments about what is meant by model, i.e. computational, conceptual, mathematical, strong, 
weak. The job of sorting out claims and arguments is further complicated by the fact that principals in the 
debates have sometimes switched sides on one or more of these three issues (myself included). 
 An extended discussion of the pros and cons of these issues, and the history of the controversy, was 
given in Roache (2009), reproduced herein as Appendix B. Those summary recommendations, consistent 
with V&V20, are as follows. 
 
 Issue #1. Criteria for acceptability of accuracy (adequacy, or pass/fail criteria, or accuracy tolerance) 
are not part of Validation6, but analysts performing validation exercises should be wary of appearing to 

                                                
6 Oberkampf and Trucano (2007, 2008), amoung others, concur with this recommendation, and in fact W. 
Oberkampf was persuasive in changing my opinion from that expressed in V&V1. In some disciplines, this 
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bless a code as “validated” when it is clearly unsatisfactory for any reasonable application (e.g. it cannot 
even predict correct qualitative trends). In an engineering project, the acceptability of the agreement is part 
of the next project step, variously called accreditation, certification, or other. It is an engineering 
management decision, not a scientific evaluation. 
 
 Issue #2. Experimental data is necessary for Validation. Many have said unequivocally [5-8,11] that 
experimental data are the sine qua non of validation. 
 
 No experimental data => No validation 
 
 Issue #3. Intended use, at least in its specific sense, is not required for validation. For example, the 
well-known data on turbulent backstep flow of Driver and Seegmiller (1985) in the ERCOFTAC database 
can be used for code/model validation, with neither the experimenters in 1985 nor modelers in (say) 2008 
having a specific use in mind. This is precisely the situation for the Third Lisbon V&V Workshop (Eça and 
Hoekstra, 2008). 
 However, it is also true and very important that experiments designed specifically for a validation 
exercise, and with a specific application in mind, and with collaboration between experimenters and 
modelers in the design of the experiments, are much more likely to produce data on the relevant metrics 
with relevant precisions than are experiments designed without applications in mind. 
 In general terms, validation involves comparison of modeling results with experimental results. This 
has been used as a working definition in the past, but we agree with Oberkampf et al. (2004) that it is too 
soft, the trouble being that the difference between model result and experiment is too easily taken to be the 
accuracy when in fact the story is more difficult. It is time to improve standards somewhat on even the 
minimal requirements for the term validation. The minimal required improvement is contained in one word: 
uncertainty. We can describe validation (legitimate, minimal validation) as the comparison of model results 
and their associated uncertainties with experimental results and their associated uncertainties. 

2.3.2 §  Definitions and Interpretations of Error and Uncertainty 

 2.3.2.1 §  Numerical Error 
 
 The error of a numerical value (experimental or computational) is intuitively defined as the {numerical 
value - true value}. Some care is required, as always, in making some distinctions.  
 The “true value” of an experimental result f (say the lift coefficient CL for a wing) could be interpreted 
to mean the true value in flight, or the true value in the wind tunnel. Note that the wind tunnel 
measurements will have experimental errors from sources other than those inherent in using a wind tunnel 
to model atmospheric flight, e.g. instrument errors, physical model alignment errors, etc. For code/model 
Validations, it is best to take the experimental “true value” of f  to mean that of the experiment “as run” 
(V&V20). The applicability of either that experiment or the simulation of that experiment to the free flight 
case is a separate issue from computational code/model Validation.  

                                                                                                                                                       
concept is isolated by the term “simulation fidelity” (Pace, 2003) so the present interpretation of 
“Validation” could be replaced by “fidelity assessment.” It is a good descriptive term that carries no 
connotation of either acceptability or unacceptability and therefore little chance of misinterpretation. It 
would be preferable, but Validation is a term that will continue to be used so we must deal with its 
ambiguities. 
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 There is more than one “true value”! The “true value” of the computation is not the true physical value, 
but the true mathematical value, i.e. the mathematical solution that would be produced by the code/model 
using an idealized computer with infinite resolution and word length: in other words, the continuum solution 
of the governing PDEs (plus boundary and initial conditions, of course). The “numerical accuracy” relevant 
here is just the accuracy of the (finite) code result relative to the continuum solution of the same governing 
equations. For example, consider three codes for the freshman physics problem of calculating point mass 
trajectories in vacuum. One code is based on a flat earth model with constant g, the second uses a spherical 
earth with an inverse square g,  and the third uses higher order harmonics and local mass concentration for 
mountain ranges (and relativity corrections, if you like.) Each code will have its own “true value” for the 
trajectory, for purposes of evaluating the numerical errors. The difference between the “true values” of 
each code and the true physical value is simply the modeling error of each code. However, it is very 
common and understandable to mix these terms and to refer to the “numerical error” of a code prediction 
when “modeling error” (really a combination of numerical error and modeling error) would be appropriate. 
Often the fuzziness causes no difficulty in context, but sometimes it is necessary to insist on maintaining 
the distinction. 
 
 2.3.2.2 §  Uncertainty 
 
 The concept of uncertainty is easily and frequently muddled with the concept of error. (I speak from 
personal experience here.) Uncertainty and error certainly are related, and confusion is abetted by the 
traditional use of the term “error bars” or “error bands” which are really not errors but uncertainties, and 
by the fact that there are two generic types of uncertainties, which are closely related but not identical. 
Uncertainty has sometimes been described as an estimate of error (AIAA Guide, page 10) which is not 
quite true (AIAA Guide, page 5) but is suggestive.7 We will get into more details and variations in Chapter 
11. For now, we consider the most common type of error bar or “expanded uncertainty” (V&V20) denoted 
by Uxx%, often U95% in engineering and physical sciences. We want to put a ± error bar around our 
calculated value that we expect to contain the true (mathematical) value in about 95% of cases, or with 
about ~20:1 odds.8  
 Consider a simulation for a wing that produces fsim = CL(sim) = 1.2. Using techniques to be described in 
Chapter 5, we might estimate the (signed) error to be δ = -0.1. This means we are estimating that the 
simulation value 1.2 is in error by -0.1, i.e. the simulation value is lower than the true (mathematical) value 
by 0.1. So we think the true (mathematical) value is better estimated by fcorrected = fsim - δ = 1.2 + 0.1 = 1.3. 
How does this relate to an uncertainty like U95% ? We want to calculate an interval such that  
<fsim-U95% , fsim+U95%> will contain the true (mathematical) value of f with ~20:1 odds. First, note that the 
error estimate δ is signed, whereas the uncertainty is applied as ±. 9 Second, if the error estimate is applied 

                                                
7 The AIAA Guide and V&V10 also define Error as “A recognizable deficiency in any phase or activity of 
modeling and simulation that is not due to lack of knowlege” and Uncertainty as “A potential deficiency in 
any phase or activity of the modeling process that is due to lack of knowlege.” It is not evident how one 
could make use of these definitions in calculating any estimate of error or uncertainty. 
8 Intuitively, and in normal conversation, one could also speak of ~95% confidence, or ~95% probability. 
But beware; these are loaded technical terms to statisticians, and the associated debates strike at the heart 
of science philosophy. Likewise, the word “cases” needs some consideration. See Section 5.14. 
9 The usual unsigned uncertainty wastes information if one has confidence in the sign of δ, and a signed 
uncertainty can be developed (Romero, 2008) but it is difficult to combine with experimental uncertainties 
(see V&V20 and Chapter 11) which are traditionally given as ±. It is worthwhile to recognize that this 
waste does not affect the % coverage. If the true error has the same sign as δ and if a signed uncertainty 
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as a ± interval, as <fsim-δ, fsim+δ> , we would not expect this interval to contain the true value with 20:1 
odds. In fact, we would usually expect (for a “best estimate” and certainly for any ordered estimate) that 
the odds would be ~1:1, i.e. equal chances for the true value to be inside as outside this interval. Thus |δ| ~ 
U50%. (Roache, 2003a). Clearly, the intended U95%  is > |δ|. The factor will be determined empirically in 
Chapter 5, which also contains summary distinctions between error estimators and uncertainty estimators. 
 
 2.3.2.3 §  Coding Errors 
 
 Coding errors do not fit this description of “error” and in fact are a different sort of topic altogether 
than an ordered numerical error (discretization error or truncation error). An ordered numerical error is a 
beautiful thing; it is the foundational basis of all computational physics, and can be made arbitrarily small 
with application of sufficient computer power (grid resolution and word length). We can estimate the 
numerical error and, with empirical experience, state quantified error bars or uncertainties for it. On the 
other hand, a coding error is a screw-up. Or as Sinclair et al (1997) denoted it, eb , for error due to blunder. 
The identification, elimination, and engineering “proof” or demonstration of the absence of coding errors 
are the concern of Code Verification. 

2.3.3 Definitions and Interpretations of Code Verification 

 It is not so difficult to find agreement on Code Verification, which is defined rather tersely by the IEEE 
(Jay, 1984): “Formal proof of program correctness.” We agree with Oberkampf (1994) in his evaluation. 
“Although very brief, this definition brings unprecedented clarity to the meaning of the term, and it adds a 
new perspective to the issue. Specifically, this definition bluntly requires correctness or veracity of the 
prediction, without bringing in supporting topics such as what is being predicted or how it is done.” 
Although more general than the definition used herein, this IEEE definition is actually compatible with our 
descriptions, is more general, and is still compatible with the distinction between Verification and 
Validation. That is, “program correctness” for a PDE code would naturally include “solving the equations 
right,” and of course a definition of what those (continuum and discretized) equations are, without getting 
into the question of whether certain problems are appropriate for those equations and that code, i.e. 
Validation. 
 The definition of Verification given by Golub and Ortega (1992), quoted approvingly by Jameson and 
Martinelli (1996), is somewhat muddled, since it uses the word “verification” (apparently in a common, 
non-technical sense) within the definition of Validation (in a technical sense). Likewise, Jameson and 
Martinelli used “validation” as we do here for the physical model correctness, but only for the” overall 
approach” or the “final validation.” (I find it difficult to distinguish the “overall approach” from the 
submodels.) They also stated “verification is needed for every single claim made in constructing the model, 
or submodels (both physical and numerical),” i.e. they used “verification” in regard to the physical model 
as well as the numerical process. Likewise, they also used “Validation” for the “numerical solution 
process” requiring that it be “separately verified and validated.” Other attempted distinctions made are also 
unclear, e.g. whether they intended “numerical scheme” to include the grid resolution. Nevertheless, the 
paper contains excellent practice and results, and is recommended reading. (See also excerpts in the present 
Chapter 8.) 
 

                                                                                                                                                       
US95% contains the true value within the interval <fsim+US95%> in 95% of the cases, then an unsigned 
uncertainty U95% = | US95% | also contains the true value within the interval <fsim-U95% , fsim+U95%> in 95% of 
the cases. 
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 2.3.3.1   Solution Uniqueness 
 
 The question of “solution uniqueness” always arises with nonlinear equations, and its position in the 
“Verification” or “Validation” distinction is important. If, as stated carefully above, we take “Verification” 
to mean simply that “a solution” to the continuum PDEs (plus boundary and initial conditions) is obtained, 
then the problem of PDE non-uniqueness is avoided. This is probably being too easy on the code developer 
in some cases. Physically inadmissible solutions should be eliminated by the code, e.g., a shock-tube 
simulator should be required to eliminate expansion shock solutions. But nature abounds with physically 
non-unique solutions: in fluid dynamics, e.g., hysteresis of airfoil stall and recovery, and bi-stable fluid 
amplifiers. If nature cannot decide which solution to produce, we cannot expect more of a code. Note that 
obtaining “a solution to the continuum PDEs” may involve sorting through multiple numerical solutions for 
nonlinear problems; e.g., see discussion in Chapter 8. See also especially Stephens and Shubin (1981) 
whose study of Euler solutions indicates that the multiple numerical solutions converge to the same solution 
as the grid is refined. Note that numerical artifacts may select one multiple solution over another; for 
example, Oberkampf et al (1995) cited the example of Levy et al (1995) showing that the manner in which 
the left-hand (iteration driver) side of each difference equation is formulated impacts whether the symmetric 
or asymmetric solution of steady state vortex flows over slender bodies at angle of attack is obtained. 
Oberkampf et al (1995) labeled the asymmetric solutions for this class of flows as “spurious,” but in 
general we cannot be categorically dismissive. For example, computations of both laminar and turbulent 
flows through symmetric expansion channels can produce either symmetric or asymmetric solutions 
(provided that the entire channel flow is calculated, rather than having symmetry enforced through the fiat 
of computing only half the flow). Contrary to wide-spread intuition, nature prefers the asymmetric solution; 
this is the basis of bi-stable fluid amplifiers ( e.g., see IAHR, 1982). Likewise, physical flow over a 
geometrically symmetric cavity (rectangular or spherical) does not produce a symmetric flow, but one in 
which the axis of rotation of the primary recirculating vortex is skewed. In general, it is asking too much of 
simulations to always select preferred solutions (either preferred by nature, or by intuition of the modeler). 
Sometimes, the “spurious” (or at least, unanticipated) solutions are demonstrably artifacts of discretization, 
as when the asymmetry tends to disappear as the grid is refined (Sengupta et al, 1995). Other times, the 
unanticipated solution persists as the grid is refined, and is therefore “Verified.”  
 Non-uniqueness can also be attributable to mathematical modeling of constitutive equations. The 
original RANS k-ε turbulence model dates back to the 1970’s, but it was not until 2006 (Rumsey et al, 
2006; Pettersson et al, 2006) that fundamental problems with uniqueness were revealed for some low-Re 
versions. The solutions can depend on extraneous factors such as initial conditions and iterative algorithms 
and paths. (Better RANS models have not exhibited problems of non-uniqueness.) It is unlikely that this 
non-uniqueness would have been discovered routinely during Code Verification or Calculation 
Verification.10 Spurious non-uniqueness is probably best treated as a Validation issue rather than as a 
Verification issue. 
 
 2.3.3.2   Solution Instability and Over-Stability 
 
 A closely related question is the stability of a solution. Although people usually think of artificial (i.e., 
numerical artifact) instability as a code difficulty, a common situation is artificial stability, e.g., a 1st-order 
                                                
10 At most, non-uniqueness could result in a false-negative conclusion (the false conclusion that the code 
has an error when in fact the coding is correct) because the code converged to a different solution than the 
one built into the MMS (see Chapter 3). See also discussion in Roache (2006). 
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time-dependent code whose artificial viscosity damps out disturbances, so that accurate calculations of 
physical fluid instability would require impractically high resolution. It is asking too much of a code to 
exactly mimic stability boundaries except in the limit of   0. For example, it is not a failure of 
Verification for a full Navier-Stokes code to produce steady shear layer solutions at Reynolds numbers 
known to be unstable; an unstable solution is still a genuine solution. (It is certainly not necessary, as 
claimed in a SIAM article by Johnson et al [1995] to analytically and a priori solve the hydrodynamics 
stability problem in order to estimate numerical errors!) 
 Stable or not, observable in nature or not, and unique or not, such Verified simulations are 
mathematical solutions. Sorting out the other aspects is not an aspect of Verification; it is an aspect of 
Validation, but it should be approached with great respect for the subtlety of nature. 
 
 2.3.3.3 §  No Physical Experiments in Verifications 
 
 Also, we believe strongly that Code Verification can and should be completed without appeal to 
physical experiments. The first part of this statement claims that Code Verification should be completed, 
i.e., Code Verification is not an ongoing exercise. Verification, as we have said, is an exercise in 
mathematics, not science. When one proves a theorem, the work is completed. Proving the formula for 
solution of a quadratic equation is not ongoing work. This is not to say that one could not have made an 
error in the proof of a theorem, nor that Confirmation exercises (see below) are not valuable in confidence 
building. It is to say that Code Verification is a mathematical activity that in principle comes to a 
conclusion, e.g. a code is or is not 2nd-order accurate for benign problems. The second part of the 
statement claims that Verification can and should be achieved without using physical experiments. That it 
can be achieved is unarguable - very general methods are available (see the Method of Manufactured 
Solutions in Chapter 3). That it should be achieved is perhaps debatable; Oberkampf (1994) and 
Aeschliman et al (1995) allowed Verification for carefully performed experiments in parameter regimes 
wherein confidence is high between the correspondence of the governing equations and the physical science. 
I suppose the physical experiment could be regarded as a sort of continuum analog computer that produces 
“solutions” to the governing equations, but at best such a definition would be strained and unnecessary. 
Experimental agreement (at least, comparison) is part of Validation, not Verification, and the concepts are 
distinct enough to be worth preserving. Also, as Roberts (1988) noted, justification of a purely 
mathematical approximation does not need physical experiments, e.g. if you want to know if the irrotational 
approximation is good, then compare potential code results with Euler results. Not only are physical 
experiments not needed, they may just be confusing, because one now has to sort out two sources of error, 
the rational approximation error and the physical experimental error. The other extreme is to consider high-
order DNS (Direct Numerical Simulations) of turbulence to be of such high quality that simpler turbulence 
models can be “Validated” by comparison with this mathematical realization. Again, I would prefer to 
restrict the terms Verification and Validation. (Alternately, one can use the somewhat less precise terms of 
“Confirmation” and/or “Benchmark”. See below.) 
 Validation has highest priority to engineers and scientists because “nature” is the final jury. But any 
experience with laboratory experiments will quickly disavow the absolute quality of experimental data. (It 
is asking too much of a CFD code to agree with wind tunnel test data when these data do not agree with 
other wind tunnel data, nor even from one run to another in the same wind tunnel.) Thus, we strongly 
believe that complete Verification of a code (and a calculation - see below) should precede any 
comparisons with experimental data, i.e., Verification first, then Validation. This is not so much a matter of 
definition as it is recommended engineering practice, but its wisdom is attested by the voice of experience 
(often using differing semantics), e.g., Bradley (1988), Marvin (1995), Aeschliman et al (1995), Porter 
(1996), Melnik et al (1995, p. 23), Sindir et al (1996), Jameson (1992), Jameson and Martinelli (1996). To 
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quote Jameson (1992): “Simply comparing experimental data with numerical results provides no way to 
distinguish the source of the discrepancies, whether they are due to faulty numerical approximation or 
programming, or to deviations between the math model and the true physics.” The aerospace consortium 
experience in Verification, Validation and Certification (see definitions below) reported in Melnik et al 
(1995) was forcefully clear, as follows. 
 “In the past constraints on computer resources have led to shortcuts using inadequate coarse grids 
leading to inadequate Verification. In this project, because we were able to use grids that were sufficiently 
fine, we were able to observe first-hand the pitfalls of working with inadequately Verified codes 
[calculations]. From our experience in the project it is clear that proper Verification [of calculations] is an 
absolutely necessary first step in the code Certification process. This basically involves the determination 
of the grid required to achieve a specified level of numerical accuracy.” (Melnik et al, 1995) 
 Note another contrast between Verification and Validation: Verification is completed (at least in 
principle, first for the code, then for a particular calculation) whereas Validation is ongoing (as 
experiments are improved and/or parameter ranges are extended). 
 This brings up another aspect of experiments. One sometimes hears complaints that a “CFD code 
needs additional data” that experimenters typically do not measure. For example, data are published on 
turbulent flow in channel expansions which do not characterize the details of the boundary layer ahead of 
the expansion (nor sometimes elementary quantities like boundary layer thickness). This complaint neglects 
a fundamental fact of life: 
 

CFD codes require no more information than the physics. 
 
In fact, a CFD code may be expected to require less information than the full physics, due to simplifying 
approximations in the turbulence theory. If experimenters have not measured these quantities, then they 
have run an uncontrolled and/or unmeasured experiment, regardless of whether CFD codes will be used. 
The question, of course, is whether these unmeasured quantities are important to the physics of interest. 
Marvin (1995) used the apt term “well-posed validation experiment.” This seems to be a major opportunity 
for CFD to contribute to experimental work; CFD can be used to predict the importance of difficult-to-
measure quantities like wind tunnel flow angularity, non-uniform stagnation enthalpy, surface waviness, 
etc. as discussed lucidly by Aeschliman et al (1995). A premier example given in the study by Haynes et al 
(1996) is the sensitivity of boundary layer transition to free stream vorticity, which is “an unusually 
difficult experiment” but which can be modeled by CFD. (See further discussion in Chapter 10.) 
 When we say that Code Verification is completed, rather than ongoing, we are addressing only a 
completed code, or code version, and perhaps only a limited set of option combinations. Large scientific 
and commercial codes develop over years, and have multitudinous combinations of options. In this sense, 
we can say that code Verification is an ongoing process, but only because the word “code” as used is 
amorphous, really referring to many codes (all with the same name, but hopefully different version 
numbers), each of which in turn must be Verified. 
 For guidelines on Verification and Validation in the nuclear industry, see American Nuclear Society 
(1987). 

2.4 CODE CONFIRMATION 

 Some Computer Science or QA people would have Code Verification necessarily performed by 
someone other than the code developer, sort of an “arm’s length transaction” philosophy. In our view, it is 
ridiculous to not demand that code builders to Verify their codes! Verification is a necessary part of code 
development. Code authors would be remiss in their duty if they released a code without Verification. We 
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would trust a code builder’s Verification results if presented in full; fraud is not usually the issue. But if it 
is, and if further tests are required (or repeats of the original Verifications to check for fraud or oversight) 
then we would suggest the use of the term “Confirmation” for calculations independently run by other than 
the code builder.  
 Also, the suite of problems can be used for re-Verification (e.g. after porting to a new computer or a 
new compiler, or to be run after addition of new options) and for user training. Code use independent of the 
code builder is probably more of a genuine issue in Validation than in Verification, especially when 
judicious “tweaking” or Tuning of code/model parameters can be involved; e.g., see recommendations in 
Porter (1996), and the distinction between “prediction” and “postdiction” made in the 198081 Stanford 
Turbulence “Olympics” (Kline et al, 1981). 
 As in Roache et al (1990), we recognize five distinct regimes where errors can be made in Verifying (or 
“Benchmarking”) a computational PDE code, even without considering the Validation question of whether 
the right equations are being solved for the target problem: 
1. in code generation (either by hand or using computer Symbolic Manipulation; see below); 
2. in code instructions (e.g., in a user manual or comment cards); 
3. in problem set-up;  
4. in defining and coding a test case (analytical solutions are often more difficult to code than numerical 

solutions); and  
5. in the interpretation of code results.  
The first two are errors of the code author. The last three are errors of the code user, although ambiguous 
or scant code documentation can put some of the responsibility back onto the code author. “Verification” of 
a code removes (1) and, if done thoroughly, (2), but (35) still contain the potential for errors in any new 
application. We reluctantly conclude that there will be a continuing need for users to construct and exercise 
test cases even when using Verified codes.  
 Obviously, it is good common sense to build more confidence with more problems, even if the code is 
Verified in the sense of a theorem. In the same way, a high school student will “confirm” the general 
solution of the quadratic equation for a particular case by back-substitution of the solutions. This exercise 
does not mean that the student does not “believe” the formula, but it is prudent and pragmatic to do so, and 
it builds confidence, not only in the theorem but in one’s understanding of the theorem. Thus, although we 
consider that Code Verification should be completed and therefore is not on ongoing activity, Code 
Confirmation is naturally an ongoing activity (as is Validation), even for well-exercised commercial codes.  
 Also, as a practical political consideration, not everyone can appreciate the generality of a 
mathematical proof or a thoroughly executed Code Verification. This is particularly true when a physically 
unrealistic solution is used to Verify a code (see Method of Manufactured Solutions in Chapter 3). 
Although mathematically sound, the exercise will not inspire confidence in the mathematically 
unsophisticated. For such an audience, an extensive suite of realistic-looking Confirmation problems, even 
if they alone fail to constitute a rigorous Code Verification, may build more user confidence than a single 
rigorous but unreal-appearing Code Verification problem.  
 Indeed, this skeptical attitude is not only forgivable but often wise, prudent, and pragmatic. I have the 
same attitude in regard to “proofs” of grid generation algorithms, single-grid error estimators, iteration 
convergence rate proofs, efficiency comparisons based on operation counts, gains from parallelization, and 
other topics. [For example, in Roache and Steinberg (1984), I gave a counter-example to a widely-accepted 
and important theorem on grid generation; see also Knupp and Luczak (1995).] Still, the skeptic should 
keep in mind the possibility, in principle and often in practice, of rigorous Code Verification in the sense of 
a mathematical theorem. 
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2.5 BENCHMARKS AND INTER-CODE COMPARISONS 

 “Benchmarking” of codes is a less specific term than Verification or Validation. Williams and Baker 
(1996) preferred to reserve the term “benchmarking” for code-to-code comparisons; this has the advantage 
of clearly distinguishing it from Verification and Validation, which they defined as we do herein, i.e. 
comparisons with closed form mathematical solutions and with experiments, respectively. Unfortunately, 
the term is commonly used more inclusively. It commonly refers to comparisons of results of the code in 
question to some other standard or “benchmark,” which might be an analytical solution, a physical 
experiment [usually on simple configurations involving a single dominant physical phenomenon (Melnik et 
al, 1995; Rizzi and Vos, 1996)], a rigorously performed numerical solution, or just another code solution at 
comparable grid resolution, which has been termed “inter-code comparison.” Often, the term 
“benchmarking” has been used in meeting papers wherein rigorous grid convergence testing has not been 
performed, and comparisons have not been precise; such Benchmarking exercises could be classified with 
Confirmation exercises above. [See Hutchings and Iannuzzelli (1987) for popular level examples of such 
non-rigorous benchmarking in fluid dynamics, and Rizzo (1991) for a popular level description of 
convergence studies for Finite Element structures calculations.] The more rigorous Benchmarking exercises 
could be classified with Verification or Validation exercises above, depending on whether the Benchmark is 
a rigorous numerical solution [e.g., see Ghia et al (1982), de Vahl Davis (1983), (Celik and Freitas, 1990), 
Celik et al (1993)]or a physical experiment. The “CFD Triathlons” of Freitas (1993c,1995b) were based 
on Benchmarks that are experimental data; thus, these exercises could all be described as Validation. 
 The term Benchmarking is also widely used for the distinct activity of comparisons not of accuracy, 
but execution speed, comparing different codes on the same computer, or different computers running the 
same code. On old computers (until the 1980’s) such comparisons were relatively straightforward, 
dependable, scaleable, and repeatable. This is no longer the case with modern computer architectures, 
flexible system configurations and memory management, and compiler options. Particularly for purchasers 
of Workstations and PC’s, speed Benchmarking on non-computational PDE codes from different 
manufacturers do not correlate well with computational PDE code performance (Dudebout and Fahs, 
1996). 
 Precise inter-code comparisons could be used in principle to rigorously Verify a code. If Code A has 
been rigorously Verified against analytical solutions, it could be used to approximately (in an ordered 
sense) reproduce another analytical solution that could be used legitimately as the basis of comparison for 
Code B, a kind of indirect Verification of Code B. This would be straight-forward if both codes produced 
essentially the same discrete solution at all grid refinements, e.g. both used simple linear FEM and differed 
only in the solver, so that the answers from each agreed to within the iteration convergence tolerance. Less 
straight-forward would be the Verification of a 4th-order accurate Code B by comparison with a previously 
Verified 2nd-order accurate Code A, though it could be done convincingly.  
 Unfortunately, in practice, inter-code comparisons are usually rather loose; e.g., see the PSACOIN 
exercises (Nies et al, 1990) and the international projects INTRACOIN, HYDROCOIN and INTRAVAL 
(Larsson, 1992). In the HYDROCOIN exercise (OECD, 1988), “Level 1” was titled “Code Verification,” 
yet no participating group Verified the theoretical rate of convergence. Surely some agreement of (say) a 
new code with an old and widely used code could legitimately build some confidence. Note, however, that 
there is nothing to be gained by demonstrating agreement with an inaccurate code! This occurs surprisingly 
often. Also note that a good code (say a 2nd- or higher order accuracy code) may appear to the naive to be 
inaccurate when its results are compared with results of four or five 1st-order or hybrid codes, all of which 
are in rough agreement. (Furthermore, the 1st-order solutions are smoother, and often appeal more to the 
naive user’s intuition.) In such a case, the statistical “outlier” is more credible. Applied mathematics is not 
an exercise in democracy! Also, note that group exercises in inter-code comparisons invariably are not only 
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comparisons of code accuracy per se but also exercises in conceptual modeling and code user skills as well. 
[See e.g., Nies et al (1990), (Larsson, 1992), (Freitas, 1993b, 1995), de Vahl Davis (1994), (Muller, 
1994).] Furthermore, the exercises challenge the ability of organizers to create meaningful comparison 
problems. 

2.6 CODE CERTIFICATION, QUALITY ASSURANCE, AND ACCREDITATION 

 “Code Certification” goes beyond Code Verification and Validation, and is used with less uniformity; 
see definitions in Mehta (1989, 1991, 1992a,b, 1995, 1996), Melnik et al (1995), Rizzi and Vos 1996). 
Following Mehta (1988), Aeschliman et al (1995) defined Code Certification as “the entire process of 
establishing the credibility of a code, i.e., a Certified code has been Verified, Calibrated, and Validated.” 
(See Section 2.12 below on “Calibration and Tuning”.) In a later publication, Mehta (1996) described code 
Certification as consisting of Verification and Validation of a code, plus rules for its use (on a project) and 
complete documentation. He also spoke of certifying the simulations as well as the code. In the field of 
groundwater modeling, Tsang (1991) simply equated Certification of a code with proper Verification plus 
proper documentation. The aerospace consortium experience in Verification, Validation and Certification 
reported in Melnik et al (1995) used the term Certification similarly but with an additional distinction. They 
associated Certification with a different set of variables than Validation. While both involve experimental 
data comparisons, typically (at least in the aerospace community) Validation has focused on simple 
geometries usually involving a single dominant physical phenomenon with data comparisons to 
fundamental flow quantities (velocities, pressures, etc.). In contrast, Certification must focus on the needs 
of the aerospace design process, which involve more complex geometries or complete configurations 
involving multiple physical phenomena, with data comparisons to performance quantities like lift and drag 
coefficients, nozzle efficiencies, etc. In our opinion, this distinction seems to be non-essential. Surely one 
could compare to experiment and Validate or invalidate any quantity. Our position agrees with Porter 
(1996), who calls for the Validation process to “address at least three levels of flow problems: fundamental 
physics, unit or component flow problems, [and] overall systems.” 
 Many authors in aerospace (e.g., Melnik et al, 1995) have spoken of three levels of codes, namely 
research, pilot, and production codes, and associate Certification only with the production level. However, 
Validation (in the general sense of comparison with experiments, perhaps for a more limited range of 
parameters than Certification) is not so restricted. That research and pilot codes should also be compared to 
experiments was the opinion of Marvin (1995), Melnik et al (1995) and Rizzi and Vos (1996), all of whom 
also adopted the same three-level description code development. 
 Rizzi and Vos (1996) also described Certification somewhat differently than Melnik et al (1995), 
linking it more with Verification and mathematics rather than with Validation and science. “Verification 
and Certification address the accuracy of the computational model, and...Calibration and Validation are 
concerned with the suitability of the physical model.” Also, “Certification is concerned with programming 
issues, e.g. logic checks, programming style, documentation, and Quality Assurance issues, e.g. rerunning 
the suite of Certification test cases after each new version release in order to be certain that no new errors 
have been introduced into the previously Certified version.” They also included in Certification the issues of 
model options and robustness. They quoted the definition of Certification (above) from Mehta; however, 
Mehta included Validation in Certification, whereas Rizzi and Vos did not. (They did not note the 
inconsistency.) Thus we see that “Certification” can and has been taken to refer only to Verification-type 
activities, or to include project-oriented Validation activities as well, by different respected authorities in 
the same sector of computational engineering (aerodynamics). Sindir et al (1996) described their four-phase 
“Validation” procedure (outlined in Chapter 10) which would perhaps fit the description of “Certification” 
as used by the previously cited authors. 
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 Generally, I find Certification and Code Quality Assurance (QA) to be practically indistinguishable, 
with the different terms being preferred in different engineering activities. As contrasted to Code 
Verification and Validation, Code Certification or QA is usually not associated with mathematics or 
science so much as engineering and engineering management. Certification is more of a programmatic 
concept than a scientific concept. “Code Certification” appears to be the preferred term in the Aerospace 
field, (Mehta, 1989, 1991, 1995; Melnik et al, 1995; Barber, 1996; Porter, 1996) while “Code QA” is 
preferred by regulatory agencies involved with groundwater remediation (WIPP PA, 1992). “Code 
Accreditation” appears to be simply the process of some authority (perhaps legal or regulatory) officially 
declaring a code to be useable for a specific project (e.g., see Mehta, 1996); no general guidelines are 
discernible. In general categories, 
 

“Verification” ~ mathematics 
“Validation” ~ science/engineering 

“Certification” ~ engineering management 
 
 Contributing to the lack of uniformity in usage is the fact that there are two extremes of Code 
Certification, the smallest at the scale of the isolated code, and the largest at the scale of the engineering 
project. Suppose we have a code that is rigorously Verified, and then acceptably Validated for a limited set 
of physical problems and parameters. One could still not claim Certification or QA unless the code were 
documented, etc. And then, even if the code were Certified by some set of criteria, one might not be able to 
claim Certification for the project or programmatic needs. 

My inclination would be to include in Code Certification the activity of Code Verification independent 
of the code authors, i.e., Code Confirmation, the adequacy of Validation tolerance (i.e. the pass/fail 
evaluation which is project-determined), other aspects of code QA including robustness, documentation 
(internal, external, users manuals), version control, the QA system itself including such clearly non-
mathematical but practical considerations as the selection process for review committees, signature 
authority for change orders, forms for bug reports, conflict resolution procedures, etc.. For project-level 
Certification, one would also need Code Validation and pass/fail evaluation for a project-oriented range of 
parameters. For several authors, a principal distinction is that Validation involves comparisons to 
experiments primarily on model problems while Certification involves comparisons to experiments on more 
realistic geometries and range of operating parameters (e.g., Melnik et al, 1995; Barber, 1996). Note that 
“code Certification as a design tool requires specific criteria/metrics” (Melnik et al, 1995). Barber (1996) 
also noted that a research group (associated more with Validation) is typically interested in fundamental 
flow variables (streamlines, velocity profiles, etc.) whereas a design group (associated with Certification) is 
typically interested in performance oriented variables (lift and drag coefficients, system efficiency, etc.). 
Barber (1996) included Risk Assessment and Reduction in the Certification process. 
 For project-oriented engineers, the activities of Code Verification/Validation/Confirmation almost form 
a continuum, and the three terms are often used as a suite and even an acronym, “VVC.” (See Melnik et al, 
1995; Porter, 1996; Aeschliman et al, 1995.) For them, it is natural to see a progression from “research 
codes” through “pilot codes” to “production codes” (Melnik et al, 1995). However, the qualities associated 
with each category by Melnik et al, while perhaps representative of aerospace practice, are sometimes 
arbitrary and unnecessary. For example, there would seem to be no inherent reason why a code with a 
“limited range of application” could not become a “production code,” nor why a “research code” or a “pilot 
code” could not have thorough documentation. 
 Likewise, Melnik et al (1995) and Rizzi and Vos (1996) described Validation as progressing through 
higher stages, from Benchmarking for simple flows exhibiting one single dominant flow feature and simple 
geometry to multi-feature flows and complex geometries. However, we would prefer to allow Validation to 
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be considered thorough, i.e. at a high stage, for even a limited class of problems. The progression they 
described would then not be defined as higher stages of Validation, but simply as Validation for a more 
general class of computational PDE codes. 

2.7 VERIFICATION OF CALCULATIONS (SOLUTIONS) 

 Just as it is critical to distinguish Code Verification (correctness of the mathematics) from Code 
Validation (correctness of the science), so we must distinguish between Verification of Codes vs. 
Verification of (individual) Calculations or Solutions.  
 A code may be rigorously verified to be (say) 2nd-order accurate (at least for a benign problem), but 
when applied to a new problem, this fact provides no estimate of accuracy or confidence interval. It is still 
necessary to band the numerical error for the individual calculation, usually (and most reliably) by 
performing grid convergence tests. It would be preferable to have different words for these two 
“Verification” activities, but I am at a loss for a clarifying term. The very important point, independent of 
the semantics, is that the use of a Verified Code is not enough. 
 This point is possibly well recognized by present readers, but is not universally so. Especially in the 
commercial code arena, user expectations are often that the purchase and use of a “really good code” will 
remove from the user the obligation of “doing his homework,” i.e. the tedious work of Verification of 
Calculations via systematic grid convergence studies. This unrealistic hope is sometimes encouraged by 
salespeople and by advertising. 
 The methodology for Verification of Calculations is a major theme of this book; see Chapters 5, 6, 8. 

2.8 QUANTIFICATION OF UNCERTAINTY  

 The term “Quantification of Uncertainty,” as used in the early ASME Workshops (e.g., Freitas, 1993b; 
Celik et al, 1993; Johnson and Hughes, 1995) and elsewhere, can refer both to Verification of Codes and to 
Verification of (individual) Calculations as described above. The term also allows for inclusion of both 
error “estimation” and the more conservative error “banding,” which includes a “factor of safety” as in the 
Grid Convergence Index (see Chapter 5) and related methods. Quantification of Uncertainty is 
distinguished from the more amorphous “Confidence Building” by the key word “Quantification,” and is 
less project-oriented than Code Certification or Quality Assurance (see above). Etymologically, it could 
include Validation, of course, but whether or not this is intended must be inferred by its context. One 
authority (Oberkampf, 1998) prefers to restrict the word Uncertainty to technical definitions (as in Section 
2.3.2.2). This usage would in fact be preferable, but unfortunately the broader use of Uncertainty is already 
widespread. 

2.9 GRID CONVERGENCE VS. ITERATION CONVERGENCE  

 The literature commonly uses the term “convergence” in two completely different ways. Readers 
probably will know the distinction between iteration convergence vs. grid convergence (or residual 
accuracy vs. discretization accuracy). Usually, the meaning is clear from the context, but sometimes 
confusion occurs, e.g. when some new variant of the SIMPLE algorithm (Patankar, 1980) is presented as 
being “more accurate.” The accuracy claimed here often is residual accuracy, i.e. what is better called 
iteration convergence accuracy or iterative speed, and has nothing to do with the order of accuracy of the 
discretization.  
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 For the present subject, we note that iteration convergence can muddy the distinction between Code 
Verification and Calculation Verification, since iteration tuning parameters (e.g., multigrid cycles, 
relaxation factors, etc.) can be problem dependent. Most importantly, incomplete iteration convergence will 
corrupt Verification. 

2.10 ERROR TAXONOMIES 

2.10.1 Inadequate Error Taxonomies 

 Several taxonomies of errors given in the earlier literature were inadequate and misleading, in our 
opinion. Not all lists are taxonomies. For example, the list “flora, fauna, mammals, dogs” is not an 
adequate biological taxonomy. All items are certainly part of biology, but mammals are not separate from 
fauna, rather they are part of it, as are dogs. In a true taxonomic classification, each element of the 
taxonomy is counted once and only once. In the list “flora, fauna, mammals, dogs,” consisting of four 
categories, the family pet is counted three times! Biologists (and logicians) are well aware of difficulties 
and sometimes arbitrariness in taxonomic classifications. There can be gray areas and elements that do not 
fit the supposedly complete classification system, e.g. the platypus, hermaphrodites. Also, the same set of 
individuals can be classified by more than one valid taxonomy, e.g. automobiles might be classified 
according to year of manufacture, or country of manufacture, or color, etc. But there are also clearly false 
taxonomies, and inappropriate or inadequate taxonomies, and we see these sometimes in computational 
PDEs. 
 Specifically, a listing of “sources of error” as seen often in the literature is not a taxonomy appropriate 
for Verification of codes or calculations. The “grid generation errors” (Ferziger, 1993; Celik and Zhang, 
1995 or “grid resolution/distortion” errors (Bobbitt, 1988; Barber, 1996) or “factorization errors” 
(Rumsey, 1988) are not separate from discretization errors for purposes of error estimation. For the 
Verification of a code or a calculation, there are no such things as separate “grid generation errors,” nor are 
there separate “errors associated with coordinate transformations” (Ferziger, 1993). Indeed, bad grids do 
add to discretization error size, but do not add new terms other than discretization errors. This does not 
mean that one grid is as good as another, or that a really bad grid cannot magnify errors, but only that these 
so-called grid generation errors do not have to be considered separately from other discretization errors in a 
grid convergence test. If the grid convergence test is performed, and the errors are shown to reduce as 
O(2), for example, then all discretization errors are verified. One does not need to separately estimate or 
band the grid generation errors. 
 Such listings are useful for analysis of algorithms. For example, one can study the effect on (formal) 
accuracy of grid angle . We know that as two families of coordinate lines approach parallelism ( = 0) the 
transformed PDEs (continuum and discretizations) degenerate. For  small, the effect is to increase the size 
of the coefficients in the error expansion, but not the order. It has often been stated in the grid generation 
literature that strong coordinate stretching reduces the order of centered differencing in logical space to 1st 
order. In fact, it can be demonstrated (confirmed by numerical experiments) that severe stretching like 
  a xexp( )  or even the ridiculous   a xexp[exp( )]  greatly increase the size of the error (with 6-
figure coefficients) but that the formal and observed orders remain 2nd-order (Steinberg and Roache, 
1985).  
 Likewise for the proposed numerical error bar (Karniadakis, 1995; see also Vanka, 1995) shown in 
Table 2.10.1. The contributions consist of separately estimated numerical errors from boundary conditions, 
computational domain size, temporal errors, and spatial errors. This is an inadequate taxonomy, since  the 
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category boundary errors can include ordered terms like wall vorticity (when vorticity is a dependent 
variable) standard forms for which (Roache, 1998b) can be O(), O(2), O(4), etc. Such ordered errors 
will tend to zero as the discretization improves, so that a boundary error from wall vorticity evaluation need 
not be considered separately from the grid convergence study. The category of boundary errors would also 
include far-field boundary conditions, which are not ordered in , i.e. the error persists even in the limit of 
  0. This does not mean that all far-field boundary conditions are equally bad; some are better than 
others, but none vanish as   0. On the other hand, all vanish as distance to the far-field boundary  
Lb  . This boundary error will improve as the computational domain size increases. The taxonomy 
already includes temporal errors and spatial errors (which are evaluated in the grid convergence study) and 
computational domain size errors, so that both the ordered boundary errors and the non-ordered (outflow, 
or “free”) boundary errors are already counted elsewhere in the taxonomy. Since the intention is to provide 
a quantitative breakdown in the sources of numerical error in an error band, the taxonomy is inappropriate 
for the Verification of Codes and Calculations. 
 
  boundary conditions 
  computational domain size 
  temporal errors 
  spatial errors 

 
 Table 2.10.1  Example of an Inadequate Taxonomy for Error Estimation 
 

 Note, however, that “free” outflow boundary errors may prove to be ordered not in  but in 1 / Lb 
where Lb is the distance from the region of interest (e.g., an airfoil) to the outflow boundary. [See the data 
of Zingg (1992), shown in Chapter 6 to be 1st-order in 1/ Lb.] Thus, this source of error can be evaluated 
by purely numerical tests, by varying the position of the outflow boundary. 
 In contrast, consider the commonly used approximation for near-wall density  of  / n = 0 for 
compressible flow, a modeling approximation that (although commonly used and accurate in some sense) 
cannot be evaluated easily, i.e. its error does not vanish as   0 nor with any other limit of a modeling 
parameter such as Lb. Thus, this error of the wall density condition is more resistant to modeling accuracy 
than the commonly acknowledged free outflow or far-field computational boundary. (In fact, it will get 
worse as Mach Number increases and (Tw  Tadiabatic) increases.) This is really a conceptual modeling error. 
Like incompressibility, or two-dimensionality, it cannot be evaluated numerically using only the code being 
Verified, but must be evaluated by comparison with some external benchmark - numerical, experimental, or 
theoretical.  

2.10.2 A Meaningful Error Taxonomy 

 By contrast, the list of error sources provided by Oberkampf et al (1995) is an appropriate and 
meaningful taxonomy. They gave four categories of errors, shown in Table 2.10.2. A slightly expanded 
(though not necessarily exhaustive) taxonomy will be suggested shortly. 
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         physical modeling errors 
         discretization errors 
         programming errors [i.e., mistakes] 
         computer round-off errors 

 
 Table 2.10.2  A Meaningful Error Taxonomy (from Oberkampf et al, 1995) 
 

2.10.3 Gray Areas: “Justification” 

 The subject of outflow (or open) boundary conditions does produce some fuzziness in categorization of 
Verification vs. Validation, in my opinion. The error can be ordered in 1 / Lb, as above, and therefore can 
be part of Verification. That is, it is up to the user (who is doing the conceptual modeling) to estimate or 
band the error caused by the position of the outflow boundary. But if the code has some sophisticated free 
outflow condition, e.g. a simple vortex condition for Euler equations (Thomas and Salas, 1985), or the 
“fringe method” in DNS turbulence calculations (Marvin, 1995), then the distinction is not as immediate. 
Certainly the equations used are clear, and the code may “solve the equations right” (i.e., Verification), yet 
there exists another benchmark solely from the mathematics (the case with infinite boundary distance) 
which could be used to justify the outflow condition without recourse to physical experiment (which would 
clearly be Validation). 
 In any case, we agree with Oberkampf et al (1995) that there is no free outflow or open boundary 
condition that is true, correct or exact in any general sense. (“What are the exact boundary conditions for 
the partial differential equations on an open boundary?” is a meaningless question.) And while 
improvements in free outflow boundary conditions are possible, they are only capable of improving 
efficiency by allowing computations on a smaller numerical domain for the same error tolerance as present 
methods. But in no way are improvements a necessity for obtaining Verified solutions. Methods presently 
exist that will give the correct answers, to within an arbitrary tolerance, if the position of the free outflow 
boundary is varied and its influence assessed, i.e. if the effect is Verified quantitatively. On the other hand, 
consider the use of “fuzzy boundary conditions,” a term introduced by Sani and Gresho (1994) to “suggest 
the existence of numerical BC’s that produce good numerical solutions, but if one tries to take the limit as 
  0 of these BC’s, one obtains unacceptable BC’s for the PDEs” (Oberkampf et al, 1995). In my 
opinion, these fuzzy boundary conditions should not be used, since they make convincing Verification by 
rigorous grid convergence testing impossible. 
 Another example of semantic failure or fuzzy taxonomy arises when we consider Benchmarking a code 
that is based on simplified equations against a code using more complete equations. Examples include a 
turbulent boundary layer code or Parabolized Navier-Stokes (PNS) code benchmarked against a Reynolds-
stress averaged Full Navier-Stokes (FNS) code, and a groundwater flow code using the Dupuit 
approximation against a code using the full nonlinear free surface (phreatic) equations [Serrano, (1995), 
(Knupp, 1996), (Knupp et al, 1996)]. Presume that both codes are convincingly Verified, i.e. they correctly 
solve their respective equations. Suppose that the PNS code results agree well with the FNS code results 
for some range of parameters (e.g., including angle of attack). This agreement is not strictly included in the 
term Verification, since the Verification of the PNS code has already been completed prior to the FNS 
benchmarking. Then we could say that the agreement has demonstrated that the PNS code is “solving the 
right equations” in one sense, i.e., it justifies the use of parabolic marching. Yet to claim Validation would 
be over-reaching, since we have not demonstrated the adequacy of the turbulence model by comparison 
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with experiment. We have “solved the right equations” only in an intermediate sense of demonstrating that 
the PNS equations adequately represent the FNS equations, but not in the ultimate sense of “solving the 
right physical equations.”  
 Appealing to the other distinction between Verification and Validation based on mathematics vs. 
science, it is clear that such a comparison exercise should be categorized with Verification rather than 
Validation, but that the categorization is somewhat inadequate because the PNS code can (should) have 
been fully Verified in the more usual sense before the comparison exercise was started. But if the only 
choice is Verification or Validation, it is safer to reserve the term Validation for experimental comparisons. 
 In some situation where nit-picking would be excusable, the solution is to introduce a finer-scale of 
categorization, perhaps using the word “Justification,” technically defined in this specific context. The term 
is in common use in theoretical papers, as when one “justifies” the assumption of some simplification to the 
accepted full theory, e.g. a small perturbation. In situations dictating a legalistic distinction, (e.g., code 
review by a regulatory agency) one could claim Justification of the simplification of mathematical models 
(Full Navier-Stokes to boundary layer, or compressible flow to incompressible flow, or variable properties 
to constant properties, or small-scale isotropy of turbulence, or Dupuit approximation, etc.) while making it 
clear that the physical Validation remains to be accomplished. 
 Certainly one can understand the issues in the above examples, and do good work, without introducing 
new terminology like Justification. For example, in discussing the “fringe method” for inflow and outflow 
boundary conditions for DNS turbulence calculations, Marvin (1995) used the overall context of 
Validation, and says the comparisons “confirmed the appropriateness,” obviously using “confirm” in a 
general sense rather than the more limited technical sense proposed herein. Fortunately, anyone with some 
technical knowledge of the subject area and some common sense understands the meaning behind the words 
without needing an overly precise, tiresome, legalistic, semantic distinction between Validation and 
Confirmation as the terms are used by Marvin and others, and the terms Validation, Verification, 
Confirmation, and now Justification as proposed here. Unfortunately, such “mere semantics” may become 
of vital interest when dealing with regulatory agencies such as the EPA, or with legal definitions in a 
NASA contract, etc. 

2.10.4 An Expanded Error Taxonomy 

 The taxonomy of errors shown in Table 2.10.4.1 is an expanded version of that given by Oberkampf et 
al (1995). It still has some gray areas, but is appropriate for purposes of Verification of Codes and 
Calculations. 

 Errors ordered in discretization measures ; these errors can be evaluated by grid convergence studies. 
 Errors ordered in some numerical (rather than physical) parameter not associated with discretization 

(like Lb); these errors can be tested numerically in the code being Verified. 
 Errors ordered in some physical parameter. 
 Non-ordered approximations (like  / n = 0 or P / n = 0) that are conceptual modeling errors. 
 Programming errors (unlike the other errors, these errors are mistakes); these can be detected by grid 

convergence studies for a problem with an exact solution (see “Method of Manufactured Solutions” in 
Chapter 3). 

 Computer round-off errors; these errors can be identified by grid convergence studies or ad hoc 
approaches, but often they are simply demonstrated to not be significant. 

 
Table 2.10.4.1. An Error Taxonomy Appropriate for Verification of Codes and Calculations. 
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 Each category in the Taxonomy of Table 2.10.4.1 will now be elaborated upon. 
 
 Errors ordered in discretization measures ; these errors can be evaluated by grid convergence studies. 
 

The discretization measures  can include each space coordinate, time, or N vortices, N Fourier 
modes, etc. The category includes ordered artificial viscosity (e.g., Roache 1998b) but this can be 
tricky to categorize and estimate if the parameters of the artificial viscosity (or better, artificial 
diffusion) change with the discretization, and with hybrid methods. 

 
 Errors ordered in some numerical (rather than physical) parameter not associated with discretization 

(like Lb); these errors can be tested numerically in the code being Verified. 
 

This category notably includes the location of idealized far-field boundaries, such as distance from 
a wing to the downstream (outflow) boundary Lb, or the cross-stream distance from a wing to the free-
stream conditions L. Note that these could be argued to be physical conditions rather than numerical 
parameters, since the same kind of consideration exists for wind tunnel tests (Roache, 1998b). That is, 
one could think of numerically modeling the wind tunnel walls with no numerical error associated with 
the location of the walls, and relegate the conceptual modeling error (compared to the desired 
simulation of flight in the atmosphere) to the wind tunnel concept. In practice, the assignment to non-
discretization numerical errors is probably preferable, since the effect may be evaluated by purely 
numerical tests in the code being Verified (i.e., it may be considered to be a mathematics problem 
rather than a physical science problem, and therefore Verification rather than Validation) and since the 
numerical simulation at the walls can be better than the physical wind tunnel simulation. For example, 
why model a physical no-slip wall with a boundary layer, when a slip condition better approximates the 
condition of free flight? Conditions at the quasi-free stream location (upper boundary) that are even 
less restrictive are available; the simple expansion wave approximation (Allen and Cheng, 1970; 
Roache, 1998b) is not just a slip wall, but is a better model of the free-flight condition. Note that the 
actual order (in 1 / L) may be unknown a priori, but at least we know the limit is good and the error 
can be investigated by straight-forward numerical experimentation (Roache and Mueller, 1970; 
Roache, 1998b). Also, the order may be determined by numerical experiments and sometimes by 
theoretical considerations, e.g. of potential flow (Roache, 1998b). Similar considerations would apply 
to the modeling in groundwater flow and transport calculations, in which the far-field condition may be 
conceptualized as a distant drainage divide and simplified in several ways. 

  
 Errors ordered in some physical parameter. 
 

These are physical or conceptual modeling errors, the order of which might be determinable using 
perturbation methods (Van Dyke, 1975; Wilcox, 1995). Examples are Mach  0, the Boussinesq 
approximation for natural convection, number of fractures or fracture width in a dual porosity 
formulation, skin resistance, etc. 

 
 Non-ordered approximations (like  / n = 0 or P / n = 0) that are conceptual modeling errors. 
 

The condition  / n = 0 at a wall is not quite identical to the boundary layer approximation, and 
is a better (less restricted) approximation than  / y = 0 throughout the boundary layer, but is 
commonly applied in situations where the boundary layer approximation is not valid (e.g., stagnation 
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regions, shock-boundary layer regions). Another example is non-ordered artificial viscosity. The 
inherent artificial viscosity of nonlinear flux limiters may be difficult to classify. Errors in this non-
ordered category might become graduated to the previous ordered category by later analyses. Discrete 
vortex methods may be difficult to classify, but the solution should get better in some sense as the 
number of vortices increases. The solution may “converge” in the sense of approaching a limit, but 
whether that limit approaches the full Navier-Stokes equations, or the inviscid Euler equations, or 
something else, may be open to question. 

 
 Programming errors can be detected by grid convergence studies for a problem with an exact solution 

(see “Method of Manufactured Solutions” in Chapter 3). 
 
 Computer round-off errors 
 

Round-off error is sometimes confused with discretization error, and to emphasize the distinction 
people often speak of “computer round-off error” or “machine error.” Round-off errors arise from the fact 
that computers do not work in the real number system, but only with a finite word-length subset of the real 
number system. They will be discussed further in Chapter 4. 

2.11 TRUNCATION ERROR VS. DISCRETIZATION ERROR 

 “Truncation error” is an unfortunate term. Strictly speaking, it refers to the truncation at some finite 
value of a series, which could be analytical (e.g., the Sudicky-Frind solution, 1982) or more commonly in 
the present context, the Taylor-series expansion of the solution, which is the basis of developing the finite 
difference equations. It is a worthwhile concept because it allows one to define the “order” of the finite 
difference method (or finite element, finite volume, etc.). Unfortunately, the term is often used loosely in the 
sense of “discretization error,” i.e. the error that is caused by the fact that we can only use a finite number 
of grid points (or another measure of discretization)11. In a FDM, one cannot take the limit of infinite order 
(i.e., limit of zero truncation error) without also taking the limit of infinite number of grid points, since high 
order methods require higher support. This terminology makes the limit process somewhat misleading, in 
my opinion. Also, it confuses the issue of solution smoothness with discretization error, since the Taylor 
series expansion depends on smoothness.  
 In the context of grid convergence tests, it is preferable to not speak of evaluating the “truncation 
error” of a numerical approximate solution, but rather the “discretization error” that arises because of the 
finite discretization of the problem. This terminology applies to every consistent methodology: FDM, FVM, 
FEM, spectral, pseudo-spectral, vortex-in-cell, etc., regardless of solution smoothness. (By “consistent” we 
mean, of course, that the continuum equations are recovered in the limit of infinite discretization.) The term 
truncation error is then reserved just for the examination of the order of convergence rate of the 
discretization. Note again the point of a taxonomy; these two errors are not independent. For any finite grid 
calculation, we do not have a truncation error (arising from the use of finite-ordered FDM, say) that we 
add to the discretization error (arising from the use of a finite number of grid points). And it is not possible 
to approach the limit of zero truncation error by arbitrarily increasing the order of the FDM or FEM 
without increasing the discretization. (Note in FEM we could fix a finite number of elements but we would 
still have to increase the discretization, i.e. the support within the elements.) However, the alternate is true: 
we can in fact approach the limit of eliminating all the discretization error by arbitrarily increasing the 
                                                
11 Discretization error can be precisely associated with truncation error for smooth linear problems, but not 
so easily for nonlinear problems. 
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number of grid points without changing the order of the method. Thus, discretization error is the preferable 
term for speaking of the numerical error of a calculation, and truncation error is not separate in the 
taxonomy of an error estimate for a calculation. (However, the order of the truncation error is still verified 
in the code verification.) 
 Truncation error has also been defined (Ferziger, 1993) as the residual resulting from substitution of 
the continuum (exact) solution values into the discrete equations on some grid. This definition can be useful 
for analysis of discrete methods. But again, it is not distinguishable from discretization error in an accuracy 
estimate of a real calculation. 

2.12 CALIBRATION AND TUNING 

 The term “Calibration” is used with more latitude than Verification, Validation, or Confirmation. We 
prefer to use the term “Code Calibration” to mean the adjustment of parameters needed to fit experimental 
data, e.g. the 6 closure coefficient values necessary for two-equation turbulence models. Many practitioners 
agree, e.g. Marvin (1995), who gave the following description.  
 
 “Code parameters such as turbulence models may need to be adjusted to accommodate applications for 
geometries and conditions outside the envelope of their original validation. Experiments intended to support 
this activity can be referred to as Calibration experiments.” (Marvin, 1995) 
 As an example of Calibration, Marvin (1995) cited the work of Coakley and Huang (1992) in which 
basic k- and k- turbulence models were [rationally] corrected for compressibility and length scale, vastly 
improving the experimental agreement for surface pressures and heating rates on an ogive-cylinder-flare 
body at Mach number = 7. Importantly, the good agreement was maintained for other hypersonic 
experiments on shock interactions. 
 Likewise, Mehta (1996) was clear that “Calibration is not the process of determining the level of 
accuracy or credibility, but is the process of obtaining correction factors.” Consistent with Marvin and with 
Mehta, Porter (1996) noted the dictionary definition of Calibration: “to standardize by determining the 
deviation from a standard so as to ascertain the proper correction factor.” Rizzi and Vos (1996) were also 
consistent with this view. “Calibration is the process of Tuning or Calibrating a code with a particular fluid 
dynamics model to improve its prediction of global quantities for realistic geometries of design interest. 
This has to be done because there is no universal turbulence...” 
 However, other colleagues have assured me that the term Calibration has been used in experimental 
studies just as a means of ascertaining accuracy, or more properly of determining the inaccuracy, e.g. of a 
pressure probe or a wind tunnel test section flow. (Oberkampf, 1994 noted that the term Validated is never 
used for an experimental ground test facility because it would be a misnomer. Rather, facilities are 
Calibrated.) If extended to codes as in Aeschliman et al (1995), this definition would make Code 
Calibration almost indistinguishable from Validation, or perhaps Validation for a more restricted range of 
parameters. Indeed, Porter (1996) gave the definitions adopted by a NASA ad hoc committee. 
 
 Validation: “comparison with experiment to verify [sic] the ability to accurately model over a range of 

parameters [sic]. 
 Calibration: comparison with experiment to provide a measure of the ability to predict specific 

parameters [sic].” 
 
Even if we ignore the unfortunate use of term “verify” in a common- language (rather than technical 
context) sense, and overlook the use of “parameters” in two different senses (the first as an input 
parameter, the second as solution value), these NASA definitions still offer little distinction, with 
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Validation involving a range of parameters but Calibration involving specific parameters. See also Bradley 
(1988). 
 Aeschliman et al (1995) used (as have others) the triplet “Code Verification, Calibration, and 
Validation” or VCV and gave this description of Calibration. “We loosely interpret code ‘Calibration’ to 
mean a code’s ability to reproduce valid data (not exclusively experimental) over a specified range of 
parameters, for some geometry, without necessarily assessing the overall correctness of all of the physical 
models employed. We consider Calibration to be a less-demanding element of Validation, and is 
addressable experimentally by the same methods.” For CFD, we prefer Marvin’s (1995) description above. 
 Bradley (1988) summarized the substance of a NASA study of a process for CFD Validation, and 
distinguished code Validation from Calibration as follows. (The quote is from Marvin, 1995.)  
 

“CFD code Validation: Detailed surface and flowfield comparisons with experimental data to verify 
the code’s ability to accurately model the critical physics of the flow. Validation can occur only when the 
accuracy and limitations of the experimental data are known and thoroughly understood and only when 
the accuracy and limitations of the code’s numerical algorithms, grid density effects, and physical basis 
are equally known and understood over a range of specific parameters. CFD code Calibration: The 
comparison of CFD code results with experimental data for realistic geometries that are similar to the 
ones of interest, made to provide a measure of the code’s ability to predict specific parameters that are 
of importance to the design objectives without necessarily verifying that all of the features of the flow are 
correctly modeled.”  

 
Note that the term Calibration also has traditionally been applied to the empirical adjustment of 

constants in a theoretical analysis, as in Bradley (1988). Marvin (1995) went on to state that “During the 
intervening years since these definitions were formulated [1988], it has been argued that the definition of 
Validation is too restrictive, especially for the complex applications associated with realistic geometries. 
Nevertheless, NASA has maintained the definition as a goal of its Validation process.” [See also NASA 
(2008).] 
 In our opinion, definitions or descriptions should avoid enforcing levels of accuracy, which are 
inevitably vague anyway (e.g., “detailed,” “thoroughly understood,” etc.) and leave these qualifications 
simply to the evaluation of the thoroughness of the Validation (or invalidation). Also, as noted earlier, 
assessment of “grid density effects” is not a code property per se, but rather a property of the particular 
code application, i.e., part of Calculation Verification rather than Code Verification. 
 Many people simply equate Calibration with adjustment of parameters called “Tuning,” and often 
“somewhat without scientific justification” (Mehta, 1996).” Rykiel (1996), addressing ecological modeling, 
gave this definition: “Calibration is the estimation and adjustment of model parameters and constants to 
improve the agreement between model output and a data set.” This essentially agrees with NASA (2008)” 
“The process of adjusting numerical or modeling parameters in the model to improve agreement with a 
referent.” In addition to such “model Tuning,” one may tune, perhaps legitimately, to correct for under-
resolution in engineering parametric studies, especially for trends (Oberkampf, 1998) but this is a 
dangerous practice. The faintly pejorative association of model Tuning is deserved if every new data set 
requires re-tuning, but not so if reasonable universality is obtained. Bradshaw (1992) noted that “a simple 
model which has been carefully calibrated” [for a particular problem] may out-perform more advanced 
models on its home ground. This may be the First Law of Turbulence Modeling.” 
 Although these and other earlier uses often described calibration as just validation for a restricted range 
of physical parameters, it has become apparent that this definition is dangerous and has been abused. It is 
necessary to be clear that calibration, the adjustment or tuning of free parameters in a model to fit the 
model output with experimental data, is not validation. (See Appendix B for references.) Calibration is a 
sometimes necessary component of (strong sense) model development. But this calibration is not to be 
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considered as validation, which occurs only when the previously calibrated model predictions are evaluated 
against a set of data not used in the tuning. There is no value in tuning free parameters to obtain a drag 
coefficient to match an experimental value, and then claiming code/model validation because the 
“prediction” agrees with the same experiment. Historically, this has been a common failing of free-surface 
flow modeling projects (ASCE, 2009). Of course, if all point-values and functionals of interest are well 
matched using a small set of free parameters with physically realistic values, this will tend to be convincing 
in itself, but another data set not used in the tuning will be more so. The most important point is the 
following. 

Calibration is not Validation. 
 
 It is important to recognize that all of these activities (Verification of calculations, Calibration, 
Validation when used in the sense of including pass/fail evaluation, and especially Certification) have 
associated with them error tolerances that cannot be arbitrarily defined universally but must be defined with 
reference to their intended uses (Marvin, 1988; Mehta, 1995; Melnik et al, 1996). Also, as noted above, 
Certification is a programmatic concept, rather than a scientific concept. 

2.13 QUALITY ASSURANCE (QA) VS QUALITY WORK 

 Since we are making semantic distinctions in the context of confidence building for computational 
PDEs, it is worth making the distinction between the technical term “Quality Assurance” or QA vs. 
“quality work.” QA boosters like to talk as though the two were equivalent, but formal QA is largely a 
system of paperwork (e.g., see ISO, 1991) run by managers. A project can meet all the formal QA 
requirements and still be low quality (or flatly erroneous). On the other hand, high quality work can and has 
been done without a modern and formal QA program. (The legendary Blackbird spy plane was test flown in 
1962, long before formal QA programs.) 
 QA can, of course, be helpful for quality work. (If nothing else, it can be used to encourage 
management to support quality work.) Even the formality and paperwork are helpful in issues like version 
control. But if allowed to run amuck, formal QA can mire real work in forms and procedures and 
definitions, impeding real quality rather than fostering it. For example, formal QA procedures may require 
expensive re-running of an entire suite of confirmation problems whenever a code is modified. This can 
discourage minor code fixes and improvements. As another example, I have seen QA reviewers complain 
and require written justification (with committee approvals, documentation of resolution, archiving of 
correspondence on approved forms, etc.) for a change in input data that produced numerical value changes 
from 3.0 to 2.999998. And this, in a geophysical problem wherein the parameter ranges were sampled over 
three orders of magnitude! 

2.14 CUSTOMER ILLUSIONS VS. CUSTOMER CARE 

 The QA dictum that “the customer is always right” is adequate for a candy store operation, but not for 
any professional service. Catering to customer illusions can be antithetical to true customer care. (Indeed, 
the prerequisite task of identification of the QA customer is not obvious in many cases, e.g., university 
teaching.) This is the great QA philosophy failure; the customer is not always right, and we should not 
always give the customers what they want. (I have not read the original QA manifestoes, so I speak only 
from experience and second-hand sources of what QA originally was intended to be.) I do not want my 
physician, lawyer, or surveyor to take orders from me. 
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 This distinction is pertinent in code user training and education. The limits of applicability of codes 
must be made clear. The best commercial code cannot be an “aerodynamicist on a chip” or a “groundwater 
modeler on a chip,” i.e., the code cannot substitute for user expertise in the technical area. Also, this 
distinction of true “customer care” is most important in the area of code robustness. We all know how to 
build a robust CFD code, following what has become a CFD joke (Roache, 1994). “The good news about 
first-order upstream differencing is that it always gives you an answer. The bad news is that it always gives 
you the same answer, no matter what the Reynolds number.” It is remarkable and disheartening to see how 
many industrial CFD practitioners will freely admit to caring little about numerical accuracy. (A director of 
a very successful consulting firm, specializing in simulation of enhanced oil recovery processes, stated that 
in some 20 years of experience he had never had a request from a customer for enhanced numerical 
accuracy.) For those who do care, we must not gloss over the limitations of CFD and give them a false 
sense of security. 

2.15  OTHER DISTINCTIONS:  
AUTHORS, USERS, MODELERS, CODES, AND SOFTWARE 

 Another way to make distinctions is between the “code author” or “code builder” (which may of course 
be a team, including algorithm developers and programmers) and the “code user” or analyst. In many past 
situations (e.g., a graduate dissertation project) the same person performed both functions and therefore 
took the blame or credit for all aspects, but it is still worthwhile to make the distinction in functionality, 
especially with the rise of general-purpose commercial codes and software. 
 Another distinction is “constitutive equation developer” most typified in fluid dynamics by the 
“turbulence modeler.” Again, the same person could and has functioned in all three capacities (code 
builder, code user, and constitutive equation developer) but we agree with Blottner (1990) that it is too 
much burden on one person. 
 In regard to the distinction made earlier between numerical errors and modeling errors, I cannot agree 
with Mehta (1996) and others that these may be viewed as precision and bias errors; see Chapter 9 for 
definitions of these terms as used in experimental error assessment, and Chapter 10 for complete 
interpretations. 
 Another distinction often made in the software engineering community is between “software” and 
“code.” Briefly, code is defined as computer instructions and data definitions, whereas software is a more 
comprehensive term, including “programs, procedures, rules, and any associated documentation pertaining 
to the operation of a computer system ...” (Mehta, 1996) This distinguishes system software from 
applications software (like PDE codes) but, as readers will know, physical modelers usually overlap the 
terms, to no practical detriment. 

2.16   SENSITIVITY, UNCERTAINTY, AND RISK 

 Significant practical detriment does occur in public policy discussions that fail to distinguish between 
terms like sensitivity, uncertainty, and risk. Sensitivity calculations (often called “perturbation” 
calculations) usually refer to determination of the change of code output (either directly calculated 
quantities or inferred quantities) caused by unit changes in input data (including parameters). Essentially, 
this is equivalent to a numerical approximation to a partial derivative, say Q / d where Q is an output 
quantity of interest and d is input data or parameter. Such data cannot be transformed into uncertainty in 
the results until a conceptual model is developed for the uncertainty distribution for the input parameters, 
which provide a value for d and thence uncertainty in output values Q = d  Q / d. Such a concept 
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from elementary, intuitive level calculus is simple but still confusing to many public stakeholders in public 
policy debates. The next jump, from uncertainty to risk, is even more difficult. The simplest definition is 
Risk = Uncertainty  Consequence. That is, a high-level uncertainty (say, a 1% chance of a contaminant 
release to the environment) may produce an acceptably low level of risk if its consequence is small, e.g. a 
minor and temporary health problem. 
 Mehta (1996) stated that “Sensitivity studies usually consider extreme values of the model parameter,” 
but representative or mid-range values would seem to be equally significant, or more so. (Note, however, 
that mid-range values may not exist, or be permissible, for bi-modal distributions.) Sensitivity studies (and 
the consequent uncertainty and risk studies) can also be assessed not just for input data and parameters but 
also for differing conceptual models (also referred to as structural uncertainty or model form uncertainty). 
As Mehta (1996) noted, “The method for assessing output uncertainty is much more developed for 
parameter uncertainty than for structural uncertainty.” Note, however, that it is always possible, in 
principle, to transform a structural uncertainty into an artificial parameter uncertainty by using a blending 
function between models. The blending function could be applied to the outputs of the different models, or 
in some cases to internal parameters which blend one model structure into another. Also, in our view, the 
assessment of model form uncertainty as distinct from parameter uncertainty is precisely the activity of 
Validation; see V&V20 and Chapter 11. 
 Such parameter sensitivity studies are, in these taxonomies, neither part of Verification nor of 
Validation; they are simply part of the results of the modeling. (However, Oberkampf and Trucano (2007, 
2008) persuasively stated that sensitivity analysis is an important part of Validation comparisons, 
providing deeper understanding to both the computational analysts and the experimentalists.12) This 
distinction is often lost in the (necessarily brief) reporting in journals, as when an author investigates the 
sensitivity of answers to some uncertainly specified physical parameter; this physical modeling sensitivity 
is usually reported in conjunction with purely numerical grid convergence tests. For example, Zha and 
Knight (1996) reported sensitivity tests for their difficult problem of three-dimensional shock 
wave/turbulent boundary layer interaction. They reported grid convergence tests by independent coordinate 
refinement (see Chapter 5), first doubling the grid in x, then in y, then in z. These are purely numerical 
tests. They also reported (contiguously) sensitivity tests on the thickness of the upstream boundary-layer 
and on different isothermal wall temperatures. These are physical modeling tests. (Both categories were 
convincingly performed.) In most papers, this distinction will not be made, and the results may be reported 
under a heading like “Solution Convergence Tests” or “Verification.” The distinction is perhaps worth 
noting, but the only important point is that all the work be done and reported clearly, as in Zha and Knight 
(1996). 
 Blackwell and Dowding (2006) gave a review of modern methods of sensitivity analysis and 
uncertainty propagation in computational models. Their descriptions are also given in V&V20, Sections 3 
and 5. An ASME position paper on “The Role of Risk Analysis in Decision Making” is given in ASME 
(2002). 

                                                
12 However, the recommended rank-ordering of importance based on “unit change” of input parameters is 
meaningful only for input parameters of the same type. There is no comparison of a unit change in free-
stream Mach number to a unit change in model angle of attack. 
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2.17 ETYMOLOGY AND NEAR-SYNONYMS 

 As noted earlier, validation, verification and confirmation in common (non-technical) use are given as 
synonyms in a common English thesaurus. More complete definitions indicate extensive overlap of these 
words in some contexts, and with other related words such as substantiation, sanction, approval, 
authoritative, cogent, convincing, truth, authenticity, accuracy, genuineness, definite assurance, even 
logical. The Middle English/Latin root of “verification” is the equivalent of “truth,” whereas the Latin root 
of “validation” is the equivalent of “strong.” This etymology contributes, at best, a shade of meaning in 
favor of the distinction used herein. Others, e.g. Jameson and Martinelli, 1996, have seen a stronger 
etymological distinction. In any case, there is absolutely no justification for the extreme position taken by 
Oreskes et al (1994), arguing as though the etymology and common use have a compelling (almost 
magical) power over our use as technical terms.  
 Many other instances of near-synonyms and fuzzy usage occur. Mehta (1996) used the words 
“conceptual model” and “simulation model” distinctly, yet the essence of the distinction was not stated nor 
is it apparent. Mehta stated that credibility is established through the processes of Verification, Validation, 
and Certification, and he offered guidelines for various aspects of establishing code credibility, including 
developing and assessing models, Verification, Validation, and experimental tests. (Some of these 
suggested guidelines are arguable or obvious, most are useful, and all reflect the voice of experience.) 
Credibility is an easily understood term and is obviously desirable; as Mehta (1996) noted, “The 
significance of computer simulations depends solely on their credibility.” Yet I am somewhat 
uncomfortable with the word, because if credibility becomes the stated goal of a project, then the work can 
devolve into image building and public relations rather than science and engineering.  
 Naturally, writers will use overlapping and/or inconsistent descriptions, and make distinction in their 
terminology only adequate for their intentions, which probably do not include philosophy of science. As 
stated earlier, it is best to recognize the significant arbitrariness in the original choice of technical usage, 
but still to recognize the widespread acceptance of a standard technical distinction where it exists, e.g. in 
Verification vs. Validation. 

2.18 ACCURACY VS. RELIABILITY 

 Another worthwhile semantic distinction arises with the terms “accuracy” and “reliability,” which are 
often used interchangeably in the engineering literature but which are, in fact, distinct. Consider the 
following hypothetical situation. You are solving an expensive time-dependent three-dimensional problem. 
Based on estimates from experience on related problems, you have a computing budget adequate to solve 
the problem on a 100  100  100 grid. This would produce the most accurate solution you can afford. 
However, for about the same budget, you could produce two solutions on 90  90  90 and 80  80  80 
grids. (The economics of the scaling for three-dimensional problems with t  x indicate that the fine grid 
solution will cost C 1004 = C108 while the two grid solutions will cost C  904 + C  804  1.07C  108, 
about 7% more13.) 
 The question is, how shall you spend your budget? The answer is, if you want accuracy, you use the 
single 1003 grid, because this will produce the most accurate solution. However, although you know it is 
the most accurate solution that you can afford, you do not know how accurate it is! If instead you want 

                                                
13 This estimate is based on the assumption of optimal numerical methods with computing time  to 
resolution. If, as is commonly the case, sub-optimal methods are used, the comparison is more favorable 
for the two coarser grids. 
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reliability, the answer is you use the two 903 and 803 grid solutions. The difference between the two 
solutions gives you some idea of the accuracy. You have more confidence in the 903 solution; you can rely 
upon it. You have a somewhat less accurate solution but it is more reliable. 
 (Methods for quantifying the accuracy, and perhaps using both 903 and 803 grid solutions to achieve 
accuracy higher than the 1003 grid solution, will be addressed in Chapter 5.) 

2.19 ADDITIONAL REMARKS ON VERIFICATION 

 Finally, I would like to address some concerns raised in the literature that are not as significant as 
claimed, in my opinion. 
 Cheng (1970) and later Oberkampf et al (1995) put much emphasis on the importance of the Lax 
Equivalence Theorem (see Richtmyer and Morton, 1967) as being of fundamental importance to CFD. I 
believe the importance is exaggerated. The Equivalence Theorem may be briefly condensed to stating that 
consistency + stability yields convergence. Consistency simply means that as   0, the discrete 
(algebraic) equations approach the continuum partial differential equations, which is just the calculus limit. 
Stability is defined in the von Neumann sense (Roache, 1998b). Convergence here means convergence of 
the algebraic solution to the continuum solution. Certainly this theorem is good to know, and provides some 
confidence. Unfortunately, it applies only to linear (and properly posed) initial value problems. As noted by 
Oberkampf et al (1995), the analyses for consistency and especially stability are “predominantly developed 
for very simple model problems... The model equations are always linearized equations and uncoupled from 
any other equations.”...“Additional, but related, simplifications of consistency and stability analyses are 
elimination of: mixed classification partial differential equations, non-uniform grids, and boundary 
conditions.” In the matter of mixed PDEs, they noted that “in every supersonic flow problem modeled by 
the steady Navier-Stokes equations, hyperbolic and elliptic regions exist adjacent to one another.” So as a 
practical matter, modelers cannot sit on their hands waiting for more general theorems. Also, note that 
numerical boundary layer solutions were obtained, Verified, and Validated many years before the 
Equivalence Theorem was published, so progress can be made without the rigor. The same applies to 
questions of existence and uniqueness. 
 Another concern in Code Verification is the number of user options in a code, especially general-
purpose commercial codes. This is a genuine practical problem, but does not nullify claims of Verification; 
it just limits those claims. The exponentially expanding complexity of the option tree does not nullify the 
definition of Verification of Code; it simply qualifies the definition. “Code Verification” is restricted to that 
combination of options claimed to be Verified. There is a gray area here, as one might expect, in the 
judgment of the independence of options. Some knowledge of algorithm and code structure may be 
necessary to infer the reasonableness of simplifications of option interactions (essentially, partitioning of 
the full matrix of option interactions). The easy answer is the rigid one of categorical “no.” This would 
usually appeal to the rigid SJ temperament type (see Chapter 12) that gives Quality Assurance a bad name. 
A more intelligent and economical approach is possible, bearing in mind that subtle and unanticipated 
option interactions have occurred, especially before the acceptance of structured coding and modularity. 
 In regard to “canned” or highly modular elliptic solvers, one can make a very strong case for 
independence of the options. The argument becomes unassailable if separate residual checks are made after 
the canned solver has obtained the solution. Essentially, the “solver” is treated as providing an initial guess 
for a simple point-iteration method. Different modules for the solver could be interchanged (e.g., a 
multigrid solver, elliptic marching method, PCG, etc.) without repeating all option-tree combinations (e.g., 
types of boundary conditions, time differencing schemes, well descriptions) since the algebraic solution 
provided by the solver is always verified (Roache et al, 1996).  
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2.20 §  DOES MODEL INCLUDE THE GRID? 

 The word model itself is used with different definitions and connotations. Attempts are made to sort out 
different definitions with terms like mathematical model, computational model, conceptual model, etc. (E.g. 
see V&V10.) Unfortunately, the existing literature is very far from consistent or clear, and one must read 
carefully. A simple question is, does model include the discretization, i.e. the grid or mesh on which the 
equations are solved, or does it just refer to the continuum equations being solved? The usual first impulse 
is to include the grid but it quickly leads to contradictions, since a grid convergence verification test then 
involves changing the “model.” If one verifies the calculation by performing grid convergence testing, one 
concludes that the model is different for each grid, so what model calculation is being verified? In 
geophysical modeling (weather, climate, ocean, groundwater flow and transport) a particular mesh will 
have long-term use, measured in years. The models are run and re-run over many simulations, and it is 
common to use model to include the discretization, as in “a 1/5 degree model of the Gulf of Mexico.” Yet 
this use by inference does not include initial conditions or forcing functions in model since these change 
with every run, whereas the use of model in a strong sense would include these. In other areas, model 
(unqualified) usually does not include the grid. 
 Other people will include additional numerical features within the concept of model, e.g. discretization 
algorithms. In extreme cases, people will include not only grid and discretization algorithms but also 
iteration tolerances and solvers. This makes some sense, in that these all affect the answers, but it leads to 
unwanted results. A change in iteration tolerance means that one has a new model, which requires new 
Validation, which requires new experiments in some rigid interpretations (see V&V10). Inclusion of mesh 
and discretization algorithms within model reduces Validation, when using solution adaptive remeshing 
and discretization, to semantic nonsense.14 To avoid logical problems, the recommended practice is to 
define model in reference to what the code that embodies the model15 will produce when (near) grid 
discretization independence is reached (  0). Clearly there is a need for balance, for avoiding sophistry 
and legalism, and for valuing semantic distinctions yet recognizing their limits. 

                                                
14 Some climate models include parametric sampling over algorithms. See McWilliams (2007), Rehmeyer 
(2007). Semantics aside, I cannot imagine anything physically meaningful resulting from sampling of 
algorithms. 
15 This can be a virtual code, i.e. a thought experiment. Note that position of far-field boundaries is part of 
model in this definition, since its error does not vanish as   0. See Section 6.10. 

Validation   Supported by an accepted authority, such as an archival benchmark experiment that 
   provides specified requirements 

Verification  Implies that accuracy has been ensured, for instance with regard to coding 
Calibration  Implies that deviations from some standard, such as an archival benchmark 

   experiment, have been determined 
Certification  Implies official recognition that a standard has been met 
 

Table 2.21.1. Connotations Associated with Key CFD [computational PDEs] Terms.  
(From Figure 2, Porter, 1996). 
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2.21 CONCLUSION: LIMITATIONS OF SEMANTIC DISTINCTIONS 

 Porter (1996) gave a useful list of connotations rather than definitions, given here in Table 2.21.1. The 
semantic distinctions involved in the general area of confidence building in computational PDEs are 
important and worthwhile. While sometimes arbitrary, it is worthwhile to try to maintain uniformity of 
terminology, or at least to recognize the underlying conceptual distinctions and to define one’s terms with 
appropriate precision. The most important distinction, and fortunately the most generally agreed upon, is 
the distinction between Verification (mathematics) and Validation (science). 
 The definitions used herein are sometimes at variance with the discussions in Oberkampf (1994), Sindir 
et al (1996), Jameson and Martinelli (1996), V&V10, and others, notably in the present title subject of 
Verification. Our position is that we Verify a Code by convincingly demonstrating (if not proving as in a 
mathematical theorem) that the code can “solve the equations right.” When done properly, the exercise also 
Verifies the order of convergence of the code. Then, we Verify a Calculation by convincingly 
demonstrating that the code has “solved the equations right,” to a rationally estimated accuracy or error 
band. These two exercises are purely mathematical; neither appeals to experimental data for their 
justification. Only in Validation do we demonstrate that we have “solved the right equations,” with an 
understood context of engineering or scientific accuracy, by appealing to experimental data. 
 It is well to recognize the limitations of our attempts at semantic distinction. Although these efforts are 
worthwhile, it is clear that we (the scientific–mathematical–engineering community) are not going to 
achieve uniform, non-overlapping terminology. For example, in the classification framework of Sindir et al 
(1996), their “Validation” procedure included what is herein and elsewhere defined as aspects of 
Verification, so that their “Validation” was more like a total code Quality Assurance program (see Chapter 
11). Likewise, Bogdonoff (1993), Grasso et al (1994), Marvin (1995), Jameson and Martinelli (1996) 
referred to “Validation” of both numerical simulations and experiments, i.e., what we here define as 
Verification and Validation. Also, these authors often used the word “verification” in a non-specific sense 
when discussing Validation, i.e., they did not make the distinction in terms as used herein. Beyond the 
“mere” semantics, Oberkampf (1994) included comparisons of calculations with carefully performed 
experiments as part of Verification of a code (a definition he has since refined). In an extreme case of 
semantic confusion, the otherwise informative general-audience article titled “Verifying Analytical 
Methods” (Puttre, 1994) should have been titled “Validating Numerical Codes”! 
 Nevertheless, following the advice of Chuang Tzu (see quote at the beginning of this chapter), it is 
worthwhile to keep in mind the ideas behind Verification and Validation. Porter (1996) made the 
limitations of languages clear by using the word connotations instead of definitions for the key terms, as 
shown in Table 2.21.1. 
 Porter (1996) also quoted Alice from Through the Looking Glass (an English fantasy written, 
appropriately enough, by a mathematician, Lewis Carroll): “Don’t listen to what I say, listen to what I 
mean.” This wise advice agrees with the Taoist spirit of Chuang Tzu. In reading journal papers and 
reports, it is not a good idea to try to enforce terminology or taxonomies. It is better to try to detect the 
authors’ terminology and/or taxonomies (sometimes defined only implicitly, and perhaps used with some 
forgivable inconsistency) and then go on to learn from the authors’ experience and perspective. 
 Finally, techniques are already available to convincingly Verify the numerical accuracy of Codes and 
Calculations without impossible stress on modern computer resources, as will be demonstrated in the 
succeeding chapters. These techniques are applicable to commercial codes as well as specialized scientific 
codes. 
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PART  II 
 

VERIFICATIONS 
 
 
 

Part II will cover procedures for the rigorous accuracy Verification of Codes and 
for Verification of individual calculations. These two activities are distinct. The code 
must be convincingly Verified before Verification of an individual calculation can 
proceed with any confidence. Verification of a calculation involves error estimation 
and/or banding, whereas Verification of a code involves error evaluation from a known 
solution. Included in the Verification of calculations will be a taxonomy for sources of 
additional information needed for the error estimation. 

Since this Part II concerns accuracy Verification only, we will not be concerned 
herein with the accuracy of physical laws but only with mathematics. Part III will cover 
Validation, i.e., the agreement of the mathematics with science.  
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CHAPTER  3 
 

  METHOD OF MANUFACTURED SOLUTIONS: 
A METHODOLOGY FOR VERIFICATION OF CODES  

 
 
 

3.1 INTRODUCTION 

 This chapter describes the Method of Manufactured Solutions, which is now an undeniably mature 
methodology and is widely accepted as the gold standard for Code Verification. 
 This chapter is based primarily on the methodology I presented in Steinberg and Roache (1985), 
“Symbolic Manipulation and Computational Fluid Dynamics” and expanded in Roache et al (1990). The 
methodology provides for convincing, rigorous Verification of the numerical accuracy of a code via 
systematic grid convergence testing. This procedure is straightforward though somewhat tedious to apply, 
and verifies all accuracy aspects of the code: formulation of the discrete equations (interior and boundary 
conditions) and their order of accuracy, the accuracy of the solution procedure, and the user instructions. 

3.2 WARNINGS: THE DIVISION OF LABOR IN CODE DEVELOPMENT AND USE 

 As complete as the claim above may sound, a rigorous Verification of the numerical accuracy of a code 
does not by any means imply that all numerical questions about a particular simulation are finished. Far 
from it. To keep the distinction in mind, it is helpful to think of the division of labor or division of 
responsibility, with a code builder Verifying the code with no knowledge of the application. If this sounds 
strange, realize that there are a multitude of applications possible for a code. I want to Verify my code, 
without waiting to see how many applications will develop.  
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 I build a code: what can I claim about it, and communicate to you the possible user, without knowing 
anything about your intended application? I can tell you what equations my code solves. I cannot tell you 
what equations you need to solve for your problem. I can tell you a theoretical order of convergence for the 
algorithms in my code, and the observed order of convergence of my code for one or more well-behaved 
problems, and what grid refinement level was sufficient to attain asymptotic performance on those well-
behaved problems. I cannot tell you what grid will be required for your problem, and (unfortunately) I 
cannot guarantee that the observed order of convergence for your problem will be the same as that observed 
on my well-behaved problems. You as modeler and code user will have to decide if the equations that I 
solve are appropriate for your problem. You will have to decide whether my Verified order of convergence 
on well-behaved problems can be trusted for your problem, or whether you will Verify the rate of 
convergence on your problem. In either case, you cannot simply perform a single grid calculation, but 
rather you must Verify the calculation for your problem, which involves error estimation and/or banding, as 
discussed in Chapters 4 through 8. 
 We are concerned in this Chapter 3 with accuracy Verification of the code only. Strictly speaking, this 
will involve error evaluation rather than error estimation. However, the Verification of the order of 
convergence (or the rate of convergence) of the code involves the same definition of order that is at the 
basis of error estimation. Thus, there are many connections, but as usual, it will be useful to maintain the 
distinctions, this time between error evaluation and error estimation. 

3.3 ORDER OF CONVERGENCE 

 The principle definition of “order of convergence” that we use here is based on behavior of the error of 
the discrete solution. There are various measures of discretization error, but in some sense we are always 
referring to the difference between the discrete solution f () (or a functional of the solution) and the exact 
(continuum) solution,  

exactffE  )(          
     (3.3.1) 

 

For an order p method, and for a well-behaved problem (exceptions to be discussed in Chapters 6 and 8), 
the error E in the solution asymptotically will be proportional to p, where  is the grid spacing or other 
measure of the discretization. This terminology applies to all consistent methodologies including finite 
difference methods (FDM), finite volume methods (FVM), finite element methods (FEM), block spectral16 
and pseudo-spectral, vortex-in-cell, etc., regardless of solution smoothness. By “consistent” we mean, of 
course, that the continuum equations are recovered in the limit of infinite discretization. (Lattice gas 
methods may or may not qualify as consistent, and therefore are highly suspect.) Thus,  
 

...)( TOHCffE pexact          (3.3.2) 
 

where H.O.T. are higher order terms. For smooth problems, it may be possible in principle to evaluate the 
coefficient C and the H.O.T. from the continuum solution, but as a practical matter, we do not do this in 
the accuracy Verification procedure. 

                                                
16 Global spectral methods converge exponentially fast, i.e. faster than any finite-ordered polynomial-
converging discretization method,, so Eq. 3.3.1 does not apply. However, these methods still require an 
exact solution for Code Verification, and the MMS described in Section 3.4 ff is applicable. 
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3.4   METHOD OF MANUFACTURED SOLUTIONS 

 The Method of Manufactured Solutions (MMS) is a general procedure for generating an analytical 
solution for code accuracy Verification. The well-known procedure for grid convergence testing described 
earlier in Chapter 1 is applicable only when an exact solution is known. In the anecdote cited there, a 
known exact solution for electrode potential fields was very useful in uncovering a previously unsuspected 
code bug. However, the procedure Verified the code only for those features exercised for the analytical 
solution. Thus, the code accuracy Verification was limited to the vacuum electrode case; the solution was 
for linear steady state only and constant properties, whereas the code also treated the more general problem. 
 It has often been stated in research journal articles that general accuracy Verification of codes for 
difficult problems, e.g. the full Navier-Stokes equations of fluid dynamics, is not possible because exact 
solutions exist only for relatively simple problems that do not fully exercise the code. Many papers and 
reports approach accuracy Verification of codes in a haphazard way, comparing single-grid results for a 
few exact solutions on problems of reduced complexity. In fact, a very general procedure exists, first 
described in detail in Steinberg and Roache (1985) for generating analytical solutions for code accuracy 
Verification. 
 The basic idea of the procedure is to simply manufacture an exact solution, without being concerned 
about its physical realism. The “realism” or lack thereof has nothing to do with the mathematics, and 
Verification is a purely mathematical exercise. In the original, most straightforward and most universally 
applicable version of the method , one simply includes in the code a general source term, Q(x, y, z, t) and 
uses it to generate a non-trivial but known solution structure. We follow the counsel of G. Polya (1957):  
 

Only a fool starts at the beginning; the wise one starts at the end. 
 
 We first pick a continuum solution. Interestingly enough, we can pick a solution virtually independent 
of the code or the hosted equations. That is, we can pick a solution, then use it to verify an incompressible 
Navier-Stokes code, a Darcy flow in porous media code, a heat conduction code, an electrode design code, 
a materials code,...(“Pick a card - any card!”)17 
 We want a solution that is non-trivial but analytic, and that exercises all ordered derivatives in the error 
expansion and all terms, e.g., cross-derivative terms. For example, chose a solution involving the 
hyperbolic tangent function tanh. This solution also defines boundary conditions, to be applied in any (all) 
forms, i.e., Dirichlet, Neuman, Robin, etc. Then the solution is passed through the governing PDEs to 
give the production term Q(x, y, z, t) that produces this solution. In Steinberg and Roache (1985) we used 
Symbolic Manipulation to generate Q; the detailed results will be given shortly. 
 This procedure is much easier and more general than looking for solutions to real problems (see 
additional references in Roache et al, 1990.) We then monitor the numerical error as the grid is 
systematically refined. Successive grid halving is not required, just refinement. However, it is essential in 
the grid refinement procedure to refine with the same factor in all coordinate directions; otherwise, 
erroneous convergence rates p will be observed (Salas, 2006). Thorough iteration convergence is required; 
inadequate iteration convergence will corrupt the results.18 Theoretically [from Eq. (3.3.2)], values of C = 

                                                
17 Considerable lecture experience by myself and colleagues has shown that the basic concept can be 
difficult to grasp and indeed can appear like a card trick or a shell game. The reader may prefer the more 
tutorial presentation (Roache, 2002) reproduced in Appendix C that presents the method using three simple 
1-D problems. 
18 See Section 5.10.10 for more guidance on iteration convergence. 
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error/p should become constant as the grid is refined for a uniformly p-th order method (“uniformly” 
implying at all points for all derivatives).  
 When this systematic grid convergence test is Verified (for all point-by-point values), we have verified  
 
1. any equation transformations used (e.g., nonorthogonal boundary fitted coordinates),  
2. the order of the discretization,  
3. the encoding of the discretization, and  
4. the matrix solution procedure. 
 
 This technique was originally applied in Steinberg and Roache (1985) to long Fortran code produced 
by Artificial Intelligence (Symbol Manipulation) methods developed by Prof. Steinberg. (See also Roache 
and Steinberg, 1984; Steinberg and Roache, 1986.) The first versions of the code produced extremely long 
subroutines because the Symbol Manipulation code Macsyma at that time did not know the rules for 
intermediate expressions in the chain rule expansions and for the derivative of the inverse of a matrix 
function. (Steinberg later installed these rules in Macsyma; see Steinberg and Roache, 1985.) The original 
three-dimensional nonorthogonal coordinate code contained about 1800 lines of dense Fortran. It would be 
impossible to check this by reading the source code, yet the procedure described Verified the code 
convincingly. (Surprisingly, roundoff error was not a problem.) 
 The arbitrary solution, produced inversely by the specification of the source term Q, was aptly 
described by Oberkampf et al (1995) and Haynes et al (1996) as a “Manufactured Solution.” The fact that 
the Manufactured Solution may bear no relation to any physical problem does not affect the rigor of the 
accuracy Verification. The only important point is that the solution (manufactured or otherwise) be non-
trivial, i.e., that it exercise all the terms in the error expansion. (Ethier and Steinman, 1994, followed a 
similar philosophy and procedure.) The algebraic complexity may be something of a difficulty, but is not 
insurmountable, and in practice has been easily handled using Symbolic Manipulation packages like 
Macsyma, Mathematica, Maple, etc. Using the source-code (Fortran) writing capability of Macsyma, it is 
not even necessary for the analyst to look at the form of Q; rather, the specification of the solution (e.g., 
tanh function) to the Symbolic Manipulation code results in some possibly complicated analytical 
expression that can be directly converted by the Symbolic Manipulation code to a Fortran (or Pascal, C, 
etc.) source code segment, which is then readily emplaced in a source code module (subroutine, function, 
etc.) that then is called in the accuracy Verification procedure. (This emplacement can be performed by 
hand by the analyst, without actually reading the complicated source code expressions, or can itself be 
automated in the Symbolic Manipulation code.)  
 The procedure may also be applied to systems of equations, with separate Q’s generated for each 
equation. Both unsteady and steady solutions are possible. (It may be useful to avoid exponential solution 
growth in time so as to avoid confusion with instabilities; e.g., see the fully three-dimensional 
incompressible Navier-Stokes analytical solutions of Ethier and Steinman, 1994.) Nonlinearity is an issue 
only because of uniqueness questions; otherwise, the source term complexity may be worse, but that is the 
job of the Symbolic Manipulation code. Non-uniqueness could be an issue because the code could converge 
to another legitimate solution other than the Manufactured Solution, producing a false-negative accuracy 
Verification test for a correct code. However, it would be difficult to contrive a situation in which a false 
positive accuracy Verification was obtained. In Steinberg and Roache (1985), we applied the procedure to 
the nonlinear (quasi-linear) PDEs of the elliptic grid generation method for non-orthogonal coordinates 
(Thompson et al, 1974). The Manufactured Solution here was an analytical three-dimensional coordinate 
transformation; see examples below. 
 The only disadvantage of the procedure is the requirement that the code being Verified must include 
accurate treatment of a source term and that its boundary condition values not be hard-wired. Many codes 
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are built with source terms included, and many algorithms allow trivial extension to include Q’s. However, 
in directionally-split algorithms such as Approximate Factorization (Briley and McDonald, 1977; Beam 
and Warming, 1976) the time-accurate treatment of Q(x, y, z, t) involves subtleties and complexities at 
boundaries, especially for non-orthogonal coordinates (e.g. see Salari and Roache, 1990). Thus, significant 
code extensions may be required in order to apply this procedure involving Manufactured Solutions for 
code accuracy Verification. Likewise, some old groundwater flow codes were built with hard-wired 
homogeneous Neumann boundary conditions, f / n = 0. In order to use an arbitrary solution function, 
non-homogeneous boundary values like, f / n = g would be required. (The Q could be modified to set g.) 
Alternately, one could circumvent the problem by restricting the choice of Manufactured Solution functions 
to fit the hard-wired values. Likewise, to test periodic boundary conditions, one must chose a periodic 
function for the MS. It is also possible to choose the MS to meet other constraints of the system, e.g. 
incompressibility, but this is not always necessary. 
 Note that it is not necessary to develop different Manufactured Solutions to test different boundary 
condition types. This has been often misunderstood, even by proponents of  MMS. The same MS can be 
evaluated at boundaries to produce function values to test Dirichlet boundary condition options, normal 
gradient values to test Neumann boundary condition options, and both for mixed (Robin) boundary 
condition options, with an arbitrary non-zero weighting function  in  
 

f f
n

g  



             (3.4.1) 

 
Similarly for angle conditions encountered in linearized potential flow and magnetohydrodynamics,  
 







f
x

g f
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            (3.4.2) 

 
 Note that the method will Verify convergence rate of the solution, but will not Verify that a code is 
algebraically conservative (i.e., “strongly conservative” so that mass is identically conserved at all grid 
resolutions). 

3.5 EXAMPLE:  3-D POISSON EQUATION AND NONORTHOGONAL 3-D GRID 
GENERATION  

 The following examples are taken almost verbatim19 from my original work in Steinberg and Roache 
(1985), pp. 277–283, with some repetition of material presented earlier in this chapter. The codes being 
tested had been generated by Prof. Steinberg using an early VAX computer version of the Symbolic 
Manipulation code MACSYMA. 

3.5.1 Verification of Code Generated by Symbolic Manipulation 

 The potential for errors in either the problem formulation or the encoding procedure always exists in 
complex codes such as three dimensional boundary fitted coordinate codes. The need for Code Verification 
was emphasized in the present work because Symbolic Manipulation was used to generate the codes (e.g., 

                                                
19 One required departure from “verbatim” is due to the embarrassing fact that I used “validation” instead 
of “verification” in 1985. 
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see Roache and Steinberg, 1984, Steinberg and Roache, 1985, 1986a,b). The resulting “psychological 
distance” from the work made it less likely to be satisfied with superficial plausibility exercises based on 
intuitive ideas of acceptable levels of absolute error. 
 We Verify the codes by performing numerical tests. The approach is to choose a (manufactured) 
continuum solution for the class of problems treated by the code, and to Verify the convergence of the 
results to this continuum solution by systematic discretization error convergence testing over a sequence of 
grid sizes. 

3.5.2 Hosted Equation Convergence Testing Method 

 To test the equation L(F) = Q, we tested a modified equation whose manufactured solution was 
chosen20 to be 
 

RonFxxxF mn
mmm
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        (3.5.2.1) 
where  

m nl na  1          (3.5.2.2) 
 
and nl = degree of L (e.g., nl = 2 for L = Laplacian) and na = order of accuracy of the finite-difference 
expression (e.g., na = 2 for centered differences). Fmn is the normalizing value for the manufactured 
solution Fm. The motivation in the selected form of the solution is of course to insure that all the derivative 
terms in L are exercised, and that there is non-zero truncation error for finite hi, even without the 
transformation of coordinates. (For example, a parabolic solution will show no truncation error using 2nd-
order accurate solutions with the identity transformation. Several published “Verifications” of the accuracy 
of upwind differencing are inadequate because the chosen solution structure does not exercise the 
meaningful terms in the truncation error, giving a false indication of accuracy.) 
 The modified problem to be tested was then 
 

RonQsFL )(            (3.5.2.3) 
where 

).( mFLQQs           (3.5.2.4) 
 
The boundary equations for the modified problem are 
 

F F Rm      on boundary of     .       (3.5.2.5) 
 
Qs can be obtained in x by elementary operations as 
 

.)3)(2()2)(1()1(
2
3

2
2

2
1








 








x
mm

x
mm

x
mmFQQs m       (3.5.2.6) 

 

                                                
20 It is usually best to generate the manufactured solution in original (“physical space”) coordinates 
(x,y,z,t). Then the same solution can be used directly with various non-orthogonal grids or coordinate 
transformations. 
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 The solution was obtained in a stretched coordinate system  = (1, 2, 3) where the i values are linear 
from 0 to 1, 1 = h1  (i – 1), etc. The chosen coordinate transformation was given by 
 

)( 321  iisi danhtx           (3.5.2.7) 
 
s is a shift, necessary to avoid a singularity in the chosen solution at the origin. The parameters di control 
the severity of the coordinate stretching; for di = 0, there is no stretch in xi direction. The form of the 
coordinate transformation is chosen to exercise all terms in the transformed equations, notably the cross-
derivative terms, which would be zero if the coordinate transformations were independent in each direction. 
For non-zero di the tanh term in the transformation assures non-zero values for all derivatives. 
 The above solution and transformation generate non-trivial (non-zero and non-repeating or canceling) 
derivatives of all orders, including cross-derivatives. 
 The discrete solution Fd is then obtained on a family of grids, using any standard method. We used the 
spatial marching methods in the GEM codes (Roache, 1995) for 2-D, and hopscotch SOR in 3-D. It is 
important that iteration convergence criteria be stringent, so as not to confuse the incomplete iteration 
(residual) error with the discretization error te = Fm – Fd. We required iteration convergence to essentially 
the single precision accuracy of the 32-bit VAX computer used, about 7–8 decimal figures. We also forced 
a minimum number of iterations to be performed, somewhat greater than the maximum grid index, to be 
sure that a false indicator of iteration convergence was not obtained due to good initial conditions available 
at the fine grid spacing. 
 The discretization error convergence is then monitored as the grid is systematically refined. 
Theoretically, the local values of p = te/h2 should become constant as the grid size is refined. For a 
uniformly na-th order finite difference discretization (“uniformly” implying at all points for all derivatives) 
the truncation error can be written as 
 

te C h C h C hna na na   1 1 2 2 3 3 H.O.T.         (3.5.2.8) 
 
We define the index I of predicted order of discretization error 
 

I N na .          (3.5.2.9) 
 
With h N N1 1 1  max / / , etc. we have 
 

I C C Cna na na   1 1 2 1 3 1  max max max .H.O.T       (3.5.2.10) 
 
which is constant to order na approximation. 
 We then monitor I as N increases, using I at specified points (e.g., Icr at the center of the grid) and Imx 
= maxi,j,k I. If all I = constant as N increases, we have Verified (1) the equation transformation, (2) the 
order of finite difference expressions, and (incidentally) (3) the solution procedure. 
 This procedure does not require a grid halving sequence, N = 2m, although this sequence does make the 
judgment easier. Also, we note from experience, even on trivial 1-D problems, that I = “constant” as the 
grid is halved can be significantly relaxed; a 5% variation is very safe. (The results presented herein are 
more convincing, as will be seen.) 
 For a coarse-mesh solution, it would be advantageous to eliminate the iteration residual from the 
calculation of te by using a direct method, i.e., Gaussian elimination. However, in 3-D this will fail for 
large N by round-off error and/or CPU time demands; likewise for the marching methods. Iterative methods 
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are dangerous in that their convergence depends on L, and on the coordinate transformation. Note, however, 
that it is not necessary, nor even advisable, to test the small-parameter (high Reynolds number) problem. 
Errors will show up more readily when all coefficients in L are of the same order. Once the above 
procedure has Verified the algebra and coding accuracy, one can proceed with alternate solutions 
techniques for the small-parameter problem. 
 Note that this procedure can be followed for mixed-order finite difference equations (e.g., upwind 
differencing on first derivative terms and 2nd-order differencing on other terms) with the modification that 
we look only for convergence in the sense of zero error as N increases. This modified procedure will not 
Verify the mixed orders of accuracy separately. Ultimately the convergence rate will be limited by the 
lowest order discretization used, i.e., 1st-order, which will be Verified by the procedure. However the 
procedure will not Verify that the non-advection terms (e.g. boundary conditions intended to be 2nd-order) 
were correctly discretized to 2nd-order. Also, mixed-order codes will probably require finer grids since the 
convergence of these is difficult to judge. 

3.5.3 Hosted Equation Convergence Results in 3-D 

 Table 3.5.3.1 presents the results of testing for the constant-coefficient Laplacian equation in 3-D, 
using moderate stretching parameters di = 0.1. The mesh size was successively halved three times, from 53 
to 333. The numerically calculated Jacobian for the 53 grid ranged from 1.0187 to 1.1684, and for the 333 
grid ranged from 1.0003 to 1.2792. The table presents the maximum discretization error over the grid, 
temax, and the grid location at which it occurred; the discretization error at the center of the grid, tectr; and 
the corresponding values Imx = temax/h2 and Ier = tectr/h2. 
 

 
Table 3.5.3.1.   3-D Hosted Equation Convergence Testing for .02  F  
Stretching parameter di = 0.1. (From Table I, Steinberg and Roache, 1985.) 

 
 
 The near-constancy of the coefficient Imx = temax/h2 indicates that the entire solution, including the 
coordinate transformation and the finite difference expressions, is 2nd-order accurate. The erratic behavior 
of Icr at the finest grid indicates round-off error problems with the short word-length computer used. 
 
 Table 3.5.3.2 presents results of testing for the variable-coefficient Laplacian equation in 3-D, using 
both moderate stretching di = 0.1 and strong stretching di = 10. The hosted equation solved was 
 

  F 0           (3.5.3.1) 
 

)sin(0 bm           (3.5.3.2) 
 

b x x xn n n 1 2 3             3.5.3.3) 
 

grid temax at tectr Imx Ier 
53 0.402E–03 4,4,4 0.832E–05 0.646E–02 0.133E–03 
93 0.172E–03 8,8,8 0.650E–06 0.111E–01 0.416E–04 
173 0.492E–04 15,15,15 0.340E–07 0.126E–01 0.870E–05 
333 0.134E–04 29,29,29 –0.169E–06 0.137E–01 –0.173E–03 
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The code, of necessity, used the expanded (non-conservation form), 
 

2 0F F   .         (3.5.3.5) 
 
(In 1985, Prof. Steinberg had not yet developed symbolic manipulation codes with the ability to retain the 
unexpanded or conservation form of the equation.) 
 
 
 The manufactured solution chosen was 
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 grid =  53 93 173 333 
di = 0.1 Imx =  0.390E–02 0.877E–02 l.00E–02 – 
di= 10.0 Imx = .433 .691 1.21 1.53 

 
Table 3.5.3.2    3-D Hosted Equation Convergence Testing for F = 0. 

(From Table II, Steinberg and Roache, 1985.) 
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 The results for a Verification test using m / 0 = 0.1 are shown in Table 3.5.3.2. The results for Imx 
show that the Code Verification occurs even at the grid 173 for moderate stretching with di = 0.1, but that 
there is some variation in Imx even at the grid 333 for strong stretching with di = 10. The convergence is 
clear, however. 

3.5.4 Hosted Equation Convergence Results for Strong Stretching 

 The behavior of the discretization error for the strong stretching is of interest. The values of temax for 
just the coarse grid are plotted in Table 3.5.4.1 for a range of stretching parameters di. For this coarse grid,  
di = 0.1 minimizes the maximum discretization error. The table shows that large and inappropriate 
stretching values do indeed increase the discretization error by almost two orders of magnitude compared to 
the best transformation used. However, the table shows that the results are still O(h2) accurate. By 
definition, we mean that the method is 2nd-order accurate if a reduction in h by a factor of 1/2 will 
(asymptotically) reduce the discretization error by a factor of 1/4. 

 
 We also Verified this retention of 2nd-order accuracy for very strong 1-D coordinate stretching. Using 
double precision calculations, we experimented with a range of stretching parameters for reasonable 
coordinate transformations based on hyperbolic tangent and exponential functions, and even for 
unreasonable transformations based on exponentials of exponentials. In the extreme case, we used a 
transformation of  
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with d1 ranging from 0 to 100. For d1 = 10, Imx = temax/n2 reaches its asymptotic value of 225 to two 
significant figures at n = 257. For d1 = 100, the truncation error is 6 orders of magnitude higher than the 
no transformation case; nevertheless, Imx is constant to at least the first figure at n = 8193 and 16385. 
 These results are at variance with analyses which focus on the coefficients of the Taylor series terms in 
the original (“physical”) independent variables. The present results also Verify the claim (Roache, 1972b, 
1998b) that an analytical transformation of the equations does not change the order of the accuracy. If the 
coefficients of the transformation are also evaluated to O(h2) accuracy, as well as the hosted equation, then 
the overall results will be O(h2) accurate. 

dj = 0. 0.1 0.5 1.0 10.0 
temax  0.830E–03 0.244E–03 0.489E02 0.737E–02 0.271E–01  

 
 
    Table 3.5.4.1    3-D Hosted Equation Convergence Testing for F = 0 in Coarse Grid = 53. 

                     (From Table III, Steinberg and Roache, 1985.) 
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3.5.5 Grid Generation Results in 3-D 

 A similar procedure was followed to Verify the grid generation codes. The grid generation method 
(Thompson et al, 1974) involves solving a set of three elliptic equations for the new coordinates (x), 
written in the original (“physical”) coordinates as 
 

ii PL )(              (3.5.5.1) 
 
where L is the Laplacian operator in x, and the Pi may be chosen to give some control of grid position in the 
interior. Since the system is transformed to  space, resulting in a set of three coupled nonlinear 
(quasilinear) equations, the Code Verification procedure is more complicated. We chose the manufactured 
solution grid to be the transformation 
 

)( 321 xxxdanhtx iii               (3.5.5.2) 
 
which is the obverse of the transformation used for the hosted equation testing above. (Note: when discrete 
grid generation equations are taken to the limit of   0, the result is a “continuum grid,” i.e. a 
transformation or parameterization.) Since the i are known at each grid point, being selected as just linear 
variables in the grid indexes, the above equation must be solved for the inverse values of x1, x2, x3 at each 
grid point. This nonlinear 3  3 system was solved by coupled 3  3 Newton-Raphson iteration at each grid 
point to establish the continuum grid solution. Again, tight convergence criteria were used, assuring 
accuracy to essentially the single precision of the machine. 
 
 The Pi necessary to produce this transformation are then obtained by operating on the solution  with 
the Laplacian L, giving 
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The numerical solution was obtained using hopscotch SOR to solve linearized equations sequentially for x1, 
x2, and x3, followed by Picard outer iterations to update the linearized coefficients. A relaxation factor of 
1/2 was used in the outer (nonlinear) iterations, and loose iteration convergence criteria (actually, a limit on 
maximum number of inner iterations) were used in the early nonlinear stages. Again, overall iteration 
convergence was tight, essentially to the single precision of the machine, to clarify the discretization error 
behavior. The cost of solving the nonlinear 3  3 system for the grid test was more expensive than solving 
the scalar linear equation for the hosted equation test, but was still reasonably obtained because the exact 
continuum solution was available for use as initial conditions. However, this is no longer the recommended 
procedure, since Knupp and Salari (2003) have pointed out that it can result in false positive verification in 
subtle cases (coding errors resulting in failure to update). 
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 The result for an early test in two grids is given in Table 3.5.5.1 for strong stretching values di = 3. 
The values of temax seem small, and in fact decreased by almost a factor of 2 with the mesh size halving. 
This test could likely pass for a Code Verification. The test was actually inconclusive and, in fact, the test 
driver code was in error. 
 The false result is included here to emphasize that systematic convergence testing over a sequence of 
grids is required for Code Verification. The error was in fact discovered with such systematic testing, the 
results of which are shown in Table 3.5.5.2, for both the original and corrected test drivers. 
 The complete, systematic convergence test in Table 3.5.5.2 clearly indicate a persistent error in the 
original test, and clearly indicate 2nd-order convergence in the corrected test as Imx becomes virtually 
constant. 

3.5.6 Discussion of the Code Verification Procedure Using Manufactured Solutions 

 We note that the Code Verification procedure can be complicated by the use of 1st-order differencing, 
since this slows convergence and makes it difficult to judge. Also, the use of mixed 1st- and 2nd-order 
differencing (boundary conditions, advection terms at high Reynolds numbers, etc.) and/or any sort of 
conditional differencing (e.g., upstream differencing) will complicate the Code Verification procedure. The 
technique is applicable to Verifying the hosted equation codes as long as the method of grid generation can 
systematically refine the grid, which is the case for elliptic grid generating systems themselves. Particularly, 
the technique is applicable to Verifying code for other grid generation techniques that provide control over 
the grid properties of smoothness and orthogonality (Knupp and Steinberg, 1993). 
 The cost of computer time to do the systematic convergence testing can be significant, especially in 3-D 
problems. However, it should be noted that the kind of Code Verification described here does not address 
the small parameter (high Reynolds number) problem, so the costs and difficulties associated with it do not 
contribute to the expense. In fact, in designing the test problems, one specifically avoids large or small 
parameters, since these could mask errors in the treatment of the negligible terms. Thus, the computer CPU 
time to perform these Code Verification computations in the finest grid will be much less than that required 
to obtain a realistic (unknown) problem solution in that grid, when iterative solution methods are used. 

grid =  53 93 
temax = 0.394E–02 0.205E–02 

 
Table 3.5.5.1 Grid Generation Tests, di = 3, with an Error in Coding in the Test Driver. 

(From Table IV, Steinberg and Roache, 1985.) 
 
 
 

 grid = 53 93 173 333 
original  temax  100=  0.394 0.205 0.169 0.160 
corrected temax  100 = 0.304 0.0821 0.0208 0.00533 
original  Imx = 0.0630 0.131 0.431 1.646 
corrected Imx = 0.0486 0.0525 0.0533 0.0545 

 
Table 3.5.5.2 Complete Grid Generation Tests, di = 3. (From Table V, Steinberg and Roache, 1985.) 
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 The results obtained confirm that strong and inappropriate coordinate stretching can indeed increase 
the size of the discretization error, as is well known, but that the asymptotic order of the accuracy, as 
indicated by the reduction in discretization error resulting from systematic reduction in grid size, remains 
O(2) if centered differences are used in the transformed equations. Thus, the Method of Manufactured 
Solutions is not disabled by strong coordinate stretching. 

3.5.7 Debugging with Manufactured Solutions 

 As described above, the Code Verification procedure simply gives a “yes” or “no” answer to the 
accuracy of the entire code: the transformation of the hosted equation(s), the substitution of the finite 
difference forms, the ensuing algebraic grouping, the Fortran encoding, the solution procedure for the 
discretized equations, and the correct formulation of the test problem. If the Code Verification procedure 
produces a negative result, it is conceivable that the only information obtained is that there is an error, 
somewhere. For example, an error in the formulation could destroy the diagonal dominance of the matrix 
equation, resulting in an unstable or extremely slowly converging numerical procedure. 
 In actual experience, the procedure has been readily modified, on an ad hoc basis, and has successfully 
helped in isolating and identifying coding mistakes. By judiciously building up or modifying the test 
problem, one can selectively turn off the cross-derivative terms, perform the trivial identity transformation, 
etc. Direct solvers for the hosted equation testing may also be used if iteration convergence is not 
attainable. We have found that printing and inspection of all values of the stencil at one internal grid point 
aided debugging and Code Verification. Likewise, Ethier and Steinman (1994) also found the use of their 
manufactured incompressible solutions to be very helpful for debugging purposes by analytically 
computing individual terms in the Navier-Stokes equations and comparing them with their numerical 
counterparts. 

3.6 ANOTHER PATH TO MANUFACTURED SOLUTIONS 

 Another path to generating Manufactured Solutions is to chose a functional form of variable 
coefficients in the PDEs instead of a source term Q(x, y, z, t) to generate a non-trivial solution. This 
approach may not be as general as that utilizing Q(x, y, z, t), but it may also produce more realistic-looking 
solutions. Although this is not a mathematical advantage, it may provide a political advantage and inspire 
more confidence, depending on the mathematical sophistication of the audience (e.g., regulatory agencies, 
code QA committees, etc.). 
 Further examples of Accuracy Verification of Codes will be given in Chapter 6. 

3.7 CODE VERIFICATION INCLUDING SHOCK WAVES 

 Without special considerations, the Method of Manufactured Solutions can be used for supersonic flow 
codes, or other PDEs in the smooth solution regime, but treatments for shocks (e.g., TVD, FCT, explicit 
dissipation methods) and other shock-like near-discontinuities may not be fully exercised. It appears to be 
possible to extend the method to include arbitrary shocks by including jumps in Q, but to my knowledge 
this has not been accomplished. A straightforward application is simply to pick a solution with sufficiently 
steep gradients/curvatures to activate the shock algorithm at coarse grids, but the behavior of grid 
convergence may be difficult to judge. 
 However, a very similar approach, independently developed by J. M. Powers and colleagues (Powers 
and Stewart, 1992; Powers and Gonthier, 1992; Grismer and Powers, 1992, 1996), has been applied to 
detonation shocked flows thoroughly and successfully, although special considerations apply. 
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 The simplest multidimensional shocked solution for accuracy Verification of codes is obtained by 
simply translating a one-dimensional normal shock solution tangentially to obtain the oblique shock 
solutions. For perfect gas dynamics, this solution exercises the shock-capturing algorithm, but little else, 
since the flow before and after the shock is uniform. One could then use a non-shocked flow to exercise and 
Verify treatment of other terms, and could perhaps claim code accuracy Verification. I believe this is the 
simplest and effective way to Verify supersonic flow codes in a two-step procedure: (1) verify the coding 
for M < 1 everywhere with MMS as described earlier, and (2) verify the shock capturing (or other shock 
treatment algorithms) with inviscid benchmark problems solved by other methods (e.g. Taylor-Macoll 
solutions for supersonic sharp cones). 
 However, it is also value to have a single exact solution that exercises shocks and non-uniform flow in 
the same problem, and this has been accomplished. Grismer and Powers (1996) obtain more structure in 
their solution to a detonation shock problem, since the solution is not simply uniform before and after the 
shock. In that problem, the one-dimensional solution is obtained numerically by integration of ordinary 
differential equations (ODEs). Since ODE solvers are so highly developed and reliable, this is considered to 
be an “exact solution,” in the same way that the Blasius boundary layer solution, although numerical, has 
been considered to be a primitive or closed-form solution in fluid dynamics. (For example, if a solution to a 
compressible flow problem can be expressed in terms of the incompressible Blasius solution, it is 
considered to be a closed-form analytical solution. After all, solutions in terms of exponential and 
trigonometric functions also require numerical evaluations; these are closed form solutions, though not 
algebraic solutions.) This solution, translated parallel to the shock, gives a two-dimensional solution with 
shock structure before and after the shock. However, cross-derivative terms are identically zero. 
 A two-dimensional detonation solution with more structure in the shock-free regions, but still 
containing a straight shock wave, was obtained by Powers and Gonthier (1992). Beginning with a straight 
shock, they solved backwards for the final shape of a wall that would generate the straight shock. This 
solution structure is more general and does contain cross derivatives in the non-shock regions. However, the 
shock itself is straight; curved shocks generate entropy-vorticity gradients downstream, and are a more 
demanding exercise of shock-capturing and shock-fitting algorithms. 
 The additional generality of weakly curved shocks is included in the asymptotic solutions of premixed 
reactive ideal-gas oblique detonations developed by Powers and Stewart (1992) and used as a numerical 
benchmark by Grismer and Powers (1992). Although strictly applicable only in the asymptotic limits of 
weak shock curvature and high free-stream Mach number M [the perturbation parameter is  = 1 / M 2 and 
the asymptotic error is O(2)], they provided a practical, reliable benchmark solution for attainable M. The 
solution for curved shocks and straight walls is not restricted to small wedge angles. (They also presented 
an elegant solution for the somewhat simpler problem of straight shocks and curved walls.) The solution 
method follows the spirit of the pioneering work of Van Dyke (1958) on the supersonic blunt body 
problem. The solutions for the pressure and velocity fields are first parameterized by the shock position, 
and then boundary conditions at the surface of a wedge are chosen to fix the shock position. The solution 
procedure is non-trivial and the answer involves infinite series, but the work already has been done, and the 
series converges absolutely and uniformly. The solution provides a good benchmark problem for curved 
shock flows with reactions. (The flow may properly be described as both a shock-induced combustion and 
an oblique detonation.) 
 Any remaining doubts about the applicability of an asymptotic solution at a finite M could also be 
addressed systematically, by obtaining code numerical solutions for a sequence of increasing M and 
extrapolating to the high M limit. Note again the important distinction between Verification and Validation 
in regard to the high M limit. The facts that the user may be interested in lower M, and that ideal gas 
assumptions are not physically valid at M = 20, or that the solutions may not be physically stable, are 
irrelevant to the issue of Verification of the code, just as we noted previously that the requirement for non-
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physically-realizable source terms in the Method of Manufactured Solutions is irrelevant. Verification is a 
purely mathematical exercise, so questions like applicability of perfect gas assumptions should be 
postponed until Validation exercises, which will presumably be performed at more reasonable M and will 
demarcate the limits of applicability. 
 If complete generality is deemed necessary, with curved shocks but without the asymptotic limitation 
on the solution, one could pursue the generation of a Manufactured Solution with general source terms, as 
noted earlier. But the work of Powers and colleagues provides reliable benchmark solutions that allow 
convincing accuracy Verification of codes including the phenomena of shock waves. 

3.8 NEED FOR A THEOREM 

 There seems to be no chance for a sweeping theorem proving correctness of computational PDE codes 
by this Method of Manufactured Solutions in any general sense. However, like any analysis, it seems that 
there could be a useful theorem for a properly defined and limited scope. For codes like the one described 
above in Section 3.5, treating only the well behaved Poisson equation in general nonorthogonal coordinates, 
the exercise is compelling. I claim that this technique applied to such PDE codes (which class of codes I 
unfortunately cannot define with sufficient mathematical theorem-like precision) is correct, i.e., the 
numerical accuracy of the code is Verified, beyond a reasonable doubt. 

3.9 SPECIFIC ANALYTICAL SOLUTIONS 

 Manufactured solutions often have an advantage over other analytical solutions because the boundary 
conditions are often more general. It is not necessary, from the purely mathematical considerations, that the 
flows be realistic or physically realizable. However, as noted, realistic looking analytical solutions have a 
psychological and political advantage. Fortunately, there are many manufactured or otherwise contrived 
analytical solutions in the literature. Also, as noted above in Section 3.7, approximate but highly accurate 
solutions (often obtained by perturbation methods) can also be utilized in Code Verification. Each 
discipline will have its own literature, which I certainly cannot cover, but the following list, though far from 
complete, may be useful to some workers. (See also Chapter 7 of Roache, 1998b.) 
 
 Rogowski electrode, as used in Roache et al (1984); see Lorrain and Corson (1962). 
 Darcy flow in 2-D, variable properties, as used in Roache et al (1990); see Chapter 6, Section 6.2.2, 

Darcy Flow with Tensor Conductivity in Non-Orthogonal Coordinates. 
 Particle tracking in 2-D and 3-D, as used in Roache et al (1990); see Chapter 8, Section 8.6. 
 Colloid Transport in saturated fractures; see Abdel-Salam and Chrysikopoulos (1994). 
 Driven Cavity Flow. Huang and Li (1997) presented two simple analytic solutions for streamline flows 

that are suggestive of their problem of classical incompressible flow in a driven cavity, including a 
secondary (recirculation) vortex. They noted that one of their methods with apparently 1st-order 
boundary conditions produced 2nd-order performance on one of the test solutions, but correctly explain 
it as a “coincidence” [or artifact] of the accident that the solution produced homogeneous boundary 
conditions. As noted earlier, it is important for the manufactured (or other analytic) solution to exercise 
all the terms in the equations, in order to avoid misleading and over-optimistic results. 

 Nonlinear Free-Surface Boundary Condition. Serrano (1995) obtained new analytical solutions of the 
nonlinear Boussinesq flow equation and of the exact two-dimensional groundwater flow equation 
subject to a nonlinear free-surface boundary condition. The generality of the solution allowed testing 
(or “Justification” as in Chapter 2) of the simpler linearized equation with the Dupuit assumptions, 
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showing that these commonly used approximations produce discrepancies in the presence of high 
regional hydraulic gradients, unusually high recharge rates, or regions of low conductivity. 

 Analytic Elements. The “analytic element modeling” of Haitjema (1995) is a method of producing 
simulations that involve analytical solutions applied element-wise, and could also be used for exact 
solutions in accuracy Verification exercises. 

 For fluid dynamics solutions, see also the compilation of exact solutions of the steady-state Navier-
Stokes equations by Wang (1991) and the use of analytical solutions by Grenda et al (1996) for 
Verifying (in the present terminology) unsteady CFD codes. 

3.10   MANUFACTURED SOLUTIONS VS. OTHER NUMERICAL BENCHMARKS 

 As discussed in Section 2.5, numerical benchmarks and inter-code comparisons can be useful if these 
are high quality solutions, but will be misleading otherwise. If the goal is not mere confidence building but 
convincing code verification as described here for MMS, the demands on quality are even higher. Following 
Oberkampf and Trucano (2007, 2008) we consider infinite series solutions, numerical solutions of ODEs 
(ordinary differential equations, i.e. 1-D) and numerical solutions of PDEs (partial differential equations, 
i.e. multi-dimensional). 

3.10.1 Infinite Series Solutions 

 Infinite series solutions are traditionally described as “exact” but in reality require numerical 
evaluation. Sudicky and Frind (1982) presented analytical solutions for contaminant transport in a system 
of parallel fractures in porous media. Their solution is very well known and widely used for benchmarking 
groundwater transport codes. What is not so well known is that the general solution as originally presented 
is incorrect, in that it appears to be given for more general boundary conditions but in fact it only satisfies 
homogeneous boundary conditions, as pointed out by Davies and Johnston (1984). They also noted that the 
infinite series solution involves a summation that is only conditionally convergent, and presented a more 
strongly convergent (robust) summation. Van Gulick’s (1994) experience was that several other numerical 
problems exist in the Sudicky - Frind solution, e.g. the series solutions for high diffusivity or early time 
converge slowly or not at all.  
 The situation with the Sudicky–Frind solution is not unusual. Even if correct mathematically, any such 
analytical solution that involves series needs to be evaluated numerically, and subtle problems often arise. 
Also, it is difficult and not confidence-inspiring to confirm the mathematical correctness of the derivation of 
a non-trivial analytical or infinite series solution. In my fairly extensive experience with colleagues in 
compressible and incompressible aerodynamics, heat transfer, groundwater flow, groundwater contaminant 
transport, and laser electrode design, I can say categorically that the numerical evaluation of these 
“analytical solutions” invariably has involved more frustration than the computational codes being 
Verified. In this regard, as well as testing of variable properties and in generality of initial and boundary 
conditions, Manufactured Solutions (which do not involve infinite series) have an advantage over these 
analytical solutions. 

3.10.2 §  ODE and PDE Solutions 

 ODE solutions usually involve reduced physics, so that comparison of a multi-dimensional code must 
be done carefully to avoid false-negative Code Verification. For example, the well known Blasius boundary 
layer numerical solution (an interesting nonlinear two-point boundary value problem with one boundary at 
infinite distance) is close to the solution for the full Navier-Stokes equations at high Re, but if a full 
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Navier-Stokes code is compared, the small discrepancy is zero-order and will therefore appear in a grid 
convergence test as would a coding error. Other examples do not necessarily have this problem. For 
example, the Taylor-Macoll solution for supersonic inviscid flow over a sharp slender cone (another 
interesting nonlinear two-point boundary problem with one boundary condition being compatibility with 
oblique shock wave solutions) is 1-D in polar coordinate θ but could be used to verify a code using other 
coordinates (Cartesian or boundary fitted) in which the problem is 2-D. (The multi-dimensional code would 
of course have applications beyond this problem which has a solution in reduced dimensionality, e.g. 
shapes other than sharp cones.) In this case, there is no loss of terms in the governing equations and the 
answers as   0 should be identical. The only concern is that the benchmark ODE solution should be 
more accurate than the level of accuracy required for the 2-D code verification. In fact, this is easy to 
accomplish, given the high level of accuracy and reliable error estimation of several readily accessible ODE 
solver packages. For a small category of such problems where reduced dimensionality can be achieved for 
some non-trivial problems, an ODE benchmark is very effective for Code Verification. The numerical 
accuracy of an ODE benchmark is more reliable than that of infinite series solutions.21 
 It is also possible to use highly accurate PDE solutions (e.g. high resolution spectral methods) for 
benchmarks in Code Verification, but this is much more difficult to achieve than for ODEs. It must be kept 
in mind that we are not looking only for engineering accuracy in the agreement between the output 
variables of the tested PDE code and the benchmark PDE code, because even small differences can corrupt 
the Verification of observed convergence rate for the tested code. However, the same is true for infinite 
series solutions used as benchmarks. For relatively simple infinite series solutions, the difficulties perhaps 
would be comparable (though the computer use would be less for infinite series). For a difficult problem 
like the Sudicky-Frind problem as described above in Section 3.10.1, numerical PDE solutions can be more 
reliable, as well as more flexible. 

3.11 SENSITIVITY OF GRID CONVERGENCE TESTING 

 We have had considerable experience in using such systematic grid convergence tests, both with 
realistic and with more general Manufactured Solutions, for accuracy Verification of Codes as well as 
Verification of individual Calculations (involving error estimation). Many of these cases have utilized the 
Generalized Richardson Extrapolation and the Grid Convergence Index (GCI) to be described in Chapter 5. 
In our experience, this method of code accuracy Verification via systematic grid convergence testing 
(whether or not the GCI is used) is remarkably sensitive in revealing code problems, as indicated by the 
following examples. (Some of these examples will be covered in more detail in later chapters.) 
 

                                                
21 Oberkampf and Trucano (2007, 2008) rank numerical ODE and PDE benchmarks below infinite series 
solutions for reliability. They also recommend use of ODE solvers of higher order accuracy than used in 
the code to be Verified, and use of two separate ODE solvers (with detailed descriptions of the ODE 
algorithms) in order to qualify as a “Strong Sense Benchmark.” I find these recommendations to be 
unnecessary burdens. The only requirement is that the accuracy of the ODE solution, not the order, be 
higher than that of the tested code. The accuracy can be achieved by the higher resolution enabled in 1-D 
(as well as higher order, typically). The reliability of the ODE error esimators is so high that multiple code 
solutions are not necessary. Also, contrary to claims, there is only small inaccuracy introduced by the 
presence of two-point boundary values, and the added complexity, while interesting, is easily treated and 
much simpler than infinite series evaluations. The authors do agree on the superiority of MMS. 
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1. In accuracy Verification tests of a groundwater flow commercial code, a 1st-order error in a single 
corner cell in a strongly elliptic problem caused the observed global convergence to be 1st-order 
accurate. (Roache et al, 1990.) 

2. In accuracy Verification tests of our SECO_FLOW_2-D variable density (dissolved salt) groundwater 
flow code, 1st-order extrapolation for ghost cell values of only one quantity (aquifer thickness) along 
one boundary caused the observed convergence to be 1st-order accurate. (Roache, 1993.) 

3. In groundwater contaminant transport calculations (advection-diffusion + decay, retardation, and 
matrix diffusion), use of a plausible single-grid-block representation for a point source as the grid is 
refined introduces error in a finite volume (or block-centered finite difference) formulation. In this cell 
configuration, the cell faces align with the boundaries of the computational domain, and doubling the 
number of cells requires the location of the single cell representing the source to shift by /2. It is to be 
expected that the solution accuracy in the neighborhood of the source would be affected. But 
surprisingly, the accuracy of time-integrated discharge across boundaries far from the source was also 
degraded to 1st-order accuracy. See Chapter 6, Section 6.12, and Salari et al (1995). 

4. In tests of the two-dimensional SECO_FLOW groundwater flow code using the option for node (cell 
center) placement on the boundary (rather than cell edges on the boundary), the domain corner nodes 
enter into the calculation only when cross derivative terms are present. (These can arise from either 
non-orthogonal coordinate transformations or tensor properties.) When this value (say, at the lower left 
corner ic, jc) was set by plausible averaging, as in 

 
  f ic jc f ic jc f ic jc( , ) =  /  [ ( + , ) +  ( , + )]1 2 1 1      (3.11.1) 

 
the result was global 1st-order convergence rate. When the following form (recommended by S. 
Steinberg) 

 
  f ic jc f ic jc f ic jc f ic jc( , ) =  ( + , ) +  ( , + )  ( + , + )1 1 1 1       (3.11.2) 

 
was used, the result was global 2nd-order convergence rate. (Roache et al, 1990.) 

5. The observed convergence rate of ostensibly 2nd-order accurate turbulent boundary layer codes 
(Wilcox, 1993) can be degraded, apparently by conditional statements limiting eddy viscosity and 
defining the boundary layer edge. (Wilcox, 1995.) 

6. Airfoil codes can exhibit the expected 2nd-order convergence rates for lift and drag, but less for 
moment, possibly because of approximations involved in applying quasi-periodicity across cut-planes 
of a C-grid. (Salari, 1995.) 

3.12 EXAMPLES OF UNANTICIPATED CONVERGENCE RATES  
DETERMINED BY SYSTEMATIC GRID CONVERGENCE TESTS 

 Note that these systematic grid convergence tests can Verify a code, not only in the sense of identifying 
presence of coding errors, but also in the sense of Verifying the order of convergence. Contrary to common 
belief, the theoretical order of convergence may not be so obvious for complicated methods. Jameson and 
Martinelli (1996) noted that “the nonlinearity of conservation laws, and the geometric complexity of the 
flow domain of interest in most applications, make it difficult to devise elegant analytical tools for the 
accuracy Verification of a numerical scheme.” 
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 Furthermore, “the formal analysis” may be a misnomer, since different levels of analysis may provide 
different approximate solutions. (Not all the world is governed by the Laplace equation in a square 
domain.) Here we give two examples. 

3.12.1 Reduction to Periodicity Method: Unequal Orders of Accuracy for Derivatives 

 An excellent example of the difficulty of determining “the order of accuracy” for unusual 
methods is given by the following method, which is a combination of a very high accuracy base 
algorithm for periodic solutions combined with a heuristic extension to non-periodic solutions. 
 In Roache (1978), the “reduction to periodicity” (RTP) method was devised to use pseudo-spectral 
FFT (Fast Fourier Transform) methods for non-periodic problems by pre- and post-processing the solution 
with polynomials of various degrees. The accuracy was not confidently predictable a priori. The testing 
involved parametric combinations (4 methods of reduction-to-periodicity, 5 values of the reducing 
polynomial function N), 3 error indices of two derivatives, and comparison with 2nd-, 4th- and 6th-order 
finite difference methods (FDM). The results were given in rankings compared to the FDM, for two static 
functions and the transient Burgers equation. An example of the accuracy ranking obtained for the case of 
using exact values of boundary derivatives in the RTP method is shown in Table 3.12.1.1. The details of 
the technique are not required here; the point is the unusual and unanticipated grid convergence behavior. 
 Note the unusual convergence rates exhibited by this family of methods. The convergence rate for the 
second derivative f (x) is two orders lower than that of the first derivative f (x) for RTP with N = 3 or 5, 
but is equal for N = 2 or 4. For f (x), the accuracy jumps two orders when N is increased from 2 to 3, and 
from 4 to 5, but does not improve when N is increased from 3 to 4. This modulo 2 behavior is shifted for f 
(x), which jumps two orders when N increases from 3 to 4, but does not improve when N increases from 2 
to 3, nor from 4 to 5. 
 Successful analysis of this technique is possible, but far from conventional. Lyness (1974) had 
analyzed the similar Lanczos representation of a function, and showed theoretically and in general what the 

N = 2 O(2) < RTP < O(4) 
N = 3 O(4) < RTP < O(6) 
N = 4 O(4) < RTP < O(6) 
N = 5  O(6) < RTP 

 
a. Accuracy ranking for f (x) for the RTP method. 

 
 N = 2   O(2) < RTP < O(4) 
 N = 3   O(2) < RTP < O(4) 
 N = 4   O(4) < RTP < O(6) 
 N = 5   O(4) < RTP < O(6) 

 
b. Accuracy ranking for f (x) for the RTP method. 

 
Table 3.12.1.1. Order of accuracy ranking for the Reduction to Periodicity method (RTP) applied to 

a static function. The mesh spacing was varied from  = 1/8 to 1/128. The notation O(2) 
< RTP < O(4) indicates that the RTP technique had an accuracy between 2nd-order and 
4th-order FDM. From Table I of Roache (1978). 
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above tests showed experimentally for only specific functions: (1) that the degree of the reducing 
polynomial is important to the accuracy, (2) that the accuracy of f (x) would improve as N was increased 
from N = 1 by increments of 2. His theory also showed other results (not shown in the Table) found only 
experimentally in Roache (1978), that (3) when boundary derivatives for the RTP technique are evaluated 
by FDM (rather than using exact values as in the above example), the order of the FDM was not so 
important, and that (4) the use of a 5-th degree reducing polynomial with 2nd-order FDM at boundaries 
would give f (x) to overall 4th-order accuracy. At my request, Lyness also extended his previous work to 
prove another aspect found only experimentally, that (5) f (x) is two orders less accurate than f (x). (This 
is not a characteristic of pseudo-spectral or spectral methods themselves, but of the RTP method.) This 
imbalance in the order of accuracy of 
f (x) and f (x) is in fact acceptable, giving the chance of a “balanced truncation error method” (Roache, 
1978) in which the size rather than the order of truncation errors from advection and diffusion terms are 
roughly balanced for high Reynolds number (Peclet number) problems. 
 This complicated and unanticipated convergence behavior would not likely be determined without the 
kind of systematic grid convergence tests recommended herein. Note, however, that with the numerical grid 
convergence tests providing motivation, theoretical justification of this behavior was found using the 
independent results of Lyness (1974). 

3.12.2 Completed Richardson Extrapolation: Higher Order Truncation Error Interaction 

 Richardson Extrapolation will be covered extensively (and generalized) in Chapter 5. For now, we note 
that the original method (Richardson, 1908) combines two 2nd-order solutions on two grids, the fine grid 
having twice the resolution of the coarse grid, to produce a 4th-order accurate solution on the coarse grid 
only. I devised a method (Roache and Knupp, 1993) for easily obtaining a 4th-order solution on the entire 
fine grid, i.e. obtaining a “completed” Richardson Extrapolation. The method consists simply in evaluating 
the solution at the “skipped” fine grid points by linear interpolation, not of the solution, but of the coarse 
grid correction between the 2nd- and 4th-order solutions. Richards (1997) extended the procedure 
systematically to mixed time and space PDEs with more general integer refinement. 
 Without going into the details here, the original formal analysis of the completed Richardson 
Extrapolation indicated that all fine grid nodes should converge at 4th-order rate, i.e., p = 4. Systematic 
grid convergence studies did show this experimental rate p = 4, but originally only for the Laplace and 
Poisson equations (with non-trivial source terms). For the advection-diffusion equation, the “skipped” fine 
grid points mysteriously showed roughly 3rd-order convergence, p = 3. It was not known if the source of 
discrepancy was an error in the formal analysis of the convergence rate, or a coding error. 
 The problem lay unexplained for a few years, until P. Knupp extended the formal analysis to show 
(Roache and Knupp, 1993) that the asymptotic rate p = 4 indicated by my original formal analysis was 
indeed correct, but would not emerge until the grid refinement had proceeded enough to reduce the cell 
Reynolds number Rc << 3. The cause is higher order truncation error interaction determined by the exp(x) 
form of the exact solution. This is demonstrated in Table 3.12.2.1 for Re = 16. For the coarse grid, from  
= 1/N = 1/4 to roughly 1/64, E3 = max error/3 is roughly constant, which might suggest p = 3. Only for 
finer grids is the true asymptotic behavior of p = 4 approached, with E4 increasing only 3.2% from N = 512 
to 1024. Note also the difficulty of judging the rate of convergence just from a presentation of max error, 
especially for p > 2. 
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 The truncation error interaction is indicated by Knupp’s analysis. The one-dimensional steady state 
equation solved is the following ODE for f (x). 
 

       f Re f f f0 0 1 1 0, ( ) , ( )          (3.12.2.1) 
The exact solution is  
 

  f x e e eRex Re Re( ) ( ) / ( )    1             (3.12.2.2) 
 
From the exact solution, the form for any k-th derivative is 
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In particular, the relation between any k-th derivative and the 2nd derivative is 
 

  
f
f

Re
k

k k
( )

( ) ( )2
21            (3.12.2.4) 

 
This is the aspect of the solution that causes the truncation error interaction. The Taylor Series for (any) f 
is  
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Using the relation between any k-th derivative and the 2nd derivative, which is a feature only of this 
solution, we obtain 
 

   

N Maximum Error E3 E4 
4 0.63299798320 40.512  162.05 
8 0.09835113825 50.356  402.85 

16 0.01602753711 65.649 1050.38 
32 0.00208620873 68.361 2187.55 
64 0.00019995963 52.429 3354.77 
128 0.00001580555 33.135 4242.77 
256 0.00000111805 18.758 4802.00 
512 0.00000007447  9.995 5117.81 

1024 0.00000000481  5.165 5285.92 
 
Table 3.12.2.1. Grid Convergence Study for Completed Richardson Extrapolation. Linear advection-

diffusion equation with Re = 16. E3 = max error/3 and E4 = max error/4. (From 
Table IVb, Roache and Knupp, 1993.) 
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The significance of this expression is that the higher-order error terms contain not only the grid spacing , 
but also the continuum parameter Re. Now, 
 

  F x f x f x( ) ( ) ( )            (3.12.2.7) 
 
acts like a 2nd-order approximation to f (x+) only if  
 

   2 32 6/ / , Re            (3.12.2.8) 
 
This translates into the requirement that 1/ = N >> Re / 3. Therefore, if Re is large, a large N (small ) is 
needed to make F behave in a 2nd-order accurate manner. Otherwise, the assumption necessary for the 
completed Richardson extrapolation is violated, and the fine-grid results are not 4th-order accurate. 
 As in the previous example of the Reduction To Periodicity method, this unanticipated convergence 
behavior would not have been determined without the kind of systematic grid convergence tests 
recommended herein. And again, with the numerical grid convergence tests providing motivation, 
theoretical justification of the behavior was determined using more detailed formal analysis. Note that the 
original formal analysis was not wrong, i.e. it applied asymptotically, but neither was it complete enough to 
adequately describe the experimental results. 
 These two examples illustrate an important and usually overlooked aspect of numerical analysis. 
Authors typically speak of “the formal convergence rate” as though only one analysis were possible. In 
fact, formal analyses of convergence rates can be at various levels, with various results, especially for 
nonlinear problems. The second example above shows unanticipated structure in the analysis, even for a 
linear, one-dimensional, steady state problem with uniform grid increments x. 

3.12.3   Three More Examples 

 For three other examples showing the non-uniqueness formal truncation error analysis, consider first 
that the formal accuracy of the QUICK schemes, first published in 1979, was still being debated in 1993, 
and “considerable confusion remains in the literature” (Leonard, 1993). In another paper (not related to this 
question), Leonard and MacVean (1995) provided a formal analysis that illuminates grid convergence 
effects due to nonlinearities (see Section 8.2). And Blackwell et al (2009) demonstrated second-order 
convergence for an enclosed radiation problem, verifying their own non-rigorous theoretical analysis but 
contrasting it with another that indicated p = 3. They noted the following. “In the present problem, as in 
many practical problems, the analysis for theoretical p is neither straight-forward nor unique. The absence 
of a theoretical p should not be used as an excuse for not performing a grid refinement study.” 

3.13   MULTIPLE SCALES, MULTIPHYSICS, AND TURBULENCE MODELING  

 There are special considerations required for problems with multiple scales of solutions, notably 
turbulence modeling (which exhibits multiple scales even for single physics) and multiphysics problems. 
Here, the code theoretical performance can be Verified (within a tolerance) for a range of parameters, but 
could fail in another range. 
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 It is necessary to get the grid resolution into (or close to) the asymptotic range in order to obtain good 
results for observed p. Virtually any grid is in the asymptotic range for a simple Laplace equation. For any 
boundary layer calculation, it is clear that the initial (coarse) grid must get some points into the boundary 
layer. For RANS (Reynolds Averaged Navier-Stokes) turbulence modeling without wall functions (Shirazi 
and Truman, 1989; Wilcox, 1993) the grid must get some points into the wall layer. For turbulence 
modeling with wall functions, it would seem that the grid preferably should not get into the wall layer 
(Celik and Zhang, 1995). In our interpretation, effectively the wall functions should be viewed as an 
elaborate nonlinear boundary condition, and the grid convergence exercise should be done from the edge of 
the wall layer out. This interpretation has now been confirmed in extensive MMS applications to RANS 
turbulence models; see Eça and Hoekstra (2006, 2008), Eça et al (2007, 2009). (However, see Celik and 
Karatekin, 1995 for a counter-example.)  
 Similarly, for large eddy simulations (LES) as used in aerodynamic turbulence research and in 
atmosphere and ocean modeling with sub-grid turbulence modeling, the grid convergence must not go to 
zero, or else the Reynolds stresses will be counted twice, once from the full Navier-Stokes terms and again 
modeled from the LES terms. (See also Section 6.17.2.) Also, the presence of any switching functions, such 
as length determinations for the Baldwin-Lomax turbulence model (Wilcox, 1993), can easily corrupt 2nd-
order convergence rates. Also, the particular quirks of various RANS turbulence models (variants of k-ε, k-
ω, Spalart-Allmaras, etc.) place subtle requirements of consistency and resolution on the Manufactured 
Solutions. Switching functions may need to be disabled for the MMS procedure. Although these obstacles 
can be overcome, it is not a trivial task to generate MMS for RANS turbulence models. The work of Eça et 
al (2007b,c) is highly recommended; the web sites given therein contain codes for the analytical source 
terms. See many applications in the Lisbon II and III V&V Workshops (Eça and Hoekstra, 2006, 2008; 
Eça et al, 2007, 2009). MMS results for RANS models are sometimes unexpected; for example, the 
observed asymptotic order of convergence for the Spalart-Allmaras method is less than the theoretical (Eça 
et al, 2007a). 
 The grid resolution requirements are much more demanding for turbulent boundary layers, just as 
laminar boundary layers are much more demanding than inviscid flows. For example, Claus and Vanka 
(1992) found that 2.4 million nodes (256  96  96) did not demonstrate grid independence of the 
computed velocity and turbulence fields of crossflow jets. In the Lisbon III V&V Workshop (Eça and 
Hoekstra, 2008) the 2-D turbulent flow over a backstep at moderate Re = 5×105 required 401×401 nodes 
using stretched grids to resolve the boundary layers.22 
 Multiphysics codes can cause difficulty in judging convergence and estimating numerical error and 
uncertainty because different parts of the physics may converge differently. This can cause false-positive 
indications of attaining the asymptotic range, i.e. a grid may be in the asymptotic range for some physics 
and not for others. 

3.14   WARNINGS: WHAT THE METHOD DOES NOT “VERIFY” 

 The Method of Manufactured Solutions convincingly Verifies the accuracy of the solution produced by 
a code, and this is the technical definition of Verify adopted herein. As already noted, the method cannot 
Verify the coding accuracy of individual terms in mixed-order methods, nor can it Verify algebraic 
conservation. 
 Also, the method does not “verify” (in the more general sense) that everything about the coding is 
correct, since not all coding mistakes affect accuracy. In particular, the method does not verify that the 
solution procedure encoded actually follows the algorithm intended. It verifies that the procedure produces 
                                                
22 The problems also required Least-Squares GCI; see Chapter 5. 



Chapter 3   Method of Manufactured Solutions 
 

 

94 

the correct numerical solution, but there can be coding mistakes that decrease the iteration convergence rate 
yet still produce the correct solution; the mistake causes a loss of efficiency, rather than a loss of accuracy. 
(Note that such coding mistakes should not be a concern to regulatory agencies or stakeholders in public 
policy projects like geologic waste disposal, since the numerical accuracy of the answers is not affected.) 
 Examples of such coding mistakes are plentiful. An SOR iteration scheme can have an mistake in the 
determination of the optimum relaxation factor without (significantly) changing the answer produced. If the 
mistake is gross, the slow iteration convergence will probably bring attention to the mistake and lead to 
successful debugging, but smaller mistakes may go unnoticed permanently. Multigrid methods (Brandt, 
1977; McCormick, 1989) are known to be prone to subtle coding mistakes that diminish the iteration 
convergence rate from the theoretical rate. Verification of a theoretical iteration convergence rate is a good 
debugging tool, and builds high confidence for linear problems, but for nonlinear problems, the conclusions 
about correctness of the coding are not as firm as they are for Verification testing of numerical accuracy. 
Other esoteric mistakes that are difficult to detect will be described in Chapter 8. 
 Likewise, code verification of a solution adaptive algorithm is problematical, with or without MMS, 
because the coding could contain mistakes that reduce efficiency but still produce correct answers in the 
limit (as it would without solution adaptivity). However, the efficiency of solution adaptivity can be 
monitored with systematic grid convergence tests using MMS, resulting in high confidence; for excellent 
examples by Prof. D. Pelletier and colleagues, see Hay and Pelletier (2007, 2008) and references therein.23  

3.15 ROBUSTNESS AND CONFIDENCE 

 Likewise, code/algorithm robustness is not “Verified” by the procedure. Robustness is necessarily a 
qualitative concept, so it does not make sense to ask for a definitive statement about it, especially for 
general purpose commercial codes. 
 One technique for building confidence (rather than a rigorous demonstration) in robustness and coding 
accuracy was given in Roache (1995). The questions were (1) robustness of direct elliptic marching 
methods (which are sensitive to computer round-off error) to various boundary conditions, and (2) 
correctness of the coding for mixed boundary conditions. A general boundary condition had been 
formulated and coded as 
 

   



f f
n

            (3.15.1) 

 
where f is the dependent variable and n is the direction normal to the boundary. For various combinations 
of , , and  one obtains the usual homogeneous or non-homogeneous Dirichlet, Neuman, or Robin 
(mixed) boundary conditions. (Because of algorithmic quirks, the formulation is not so general as to include 
tangential derivatives at the boundary.) Robustness and coding were demonstrated by running many 
calculations with , , and  arrays determined by a pseudo-random number generator. The values were 
not constant along a boundary, but changed randomly along the boundary. The range was limited so as to 
avoid indeterminacies in the discrete formulation. Since the elliptic marching methods are direct, i.e. non-
iterative, the stencil evaluation for the error should be algebraically zero, except for round-off error, and the 

                                                
23 Hetu and Pelletier (1992), Ignat et al (1998), Ilinca et al (1995, 1997a,b), Pelletier and Ilinca (1994), 
Pelletier et al (1995), Pelletier and Ignat (1995), Pelletier and Ilinca (1997), Pelletier and Trepanier (1997), 
Pelletier and Roache (2002, 2006). 
 



Chapter 3   Method of Manufactured Solutions 
 

 

95 

tests Verified this convincingly. (Note this interesting generality: solution methods that are sensitive to 
computer word length, i.e., to round-off error, are easy to debug or to demonstrate coding correctness, 
whereas solution methods that are not sensitive to word length are difficult.) 
 The approach of testing the general Robin boundary condition by pseudo-random number generation of 
coefficients can be combined with the Method of Manufactured Solutions. With the analytical solution 
evaluated for f and  f / n at every point, two of the three coefficients , , and  can be determined by 
pseudo-random number generation, and the third solved algebraically. This test will provide a convincing 
demonstration of both accuracy Verification and robustness to boundary condition type. 

3.16 §  ULTIMATE RESPONSIBILITY FOR CODE VERIFICATION 

 The question of ultimate responsibility for Code Verification arises with the now widespread use 
commercial codes. Clearly, vendors have a responsibility not only to perform thorough Code Verification, 
but to document the Verifications and make the documents available. This is not typically the case, and 
colorful graphics have more sales appeal than hard quantitative evidence. (The professional fault must be 
shared by the customers for not demanding more substance.) But ultimate responsibility rests with users, 
commensurate with the risks and consequences of their application. 
 For high-consequence applications (e.g. the nuclear power industry) the code users cannot shirk their 
responsibility to verify the codes they are using (only for the options and parameter ranges of interest) if the 
code vendors have not done a convincing job (i.e. both thorough and thoroughly documented). 
 It is often argued that conscientious Code Verification is not required if the code’s use is only for initial 
screening of candidate designs, when only trends with parametric variations are of interest. This is an 
unfounded and dangerous argument. The standards of accuracy for preliminary design decisions may well 
be less than for a final design code, but V&V is still required. To state what should be obvious: An 
erroneous code can predict erroneous trends. 

3.17 §  CODE VERIFICATIONS AT COMPONENT AND SYSTEM LEVELS 

 During code development, each component or subprogram will naturally be tested independently. This 
testing may well constitute what we call Code Verification for each component, e.g. Verification of a real-
gas equation of state. It is also advisable to verify the entire package, i.e. at the system level, since this also 
verifies the coupling of components, and accomplishes more in one Verification operation. This is 
important for “regression testing”, a term applied to semi-automated re-verification of codes operating in an 
unstable environment, e.g. changing computer hardware or compilers in a distributed processing system. 
(One laboratory routinely runs code re-verification regression testing for a cutting-edge distributed system 
on a nightly basis.) 
    Any distinction of components vs systems is of course somewhat arbitrary. The component "Transport 
Properties" could involve many components and therefore could itself be named "system level" at some 
zoom level, whereas an entire flow solver "system" (e.g. NASA-Langley’s FUN3D) could be merely a 
component of a design code or a fluid-structure interaction code. The point is, that for final Verification it 
is advantageous to aggregate as many features as possible into a single test, since this reduces the number 
of runs required for independent replication (i.e. re-verification or Confirmation). But it is more difficult to 
come up with an MMS solution that exercises all the components, and in some cases, this is impossible in a 
single case because some of the code components are mutually exclusive, i.e. they refer to different options. 
Nor is it necessary. 
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 Kleb and Wood (2004, 2006) insisted (correctly, I believe) on requiring that component level 
verification tests be selected and performed by the developers24 (presumably of public domain codes) and 
published (whatever that may mean today). They endorse the MMS method. They tie this in with a 
fundamental philosophical criterion for science itself, that of independently-verifiable25 experiments. They 
asserted that current (2006) practice often violates the scientific method, supported with their survey that 
showed only 22% of new models published were accompanied by tests suitable for independently verifying 
the new code.26 They noted the need for institutionalizing component-level testing (since we are beyond the 
old “cottage industry” level of code development and application) which will require advances in electronic 
documentation methods such as the Amrita system (Quirk, 2007). 

3.18 §  FURTHER APPLICATIONS OF MMS 

3.18.1  §  Further Applications of MMS outside of  Code Verification 

 Besides its original use in code verification, MMS has been used to evaluate methods for Solution 
Verification (Chapter 5). In this application, MMS is used to generate realistic exact solutions for RANS 
turbulent flows to assess calculation verification methods like the GCI and Least Squares GCI, for 
estimation of iteration errors, and for estimation of errors due to outflow boundary conditions; see V&V1, 
Roache (2002), Pelletier and Roache (2006), Eça and Hoekstra (2006a, 2007, 2009b). [See also Section 
5.10.10.3) and Eça et al (2005, 2007).] Methods for detection of singularities in Computational Solid 
Mechanics have also been evaluated with this approach, termed “Tuned Test Problems” or TTP by Sinclair 
et al (1997, 2006); see Section 5.10.4. They also used realistic manufactured solutions to determine 
acceptable grid resolution for the actual problems, another application of MMS/TTP outside of Code 
Verification. The MMS may also be used in code development to assure that the solver is working correctly 
on any solution grid (Ghia, 2008). 

3.18.2  §  Further Applications of MMS in Code Verification 

  Since the publication of V&V1, there have been many successful applications of MMS to a wide 
range of difficult problems. The tutorial paper (Roache, 2002) is reproduced in Appendix C and contains 
references to MMS problems including compressible flows, radiation problems including eigenvalues, and 
others. The book by Knupp and Salari (2003) is recommended, notably for a blind study of code error 
detection by MMS for a compressible flow code. Other expositions are given in Pelletier and Roache 
(2006) and Wang and Jia (2009). Roy et al (2004) successfully applied MMS to convincing verifications 
of Euler and compressible Navier-Stokes codes. Blackwell et al (2009) applied MMS to enclosure 
radiation, verifying their non-rigorous theoretical analysis that indicated p = 2 in contrast to another 

                                                
24 Their claim in the first paper that the V&V community (including myself) did not endorse component 
verification was retracted in the second paper. 
25 However, in the older terminology of the philosophy of science, e.g. Popper (1980), “verify” applies to 
what we now term “validate” whereas our “verify” would correspond to what was classically just a matter 
of checking one’s hand and slide-rule calculations. 
26 Actually they used the phrase “verify the new model” which does not fit our terminology; codes are 
Verified, models are Validated. They also use verify in the sense of demonstration of algorithm accuracy on 
simple problems. 
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analysis that indicated p = 3. Appendix A of V&V20 contains an MMS heat conduction problem with 
discontinuous step change in conductivity and contact resistance.  
 Bond et al (2007) presented an exemplary study applying MMS to CFD code verification with several 
insightful observations. The FEM code being verified solved Euler, Navier-Stokes and RANS equations on 
skewed, non-uniform, unstructured 3-D meshes. Particular emphasis was placed on verification of 
numerical boundary conditions: slip, no-slip (adiabatic and isothermal), and outflow (subsonic, supersonic, 
and mixed), and on code segments that calculate solution gradients, a non-trivial issue in hexahedral grids 
with high aspect ratios near boundaries. The more demanding L norm was used and recommended, as well 
as the usual L1 and L2 norms. Among many interesting results, one provided a particular caution regarding 
precision issues. The symbolic manipulation code used to generate source functions wrote source code in 
double precision but with only single precision constants, which later corrupted the initial Verification 
exercise. The authors recommended an additional criterion for claiming Verification of double-precision 
accuracy; the relative errors should be smaller than the single precision limit. Another caution involves 
orientation of the outflow boundary in supersonic flow along a constant pressure surface, which might 
permit certain coding errors to go undetected. (The difficulty arose due to an ambitious approach of 
building boundary condition values into the MS, rather than treating them crudely with the source term.) 
Especially noteworthy was the success of MMS is disclosing a weakness of the solution algorithm in regard 
to partitioning of multiprocessors. The paper is also valuable for presenting anecdotal debugging history, 
rather than a simple “pass” evaluation. 
 An illustration of MMS applied to unsteady flows is given by Eça and Hoekstra (2007b). For the 2-D 
laminar flows, a general formulation was developed that allowed any analyst to specify an arbitrary 
continuous function that is incorporated into an analytical form for velocities which satisfy the 
incompressible continuity constraint exactly. Likewise, non-slip and impermeability conditions are met 
exactly by the MS. Two time-dependencies were considered: and exponentially decaying solution and a 
periodic solution. The exercise Verified the code, and additionally shed light iteration error. 
 It is clear that MMS is now undeniably mature and widely accepted as the gold standard for Code 
Verification. 
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CHAPTER  4 
 

  ERROR ESTIMATION FOR 
QUANTIFICATION OF UNCERTAINTY: 

 VERIFICATION OF CALCULATIONS 
There are no whole truths; all truths are half-truths.  

It is trying to treat them as whole truths that plays to the devil.  
 

Alfred North Whitehead 
 

4.1 INTRODUCTION27 

 As noted in the previous chapters, Code Verification, even if performed in some idealized sense (i.e. a 
verification that a code is completely free of coding errors and algorithm errors), does not remove the 
requirement for estimating the discretization error for a particular calculation or solution, referred to as 
Calculation Verification (or Solution Verification, as in V&V20). Also, the task of Code Verification as 
presented does not, strictly speaking, involve error estimation but simple error evaluation, because the 
Verification is done with respect to a known analytical solution. The solution may be unrealistic, e.g. a 
physically meaningless “manufactured” solution, but is nonetheless useful for Code Verification. 
Verification of an individual Calculation, on the other hand, strictly involves error estimation. Yet the latter 
term needs some distinction because of its use in different contexts. 

                                                
27 This chapter is taken primarily from Roache (1997), “Quantification of Uncertainty in CFD.” 
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4.2 ERROR ESTIMATION FOR GRID ADAPTATION VS. 
QUANTIFICATION OF UNCERTAINTY 

 The focus of this book is the “quantification of uncertainty,” the estimation or “banding” of the 
numerical error of a “final” calculation in computational PDEs. By “final calculation” I mean one which is 
considered to be used “as is.” This provides a different motivation than that of an error estimate to be used 
for the process of solution adaptive grid generation. Although the present methods may be applicable to 
grid adaptation, and the developments of some of the methods described herein were motivated by that 
problem, the grid adaptation problem has vastly different (though usually unacknowledged) requirements. 
 The key word is “quantification” of uncertainty, as opposed to vague and all too common qualitative 
assessments. Quantification of Uncertainty may also involve more than just obtaining a good error 
estimate; in fact, the more conservative procedure based on the Grid Convergence Index (described in the 
following Chapter 5) reports an error band equal to three times an error estimate. Further, I consider herein 
only a posteriori error estimation, being of the opinion that useful a priori estimation is not possible for 
non-trivial problems. 
 Local error estimators are used for solution adaptive grid generation algorithms, and they are usually 
successful for this purpose (e.g., see Oden et al, 1993). However, almost anything intuitive is successful for 
adaptation purposes, e.g. minimizing solution curvature, or adapting to solution gradients, even though 
solution gradients per se cause no error in most discretization schemes. In one-dimensional problems (e.g., 
Salari and Steinberg, 1994) or quasi-one-dimensional problems (Dwyer et al, 1980), the gains in 
computational efficiency from solution adaptivity of the r-type (redistribution) in structured grids are very 
impressive. In strongly multidimensional problems, gains are usually modest (Roache et al, 1984; Hall and 
Zingg, 1995) but are more significant for unstructured grid adaptation (e.g., see Morgan et al, 1991; 
Lohner, 1989; Hetu and Pelletier, 1992; Pelletier and Ignat, 1995; Coorevits et al, 1995; Ilinca et al, 1997).  
 Unfortunately, this task of grid adaptation as typically practiced has little connection to the 
quantification of uncertainty for a final calculation with any useful error measure. Thus, it is important to 
recognize that the successes of these local error estimators in guiding grid adaptation must not be taken as 
demonstrations of their efficacy for the quantification of uncertainty. Even for grid adaptation, the success 
of local error estimates is only a partial success. Hagen et al (1997) have given examples of strong non-
localness in tide-driven simulations of ocean model problems. Increased element resolution in the deep 
ocean, where local error estimators would not suggest increased resolution, in fact improves accuracy far 
away from the deep ocean, on the continental slope and shelf. Such behavior may be expected for any 
wave-dominated problem exhibiting amphidromes, “hanging” shocks, or other local features of strong 
solution structure with no obvious geometrical cause in the immediate neighborhood.  
 Lee and Yeh (1994a,b) have shown good correlations between local (normalized) weight functions 
based on solution-gradient estimators and (normalized) true solution errors as obtained with multiple grid 
solutions and Richardson Extrapolation, for both laminar and turbulent steady flows (although somewhat 
less for swirling flows). Their hybrid solution adaptive grid generation (combining a global, r-type 
adaptation followed by a local h-type adaptation) obtained significant efficiencies. Nevertheless, Lee and 
Yeh (1994b) correctly noted the distinction between an error “indicator” and an error “estimator,” and 
noted that “the weight function is employed as an error ‘indicator’ rather than an ‘estimator’, in that the 
accuracy of the predicted values is not a primary concern.” Clearly, normalization is a key concept. The 
distribution of errors, provided by the correlation between normalized values, is definitely of interest but is 
not sufficient for the task of the quantification of uncertainty. Rather, absolute values are required, and 
correlation of these with local weight functions (and their use as surrogate estimators for measures of 
interest) must be established anew for each new problem and each error metric of interest. 
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 We need global error estimates for Verification of Calculations. By “global” we do not here mean just 
a global summing up of local values (as sometimes used in the literature of Finite Element Methods) but an 
evaluation which includes non-local effects, i.e., which takes account of the fact that errors are advected, 
diffused, “beat” in wave resonance problems, etc. 

4.3 TAXONOMY FOR ADDITIONAL INFORMATION FOR ERROR ESTIMATES 

 Once we have produced a discrete solution of the governing partial differential equations, it is clear that 
we require some additional information in order to quantitatively estimate the uncertainty or numerical 
accuracy. The following taxonomy of sources in Table 4.3.1 of this additional information will provide a 
framework for the discussion. By the word “grid,” we refer to any measure of discretization, i.e., Cartesian  
grid, non-orthogonal grid, number of Fourier modes in a spectral solution, number of discrete vortices, etc. 

 The following are brief remarks on this taxonomy, some of which will be justified and amplified in 
later discussion. 
 Categories A and B, Additional Solution(s) of the Governing Equations (on Other Grids or the Same 
Grid) involve the direct, unambiguous evaluation of any error measure of engineering or scientific interest. 
Note that only these procedures can be used, as in the previous chapter, for Verification of Codes, and as a 
practical matter, only A.1, Grid Refinement, provides for rigorous Verification, because only it can be 
continued to any desired level of accuracy (like the classical - limit proofs of calculus). 
 For Category A, Additional Solution(s) of the Governing Equations on Other Grids, no additional code 
development or modifications are required. 
 For Category B, Additional Solution(s) of the Governing Equations on the Same Grid, no additional 
grid generation is required. 
 Category C, Auxiliary PDE Solutions on the Same Grid (e.g., Van Straalen et al, 1995) does not 
simply involve a local evaluation of something. The key aspect here is that errors are transported, advected, 
diffused, etc. (However, it is also true that a simple local evaluation of something, without advection, is just 

A. Additional Solution(s) of the Governing Equations on Other Grids 
A.1 Grid Refinement 
A.2 Grid Coarsening 
A.3 Other Unrelated Grid(s) 

B. Additional Solution(s) of the Governing Equations on the Same Grid 
B.1 Higher Order Accuracy Solution(s) 
B.2 Lower Order Accuracy Solution(s) 

C. Auxiliary PDE Solutions on the Same Grid 
D. Auxiliary Algebraic Evaluations (AAE) on the Same Grid; Surrogate Estimators 

D.1 Non-Conservation of Conservation Variables  
D.2 Non-Conservation of Higher Moments  
D.3 Zhu-Zienkiewicz and Wiberg Type Estimators 
D.4 Convergence of Higher Order Quadratures 

 
TABLE 4.3.1. Sources of Additional Information for Error Estimation, Given a  
Discrete Solution of the Governing Partial Differential Equations on a Grid.  
(From Roache, 1997.) 
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what one needs to guide solution adaptation; hence the different needs of error estimation for solution 
adaptation vs. quantification of uncertainty for a final calculation, as noted above.) 
 Category D methods, Auxiliary Algebraic Evaluations on the Same Grid, are relatively cheap, need no 
additional grid generation, and (sometimes) use no significant dynamic memory. However, the “error” 
evaluated usually has no direct relation to any error measure of engineering or scientific interest; hence my 
use of the term “surrogate estimators.”  
 Category B, C and D methods, none of which require multiple grids, will be discussed in Chapter 7. 

4.4 GRID REFINING AND COARSENING 

 Systematic grid convergence studies are the most common and straightforward methods, and arguably 
constitute the most reliable technique for the quantification of numerical uncertainty. Unlike the other 
methods available, this approach can be used to dependably consider the convergence of any quantity of 
interest, as well as the usual L2 and L norms. 
 By “grid convergence studies” people usually mean Category A.1, Grid Refinement, but Grid 
Coarsening, Category A.2, usually would make more sense. If completely solved solutions are obtained on 
two grids, presumably the finer grid solution would be used, so the coarse grid solution could be used to 
estimate the error of the fine grid solution. Whether one refines or coarsens just depends on which grid was 
calculated first! So for completely solved solutions, grid refining and coarsening are identical. 
 A disadvantage of Category A methods is that multiple grid generations are required. Cartesian grids 
obviously pose no problem. For boundary-fitted structured grids, the simplest method for grid doubling 
(halving) is to generate the finest grid first, using whatever method is preferred (e.g., see Thompson et al, 
1985 or Knupp and Steinberg, 1993) and then obtain the coarser grids by removing every other point (e.g., 
see Zingg, 1991,1992). For non-integer grid refinement (coarsening), the same generating equations and 
parameters should be used. (See Chapters 5 and 6 for further discussion including non-structured grid 
refinement and structured refinement of non-structured grids.)  
 Error estimation using other unrelated grids, Category A.3, pose an interesting challenge. By 
“unrelated grids” we mean two or more grids (usually unstructured) that are overlapping but not simply 
obtained one from the other; say grid A is finer than grid B in some regions but coarser in others, such as 
might be obtained in two steps of an r-type (redistribution) solution-adaptive grid. It would seem that the 
two solutions on unrelated grids would provide the additional information necessary to estimate the 
uncertainty in either, but to our knowledge a method for doing so has not been invented. 
 In order to quantify the uncertainty with systematically refined (coarsened) grids, we need the 
convergence rate p to estimate the error. Initially, we will assume that p is known, i.e., that we are using a 
rigorously Verified code on a well behaved problem, and are now concerned with quantification of the 
uncertainty of a particular calculation using two grid solutions. The same methods can be converted to 
Verify a code, i.e., to Verify (or determine) p. 
 It will be convenient to present the techniques of using systematic grid convergence studies (i.e., grid 
refinement and/or coarsening) to estimate errors in the next chapter on the Grid Convergence Index, or 
GCI. The GCI includes not only the error estimation per se but also a recommended level of conservatism, 
i.e. a “factor of safety” or “error banding,” which provides some uniformity in the reporting of the 
Quantification of Uncertainty. However, the techniques for systematic grid convergence studies covered in 
the next Chapter do not depend on the use of the GCI and can be used independently. 
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4.5 LEVELS OF SIMULATION USE 

 Simulations can be used at different levels, with corresponding appropriate error estimates. Benek et al 
(1996) noted three stages of the evolution of aerodynamic (CFD) applications, with increasing accuracy 
requirements: 
 
1. provide diagnostic information,  
2. supply incremental data,  
3. generate baseline data for the performance model data base. 
 
 At Level 1, Benek et al noted that “CFD is an ideal diagnostic tool” because of its high information 
content and variety of data manipulation and presentation, useful for determining the origin of disturbances 
and flow instabilities, and location and strength of flow structures (e.g., vortices). They noted that the 
absolute accuracy requirement is not high for diagnostics, because the results will be confirmed by 
additional analyses and/or experimental simulation. The basic requirement is that the predominant physics 
be reasonably represented; “Validation concerns are minimal.” [The accuracy requirement at Level 1 is 
basically qualitative.] 
 At Level 2, quantitative accuracy is required, but only for increments. For example, transonic flow 
about a wing both in a wind tunnel and in a free stream might be simulated with the expectation not of 
predicting lift and drag, but only of predicting the correction to experimental data from a wind tunnel to 
free stream conditions. Often [but not always], “highly accurate increments may be obtained from 
simulations that are less accurate than those required for base line data.” Benek et al cited examples of 
“excellent agreement between measured and computed corrections” for transonic wall interference, model 
sting (support) interference, and mismatch between flight and wind tunnel Reynolds numbers. They noted 
the potential for “evaluation of increments that cannot be readily obtained experimentally,” such as 
geometric compromises between wind tunnel models and flight models, and Reynolds number corrections 
for inlet swirl. Also, CFD results applied incrementally can be used [essentially as an elaborate 
interpolating function] for providing higher resolution to low spatial resolution experimental data, e.g. 
engine inlet pressure data. (They also noted that, in the world of aerodynamics, “the major stumbling block 
to Validation of wind tunnel correction methodology is that the majority of data is either classified or 
proprietary, and therefore, not generally available.”) 
 At Level 3, quantitative accuracy is required for the absolute quantities, which is generally most 
demanding. However, the methodology for error estimation, the sources of additional information (above), 
etc., are the same, whether the focus is qualitative data, incremental data, or absolute base-line data. Even 
for absolute data, different requirements will occur, as various quantities will have various accuracy 
requirements and various sensitivities to grid resolution, etc. Thus the methods described herein are 
applicable to all three levels. 

4.6 VERIFICATION OF COMPUTER ROUND-OFF ERRORS 

 Round-off error is sometimes confused with discretization error, and to emphasize the distinction 
people often speak of “computer round-off error” or “machine error” or “floating-point error.” Round-off 
errors arise from the fact that computers do not work in the real number system, but only with a finite 
word-length subset of the real number system. This finite subset of floating-point numbers becomes an 
increasingly sparse (and therefore poorer) approximation to the complete real number line as the size of 
numbers increases. Different computers can have different representations of numbers, although this 
situation has vastly improved with the widespread adoption of IEEE standards. Even with identical 



Chapter 4. Error Estimation for... Verification of Calculations 

 

104 

floating-point representations, different computers can have different hardware implementations of 
arithmetic operations; again, this situation has improved with the adoption of IEEE standards. Although 
arguably distinct from round-off errors, for practical user purposes we can also include in this category 
errors in computer system evaluation of primitive functions such as trigonometric functions, exponentials 
and logs, as well as higher level functions which are not the domain of the computer manufacturer but of 
local system libraries, such as Bessel functions, error functions, Gaussian distribution functions, etc. 
 The basic concept can be demonstrated by the following example. For real numbers, the result of A = 3 
 (1/3) gives A = 1, but we cannot generally trust the computer implementation of these two operations 
(first, dividing 1 by 3, then multiplying the result by 3) to give A = 1; it may give something like A = 
0.9999997. It may work for an isolated calculation for modern computers, but we cannot depend on it. 
Some compilers even give a warning if the code uses an IF test for equality of floating-point numbers, since 
these may not be meaningful; in the above example, the test “IF (A .EQ. 1.0) ...” fails. Likewise, especially 
when the operations are widely separated with intermediate calculations and storage (actualization of 
intermediate results) in various subprogram modules, we cannot depend on obtaining the same answer from 
different computers, nor even on the same computer with different languages, nor even on the same 
computer and same language but different compilers or simply different options on the same compiler. 
What we can insist is that the various representations be good approximations of the correct, real-number 
answer and therefore close to one another, “close” being a function of the computer word-lengths. 
However, elaborate sequences of calculations can produce significant deviations; it is not unusual for 
calculations performed in double precision to lose enough to floating-point errors to be reduced to single-
precision accuracy in the end. 
 It is amazing that this simple, virtually kindergarten fact of computer life is not recognized by some 
managers and regulators, who want all calculations to be identical across computer systems. Other sources 
of discrepancy include variations in user-adjustable numerical parameters such as iteration relaxation 
factors, iteration convergence criteria, etc. 
 On the other hand, it is perhaps surprising that round-off errors most often are either not a problem at 
all, or are easily controlled to a acceptable level, in physical simulations of computational PDEs. The 
reason is the historical fact that computer hardware and system software have not evolved in isolation, but 
have co-evolved with simulation methods and applications. 
 Round-off errors in discretization per se (as opposed to calculations such as an equation of state 
evaluation that does not involve discretization) can be identified by grid convergence studies or other, often 
ad hoc approaches, but often they are simply demonstrated to not be significant. When they are significant, 
they manifest themselves as repeatable but erratic behavior as the grid is refined. (The behavior is not 
chaotic in the technical sense of chaos, fractals, etc., nor random in the technical sense of probability 
distributions, but just erratic.) It is not unusual to achieve iteration convergence to “machine zero,” e.g. an 
identically steady state discrete solution, and to demonstrate grid convergence (of discretization error) to 5 
or 6 figures, but to then encounter divergence of results as the grid is further refined due to round-off error. 
This is easy to demonstrate in 1-D, wherein extreme grid refinement is inexpensive. See Table 4.6.1. 
 Round-off error will become evident at more practical grid sizes when highly stretched grids are used, 
e.g. in turbulent boundary layer grids. Some algorithms are notoriously sensitive to round-off error, e.g. 
elliptic marching methods (Roache, 1995). Some physical problems are sensitive to and limited by round-
off error, e.g. boundary layer transition calculations beginning from small initial perturbations cannot be 
carried through to full transition (Haynes et al, 1996). Often round-off errors can be isolated, or 
demonstrated to be not a problem, by changing word-length. Most modern engineering and scientific codes 
are designed to be compiled and run in double precision. In fact, most workstations actually run slightly 
faster in double precision than in single precision, being designed for the intended normal case of double 
precision calculations. This change from double to single precision, or vice versa, can sometimes be 
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accomplished by a simple compiler option on modern computers - otherwise, it can be a surprisingly 
difficult and clumsy test to implement. Another approach is to introduce imitation round-off error by 
additive or multiplicative pseudo-random number noise generation on selected quantities.  
 Round-off errors can in principle manifest themselves during Verification of a Code, but are more 
likely to rear their heads in application calculations because of (typically) more extreme parameter 
variations and solution scales. Therefore, Verification for round-off error effects is best considered as part 
of Verification of a Calculation (here in Chapters 4 and 5) rather than Verification of a Code (Chapter 2). 
 A impressive test of an iterative solver is to demonstrate that it can achieve iteration convergence to 
machine zero, i.e. to reach a point on the iterative path at which there are identically zero changes in all 
variables. Also, it can be a valuable debugging exercise on a coarse grid, and Oberkampf et al (1995) 
stated that “it is highly recommended that this iteration convergence [to machine zero] be demonstrated on 
coarse grid solutions.” However, in my opinion, it is not a necessary requirement for a code or an 
algorithm, as some authors suggest. Reaching machine zero in an iteration is itself an artifact of round-off 
error; a real number implementation would approach real zero only asymptotically. The fact that a 
particular code/algorithm actually reaches machine zero is accidental, since the noise of finite word-length 
arithmetic means that iterative changes near the limit of precision do not follow the real number arithmetic 
rules on which the iteration algorithm is based. Experience suggests that the simplest iteration algorithms 
(e.g., direct substitution iteration) are more likely to converge to machine zero, while more complicated 
algorithms (with more non-real-number arithmetic operations and intermediate storage) will often produce 
persistent, erratic fluctuations in the last one or two decimal significant figures of the variables. This should 
not disqualify these algorithms and codes, especially in view of the fact that the more complicated 
algorithms are often much more efficient than the simple algorithms. 

4.7   EFFECT OF DIFFERING FORMULATIONS 

 One sometimes reads in the literature and in advertisements for commercial codes that different 
simulation results are to be expected from different formulations, e.g. different discretization methods (e.g., 
FEM vs. FDM vs. FVM), or different but mathematically equivalent forms of the continuum equations 

N Maximum Error E4 
4 0.00022824765 0.058431 
8 0.00001781814 0.072983 

16 0.00000125631 0.082333 
32 0.00000008359 0.087655 
64 0.00000000539 0.090497 
128 0.00000000034 0.091967 
256 0.00000000002 0.092717 
512 0.00000000000 0.093193 

1024 0.00000000000 0.537369 

 
Table 4.6.1. Demonstration of Round-Off Error in a Grid Convergence Study for Completed 

Richardson Extrapolation. Linear advection-diffusion equation with Re = 1. Grid spacing  
 = 1 / N and E4 = max error / 4. The approximate constancy (convergence) of E4 up to N = 
512 indicates the method is 4th-order accurate; the erratic deviation at N = 1024 is 
symptomatic of round-off error accumulation. (From Table IVa, Roache and Knupp, 1993) 
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(e.g., incompressible flow formulated in terms of primitive velocity-pressure variables, vs. vorticity-stream 
function variables, vs. vorticity-velocity variables), or different equation solvers (direct Gaussian 
elimination vs. SOR vs. PCG vs. multigrid). Clearly, every different formulation will affect numerical 
accuracy, because of differences in discretization error, incomplete iteration error, and round-off error, so 
the answers will not be exactly identical. However, once numerical accuracy is quantified, the error bands 
from different simulations must overlap. If they do not, then a counter-example to the Verification of 
Calculations has been produced. Either Calculation A and its uncertainty estimate (say, a second-order 
FEM simulation using velocity - pressure variables with 100  100 quadrilateral elements and a direct 
solver), or Calculation B (say, a 4th-order vorticity-velocity simulation using 200  200 cells and a 
multigrid solver), or the comparison exercise itself is wrong. It should not be necessary to state this, but it 
apparently is.  
 

Numerical methods are not part of the continuum parameters! 
 
 Similarly, the particular grid or mesh resolution and type should be irrelevant, within the uncertainty 
estimates. While most practitioners recognize that mesh density should not affect the answer within the 
uncertainty estimates (as shown by the common use of the term slightly abusive term “grid independence”), 
confusion often occurs in regard to grid types. For example, an airfoil computation may be approached 
with a variety of grid configurations: C-type grids, H-type grids, unstructured meshes with a variety of 
geometric elements (quadrilaterals, triangles) or even mesh-less methods. The choice will affect how 
difficult it is to achieve accuracy, especially around critical areas like the airfoil trailing edge. One grid type 
may be clearly superior to another for a particular problem and a particular area of concern. But all 
legitimate grid types must be capable of producing the correct solution given sufficient computer resources. 
If a poor O-grid is much worse for an airfoil than a good C-grid, then the O-grid will require many more 
cells to achieve an accurate answer. But if the uncertainty estimate of the O-grid solution is comparable to 
that of the C-grid, it should give comparable answers. That is, if a grid type is not capable of reaching 
acceptable accuracy with available computer resources, this should be reflected in the error/uncertainty 
estimates obtained. The computational solution on any legitimate grid should not lie. 
 
 To expand the previous emphatic statement, 
 

Neither numerical methods (FEM, FDM, FVM, spectral, ...) 
nor continuum formulations (primitives, vorticity, compressible flow equations, ...) 

nor grid types (structured, unstructured, O-grids, C-grids, block structured, grid-free, ...) 
nor grid resolutions (100  100  100, 1000  1000  1000, ...) 

  are part of the continuum parameters! 
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CHAPTER  5 
 

  SYSTEMATIC GRID CONVERGENCE STUDIES  
AND THE GRID CONVERGENCE INDEX (GCI) 

 
“If you want a new idea, read an old book.” 

 
Anonymous 

 

5.1 Δ INTRODUCTION 

 This chapter is taken primarily from Roache (1994), “ Perspective: A Method For Uniform Reporting 
Of Grid Refinement Studies.” Additional material is added from Roache (1997), “Quantification of 
Uncertainty in CFD,” Roache (1995a), “Verification of Codes and Calculations,” Westerink and Roache 
(1995), “Issues in Convergence Studies in Geophysical Flow Computations,” and Roache (2003a), “Error 
Bars for CFD.” The chapter organization repeats some of the material in previous chapters but is used here 
to make the chapter more nearly self contained, and because the material deserves repetition, especially 
since it is applicable to commercial codes. 
 The only type of uncertainty considered in this chapter is the commonly used U95% , i.e. an “expanded” 
uncertainty (V&V20) targeted to bracket 95% of the data from the parent population. Consideration of 
standard uncertainty u and other levels of expanded uncertainty is deferred until Chapter 11. 
 In (Roache, 1994) I proposed the use of a Grid Convergence Index (GCI) for the uniform reporting of 
grid convergence studies in Computational Fluid Dynamics and related disciplines. Since then, it has been 
confirmed in many hundreds of applications. The (slightly modified) method has been approved for all 
papers submitted to the ASME Journal of Fluids Engineering (Celik et al, 2008). The method provides an 
objective asymptotic approach to quantification of uncertainty of grid convergence. The basic idea is to 
approximately relate the results from any grid convergence test to the expected results from a grid doubling 
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using a 2nd-order method. The GCI is based upon a grid convergence error estimator derived from the 
theory of generalized Richardson Extrapolation. It is recommended for use whether or not Richardson 
Extrapolation is actually used to improve the accuracy. A different form of the GCI applies to reporting 
coarse grid solutions when the GCI is evaluated from a “nearby” problem. The simple formulas may be 
applied a posteriori by editors and reviewers, even if authors are reluctant to do so. 
 The generalized Richardson Extrapolation described can be used independently of the GCI, for either 
Verification of Calculations or Verification of Codes. Likewise, as will become clear, the GCI is 
recommended for use in uniform reporting of grid convergence tests even if the conditions for the theory do 
not hold strictly. 

5.2 BACKGROUND ON GRID CONVERGENCE REPORTING 

 There are other possible techniques for the quantification of numerical uncertainty, but systematic grid 
convergence studies are the most common, most straightforward and arguably the most reliable. The 
motivation for development of the uniform Grid Convergence Index was the inconsistent and confusing 
reporting of grid convergence studies in the engineering and scientific literature. The following hypothetical 
examples will suffice to illustrate the confusing reporting.  
 One paper states that the grid density was increased by 50%, resulting in a difference in some solution 
norm of 4% (of the fine grid solution) using a 1st-order accurate method. In another paper, grid density was 
doubled, resulting in a difference of 6%, using a 2nd-order method.  
 Which fine grid solution is more reliable?, i.e. better converged? More importantly, can the reader have 
any reasonable expectation that these numbers represent a “% accuracy error band,” i.e. that the fine-grid 
calculations are probably accurate to within 4% or 6% of the true solution of the continuum equations? 
 Note that we are concerned herein with Verification of a particular Calculation, i.e. estimating and 
banding the grid convergence accuracy of a particular discretized solution. We assume that the code itself 
has already been Verified for the same class of problems, so that coding errors are not an issue and, if done 
properly, the order of accuracy has been Verified for well behaved problems (see Chapter 3). Nor are we 
concerned with code Validation, e.g. that a turbulence model is adequate. (See Chapter 2 for terminology.) 
Also, it is worth repeating that this approach (and similar grid convergence studies) address only “ordered” 
discretization errors, which by definition vanish as grid spacing  or h  0. Specifically, the errors 
introduced by the use of far-field computational boundaries must be assessed separately (see Section 6.10; 
also Chapters 2 and 6 of Roache, 1998b). Further, I consider herein only a posteriori error estimation, 
being of the opinion that useful a priori estimation is not possible for non-trivial problems. 

5.3 RICHARDSON EXTRAPOLATION 

 Richardson Extrapolation, also known as “h2 extrapolation” and “the deferred approach to the limit” 
and “iterated extrapolation,” was first used by Richardson in 1910 (in a structures problem of determining 
the stresses in a masonry dam) and later embellished in 1927. The discrete solutions f are assumed to have 
a series representation in the grid spacing h (or ) of  
 

f f g h g h g hexact    1 2
2

3
3           (5.3.1) 

 
The functions g1 , g 2 , etc. are defined in the continuum and do not depend on any discretization. For 
infinitely differentiable solutions, they are related to all orders to the solution derivatives through the 
elementary Taylor series expansions, but this is not a necessary assumption for Richardson Extrapolation, 
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nor is the infinite series indicated in Eq. (5.3.1). It is only necessary that Eq. (5.3.1) be a valid definition for 
the order of the discretization. Thus, the extrapolation may be valid for finite volume solutions, finite 
element solutions, etc. 
 For a 2nd-order method, g1 = 0. Then the idea is to combine two separate discrete solutions f1 and f2 , 
on two different grids with (uniform) discrete spacings of h1 fine grid) and h2 (coarse grid), so as to 
eliminate the leading order error terms in the assumed error expansion, i.e. to solve for g2 at the grid points 
in Eq. (5.3.1), substitute this into Eq. (5.3.1) and obtain a more accurate estimate of fexact. The result is the 
original statement (Richardson, 1927) for h2 extrapolation. 
 

f h f h f
h hexact 



2
2

1 1
2

2

2
2

1
2 H.O.T.         (5.3.2) 

 
where H.O.T. are higher order terms. Using the grid refinement ratio r = h2 / h1 (defined to be > 1), this can 
be conveniently expressed in terms of a correction to the fine grid solution f1, dropping H.O.T. 
 

f f f f
rexact  

1

1 2
2 1

         (5.3.3) 

 
 The most common use of this method is with a grid doubling, or halving. (These are identical. Both use 
two grids, one twice as fine as the other, i.e. we have a coarse grid and a fine grid. Whether we “doubled” 
or “halved” just depends on which calculation came first.) With  
r = 2, Eq. (5.3.3) becomes  
 

f f fexact  4 3 1 31 2/ /            (5.3.4) 
 
 It is often stated that Eq. (5.3.4) is 4th-order accurate if f1 and f2 are 2nd-order accurate. Actually, as 
known by Richardson, this is true only if odd powers are absent in the expansion (5.3.1), which he achieved 
by assuming the exclusive use of 2nd-order centered differences. If uncentered differences are used, e.g. 
upstream weighting of advection terms, even if these are 2nd-order accurate (3-point upstream), the h2 
extrapolation is 3rd-order accurate, not 4th. As a practical limitation, even extrapolations based on centered 
differences do not display the anticipated 4th-order accuracy until the cell Reynolds number Rc is reduced; 
for the one-dimensional advection-diffusion equation with Dirichlet boundary conditions, Rc < 3 is required 
(Roache and Knupp, 1993; see also Chapter 3). 
 Although Richardson Extrapolation is most commonly applied to grid doubling, and is often stated to 
be only applicable to integer grid refinement (e.g., Conte and DeBoor, 1965), grid doubling is not required. 
In order to use Eq. (5.3.3) it is necessary to have values of f1 and f2 at the same points, which would seem 
to require commonality of the discrete solutions, and therefore integer grid refinement ratios r (grid 
doubling/halving, tripling, etc.). However, even in his 1910 paper, Richardson looked forward to defining a 
continuum f2 by higher order interpolation, and in the 1927 paper he had a specific approach worked out. 
Ferziger (1993) alluded to this approach with less detail but more generality. Similarly, Richardson 
Extrapolation is commonly applied only to obtaining a higher-order estimate on the coarse grid with h2 = 
2h1, but Roache and Knupp (1993) showed how to obtain 4th-order accuracy on all fine-grid points by 
simple 2nd-order interpolation, not of the solution values f2, but of the extrapolated correction from Eq. 
(5.3.4), i.e. by 2nd-order interpolation of 1/3 (f1  f2). The use of simple 2nd-order interpolation avoids 
complexities with non-uniform grids and near-boundary points. S. A. Richards (1997) extended the method 
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for “Completed Richardson Extrapolation” to space and time, including possible mixed space-time order of 
accuracy and more generality than grid doubling. 
 Richardson (1910,1927) also considered 6th-order extrapolation (using 3 grid solutions to eliminate g2 
and g4), parabolic and elliptic equations, staggered grids (then called “interpenetrating lattices”), rapid 
oscillations and the 2h wavelength limit (the “cell Reynolds number” limit for “wiggles” in CFD; see 
Roache, 1998b), a priori error estimates, singularities, integral equations, statistical problems, Fourier 
coefficients, and other non-calculus problems. For example, Richardson (1927) showed the power of the 
method in an elegant example of extrapolating two very crude approximations to a circle, namely an 
inscribed square and an inscribed hexagon, to get an estimate of  with 3-figure accuracy, without using 
any trigonometry. (This calculation will be given later in Section 5.5.) 
 The usual assumptions of smoothness apply, as well as the assumption (often verified) that the local 
error order is indicative of the global error order. The extrapolation must be used with considerable 
caution, since it involves the additional assumption of monotone truncation error convergence in the mesh 
spacing h. This assumption may not be valid for coarse grids, or possibly other conditions. The 
discretization method must be 2nd order everywhere, including boundaries; for example, Gourlay and 
Morris (1968) showed how to successfully apply Richardson extrapolation in nonlinear hyperbolic systems 
with over-determined boundary information, and gave references to earlier work on Richardson 
Extrapolation involving starting values in multi-step ODE solvers. Also, the extrapolation magnifies 
machine round-off errors and incomplete iteration errors (Roache, 1998b). In spite of these caveats, the 
method is extremely convenient to use compared to forming and solving direct 4th-order discretizations, 
which involve more complicated stencils, wider bandwidth matrices, special considerations for near-
boundary points and non-Dirichlet boundary conditions, additional stability analyses, etc., especially in 
non-orthogonal coordinates which generate cross-derivative terms and generally complicated equations. 
Such an application was given by the present author in Roache (1982); see also Chapter 6. 
 The method is in fact oblivious to the equations being discretized and to the dimensionality of the 
problem, and can easily be applied as a postprocessor (Roache, 1982) to solutions on two grids with no 
reference to the codes, algorithms or governing equations which produced the solutions, as long as the 
original solutions are indeed “2nd-order accurate” or more generally, “p-th order accurate.” We use the 
common but somewhat abusive terminology of “2nd-order accurate solution” to mean a solution obtained by a 
Verified 2nd-order accurate method applied in the asymptotic range of grid spacing. Even the expression “2nd-
order accurate method” itself can be misleading by unrealistically raising expectations that the method will be 
2nd-order accurate applied to any problem. A clumsy but more precise description is “a method whose leading 
order term in the Taylor series or other convergence analysis is 2nd order.” 
 The difference between the 2nd-order solution and the extrapolated 4th-order solution is itself a useful 
diagnostic tool, obviously being an error estimator (although it does not provide a true bound on the error). 
It was used very carefully, with an experimental determination rather than an assumption of the local order 
of convergence, by de Vahl Davis (1983) in his classic Benchmark study of a model free convection 
problem. See Nguyen and Maclaine-Cross (1988) for application to heat exchanger pressure drop 
coefficients. Zingg (1991,1992) applied the Richardson error estimator to airfoil lift and drag calculations 
in body-fitted grids. Also, his data indicate that Richardson Extrapolation can be applied to the estimation 
of far-field boundary errors, with the error being 1st-order in the inverse of distance to the boundary. (See 
Chapter 6, Section 6.10.) Blottner (1990) used Richardson Extrapolation to estimate effects of artificial 
dissipation terms in hypersonic flow calculations. (See Chapter 6, Section 6.11.) See other early 
applications by Anderson and Batina (1988), Caruso et al (1985), Kessler et al (1988), Williams (1989). 
  An important aspect of Richardson Extrapolation is that it applies not only to point-by-point solution 
values, but also to solution functionals, e.g., lift coefficient CL for an aerodynamics problem or integrated 
discharge for a groundwater flow problem, provided that consistent or higher-order methods are used in the 
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evaluations (e.g., 2nd- or higher order quadratures for lift) as well as the basic assumption that the order of 
the method applies globally as well as locally. If Richardson Extrapolation is applied to produce (say) 4th- 
order accurate grid values, one could in principle calculate a 4th-order accurate functional like CL from the 
grid values, but it would require careful implementation of 4th-order accurate quadratures. It is much 
simpler to apply the extrapolation directly to the CL’s obtained in each grid, requiring only 2nd-order 
quadratures. Indeed, this is a major attraction of Richardson Extrapolation compared to using 4th-order 
accurate stencils solved either directly or by deferred corrections. (Note, however, that the two approaches 
yield different answers, although both are 4th-order accurate if done properly.)  
 A very significant yet often overlooked disadvantage of Richardson Extrapolation is that the 
extrapolated solution generally is not “conservative” in the sense of maintaining conservation properties 
(e.g., Roache, 1998b). This could well dictate that Richardson Extrapolation not be used to obtain an 
extrapolated or “corrected” solution. For example, if it were used on the ground-water flow simulations for 
the Waste Isolation Pilot Plant (WIPP PA Dept., 1992; Helton et al, 1995,1996), it would be “more 
accurate” in some metric, but would introduce additional non-conservative (i.e., lack of conservation 
property) source terms into the radionuclide transport equation. It is also noteworthy that Richardson 
(1927) pointed out that the accuracy of the extrapolation does not apply to arbitrarily high derivatives of 
the solution. The extrapolation can introduce noise to the solution which, although low level, may decrease 
the accuracy of the solution higher derivatives. 
 Thus, it is not advocated here that Richardson Extrapolation necessarily be used to improve the 
reported solution, i.e. to produce an extrapolated or corrected solution, since that decision involves these 
considerations and possibly others. What is advocated is that, regardless of whether Richardson 
Extrapolation is used to improve the solution, it can be used to estimate the discretization error, and the 
Grid Convergence Index (defined herein and based on the generalized theory of Richardson Extrapolation) 
can be used to uniformly report grid convergence studies. 

5.4   GENERALIZATION OF RICHARDSON EXTRAPOLATION 

 Without assuming the absence of odd powers in the expansion of Eq. (5.3.1), we can generalize the 
usual Richardson Extrapolation (5.3.4) to p-th order methods and r-value of grid ratio, again eliminating 
the leading term in the error expansion, as follows. 
 

f f f f
rexact p 

1

1 2

1
            (5.4.1) 

 
If the next term in the series of Eq. (5.3.1) is zero, e.g. if centered differences were used, then the 
extrapolation is (p + 2) order accurate. But generally, and notably if upstream-weighted methods for 
advection have been used, the extrapolation is (p + 1)-order accurate. 
 It may easily be verified that Eq. (5.4.1) is valid for multidimensions in any coordinates, including 
space and time, provided that the same grid refinement ratio r is applied, and the order p is uniform, in all 
space and time directions. 
 In Eq. (5.4.1), the correction to the fine grid solution f1 obviously provides an error estimator of the fine 
grid solution. (The error of any estimate is defined as the estimated value - true value, so the error estimate 
for f1 is the negative of the correction term.) Expressing this as an Estimated fractional error E1 for the fine 
grid solution f1, we have  
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Alternately, we could express this as an Estimated dimensional error28 using the dimensional form 
 

12 ff                (5.4.3b) 
 
Defining the Actual fractional error A1 of the fine-grid solution as usual, 
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and using Eqs. (5.4.1 - 4) and the binomial expansion gives 
 

),(][ 2
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where m = 1 generally or m = 2 if centered differences have been used. Thus, E1 is an ordered error 
estimator, i.e. an ordered approximation to the actual fractional error of the fine grid solution. E1 is a good 
approximation when the solution is of reasonable accuracy, i.e. when |E1|<< 1. 
 This is generally not true of  in Eq. (5.4.3), which is the quantity commonly reported in past grid 
convergence studies. That is,  is not always an error estimator since it does not take into account r or p. 
For r < 2 and p = 1,  alone is optimistic, under-estimating the grid convergence error compared to E1 (by a 
factor of 2 for r = 1.5). For r = 2 and p = 2,  alone is conservative, over-estimating the grid convergence 
error compared to E1 (by a factor of 3). Note that || can be made (almost) arbitrarily small, just by 
choosing r  1. [The only restriction is that r is limited by the integer character of the number of grid 
points, so the smallest possible r = N / (N  1) where N is the number of grid points in each direction of the 
fine grid.] This is analogous to the situation wherein an arbitrarily small tolerance on iteration convergence 
can always be met by using an arbitrarily small relaxation factor, belying the adequacy of such an iteration 
convergence criterion (Roache, 1998b; Ferziger, 1993, Ferziger and Peric, 1996). 
 E1 may of course be expressed as a relative error, either a fraction or a % of some normalizing value. If 
the normalizing value is taken as the local discrete value f1 itself or (if known) the local (or global) exact 
value fexact, then, like any relative error indicator, it will become meaningless when f1 or fexact is zero or 
small relative to (f2  f1). In such cases, the denominator of Eq. (5.4.3a) should be replaced with some 
suitable normalizing value for the problem at hand, as would the usual definition of actual relative error A1 
in Eq. (5.4.4). 
 As described earlier, one may chose to not use Richardson Extrapolation to produce an extrapolated or 
corrected solutions for good reasons, e.g., due to concern over the actual order of the method, or 
accumulation of round-off error, or incomplete iteration convergence error, or uncertainty that the 
                                                
28 Non-dimensionalizing can cause confusion, but is convenient to use because people like to think 
intuitively in terms of % errors. Obviously, these become misleading or meaningless if the divisor => 0. 
Also, it is not recommended to non-dimensionalize by the extrapolated solution since this will often 
introduce more noise in the calculation. 
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asymptotic range has been reached, or lack of the conservation property in the extrapolated results, etc. But 
whether or not one chooses to use or report the extrapolated solution, one can still use the theoretical basis 
to consistently report the results of the grid convergence study. 

5.5 RICHARDSON’S EXTRAPOLATION FOR  

 Richardson (1927) showed the power of his extrapolation method in an entertaining example of 
extrapolating two very crude approximations to a circle, namely an inscribed square and an inscribed 
hexagon, to get an estimate of  with 3-figure accuracy, without using any trigonometry. This exemplary 
calculation, repeated here, shows the generality of the concept of “grid spacing” and “discretization 
measure” h or . 
 We use the fundamental definition of , the ratio of the circumference of the circle to its diameter, and 
consider the circle of unit radius to be the limit as N   of the same ratio defined for a regular inscribed 
N-sided polygon. Call that ratio I where I indicates “inscribed” polygon. For N = 4, I,4 = 2 2 . For N = 
6, each of the 6 triangles is equilateral, and (without using trigonometry) we get I,6 = 3 exactly. At this 
point, lacking trigonometry, we have to just assume that convergence is quadratic in the discretization 
measure  = 1 / N, i.e. p = 2. [Trigonometry would show that this is indeed true; the exact formula for I,N 
= N sin  / N has the series expansion =   2/3 3 2 + O(4). See also Ferziger, 1981.] In terms of the 
grid discretization ratio r, for Eq. (5.4.1), with coarse “grid” N = 4 and fine “grid” N = 6, we have r = 
(1/4)/(1/6) = 3/2, so r2 = 9/4, and 1/(r2  1) = 4/5. Applying this to Eq. (5.4.1), we obtain the extrapolated 
estimate I = 3 + (4/5) (3  2 2 ) = 3.1372583, which is only 0.138% low, or correct to better than 3 
figures significant figures.  
 Richardson noted that this error is only 1/33 of the error of the N = 6 estimate. To obtain as good a 
result without extrapolation would require N = 35, and you would have to know some trigonometry and do 
much more calculating. 
 [The result for the circumscribed polygons is C = 2 3  + (4/5) (2 3   4) = 3.0353829, which is 
3.381% low, or correct to only 1 significant figure. The problem is that the leading error in the series 
expansion for the tan required for circumscribed polygons is twice as large as that for sin used for the 
inscribed polygons.] 

5.6 GRID CONVERGENCE INDEX FOR THE FINE GRID SOLUTION 

 Although the error estimator E1 of Eq. (5.4.2) is based on a rational and consistent theory, it is 
certainly not a bound on the error. Nor is a reliable and practically tight bound on solution error for 
nontrivial and nonlinear problems likely to be forthcoming, in our opinion. What is generally sought in 
engineering calculations is not a true “error bound” but just an “error band,” i.e. a tolerance on the 
accuracy of the solution which may in fact be exceeded, but in which the reader/user can have some 
practical level of confidence. The error estimator E1 itself does not provide a very good confidence interval. 
One might expect that it is equally probable that E1 be optimistic as conservative, i.e. it is just as likely that 
the actual error A1 be greater than E1 as less than E1 . This would correspond roughly to a 50% confidence 
band29. A well-founded probability statement on the error estimate, such as a statistician would prefer (e.g., 
a 2 limit) is not likely forthcoming for practical PDE problems. However, based on cumulative experience 

                                                
29 For further discussion see Section 5.14.2  
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in the CFD community, at least a practical confidence level exists for the  of Eq. (5.4.3) obtained using a 
grid doubling and a verified 2nd-order accuracy code. 
 That is, for a grid doubling with a 2nd-order method, and some indication that the calculations are 
within the asymptotic range of convergence, most practitioners would accept the  of Eq. (5.4.3) as a 
reasonable error band, in the flavor of a statistician’s 2 range or an experimentalist’s 20:1 odds (Kline 
and McClinstock, 1953). An  of (say) 6% would be taken to indicate (not absolutely, but with reasonable 
confidence) that the fine grid solution was within 6% of the asymptotic answer. This confidence is well 
justified by the theory of Richardson Extrapolation, which shows, from Eqs. (5.4.2 - 3) with r = 2 and p = 
2, that the error estimate E1 is only 1/3 of this error band, or 2%. 
 The idea behind the Grid Convergence Index is to approximately relate the  of Eq. (5.4.3) obtained by 
whatever grid convergence study is performed (whatever p and r) to the  that would be expected from a 
grid convergence study of the same problem with the same fine grid using p = 2 and r = 2, i.e. a grid 
doubling with a 2nd-order method. The relation is based on equality of the error estimates. Given an  from 
an actual grid convergence test, the GCI is derived by calculating the error estimate E1 from Eqs. (5.4.2 - 
3), then calculating an equivalent  that would produce approximately the same E1 with p = 2 and r = 2. 
The absolute value of that equivalent  is the (relative error) Grid Convergence Index for the fine grid 
solution, which is conveniently expressed as  
 

GCI fine grid 


F
r

Fs p s


1
3,         (5.6.1) 

 
where  is defined in Eq. (5.4.3-a or -b). 
 Obviously, if the denominator of Eq. (5.4.3a) is small,  should be normalized by some other 
characteristic quantity for the calculation (as discussed earlier) or alternately it can be evaluated as an 
absolute (rather than relative) quantity (i.e., without the division by f1 or any normalizing value) as in Eq. 
(5.4.3b), in which case Eq. (5.6.1) produces an “absolute error” GCI.30 
 We note immediately that for a grid doubling (r = 2) with a 2nd-order method (p = 2), the denominator 
= 3, and we obtain GCI = | | , as intended. For any r and p, if the coefficient Fs is chosen as Fs = 1, then the 
GCI = E1. Thus Fs may be interpreted31 as a “factor of safety” over the Richardson Error Estimator E1. 
 The purpose of the GCI is not to preclude more convincing grid convergence tests, such as using 
Richardson Extrapolation over several grid refinements. The modest purpose herein is just to get minimal 
two-calculation grid convergence exercises onto a uniform reporting basis. 
 The GCI, like the theory of Richardson Extrapolation on which it is based, is equally applicable not 
only to grid values, but also to solution functionals (e.g., CL ) and to plotted curves, wherein  may be read 
visually or calculated from interpolated tabular values. Thus it may be used to produce plots of the 
estimated error band about a fine grid solution by post-processing the results of any two grid solutions. 
Non-physical oscillations in the solutions (“wiggles,” e.g. see Roache, 1998b) are of course a cue that the 
solutions are not in the asymptotic range, Richardson Extrapolation is not accurate, E1 of Eq. (5.4.2) is not 
a valid error estimator, and confidence in the GCI as an error band is not justifiable.  
 Applying Eq. (5.6.1) to the hypothetical cases in the second paragraph of Section 5.2, we see that a 4% 
difference from a grid refined by 50% using a 1st-order method gives a fine-grid GCI = 24%, whereas a 
6% difference from a doubled grid using a 2nd-order method gives a fine-grid GCI = 6%. Even though the 
                                                
30 Several papers have confused discussion of relative merits of extrapolation methods by focusing on 
differences in the normalizing term for ε, which is clearly a non-essential aspect. 
31 As suggested to me by Prof. J. Westerink. 
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first paper’s reported raw deviation  from coarse to fine grid calculations might appear at first glance to be 
better than that reported in the second paper (4% compared to 6%), it is in fact not nearly as well 
converged (24% compared to 6%), as indicated by the Grid Convergence Index. (The ratio does not depend 
on the value of the “factor of safety” Fs used in Eq. (5.6.1), but would also apply if the Richardson Error 
Estimator E1 were used, i.e. with Fs = 1.) 
 For a less hypothetical example, consider the grid convergence results reported by the present author 
(Roache, 1982; Chapter 16 of Roache, 1998b) for Benchmark calculations of weakly separated flows 
obtained using Richardson Extrapolation applied with grid doubling. The reported quantification of 
convergence was the maximum fractional deviation 4 between the fine-grid 2nd-order and the extrapolated 
4th-order solution f4 from Eq. (5.3.4), 

4
1 4

4


f f
f

            (5.6.2) 

 
The values reported were 4 = 0.17% for wall vorticity and 0.13% for a velocity profile at a longitudinal 
station traversing the separation bubble. This 4 is easily related to the  of Eq. (5.4.3); combining Eqs. 
(5.3.4), (5.4.3) and (5.6.2) shows (for r = 2, p = 2, Fs = 3) 
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The reported grid convergence criteria (Roache, 1982) of 0.17% for wall vorticity and 0.13% for velocity 
for the fine grid 2nd-order solution would now be replaced by the much more conservative GCI [fine grid] 
= 0.51% and 0.39%. 
 On the other extreme, it is recognized that ostensibly 2nd-order algorithms may fail to attain 2nd-order 
performance in a particular calculation, due to coding quirks or errors, subtleties in nonlinear problems, 
overly strong grid stretching, failure to attain the asymptotic range, etc.32 Unless the analyst has 
convincingly Verified that the code actually attains the theoretical order, at least on a nearby problem, the 
more conservative value of Fs = 3 should be used in reporting the GCI in Eq. (5.6.1). 
 Two calculations of the same problem with the same value for GCI, say a 1st-order calculation on a 
finer grid and a 2nd-order calculation on a coarser grid, are not quite indifferent as to the uncertainty of the 
calculations. The GCI of the 1st-order calculations is based on an only 2nd-order accurate error estimator, 
whereas the GCI of the 2nd-order calculations is based on a 3rd- or 4th-order accurate error estimator. 
Thus, even with the same GCI, the 2nd-order calculations are more reliable, i.e. have less uncertainty (in 
their uncertainty estimates) than the 1st-order calculations. Generally, it is more difficult to judge grid 
convergence for 1st-order methods; e.g., see Leonard and Drummond (1995). 

5.6.1   Grid Convergence Index for the Extrapolated Solution 

 In cases wherein Richardson Extrapolation is actually used to produce a higher order accurate solution 
(the extrapolated or corrected solution) rather than just to estimate the error of the 2nd-order fine grid 
solution, the GCI of Eq. (5.6.1) (or 5.6.3b) appears to be unfairly conservative. The solution used is the 
(say) 4th-order accurate solution, but the reported GCI would be the same even if only the 2nd-order 
                                                
32 See, e.g., de Vahl Davis, 1983; Steinberg and Roache, 1985; Shirazi and Truman, 1989; Roache et al, 
1990; Westerink and Roache, 1995. See also Chapter 6. 
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accurate fine grid solution were used. That is, E1 and GCI are respectively the Richardson Error Estimator 
and Grid Convergence Index for the fine grid 2nd-order solution, not for the 4th-order solution. Although 
we expect the extrapolated solution to be more accurate than the 2nd-order fine grid solution, we would 
need additional information (a solution on a third grid) to rationally estimate the error of the extrapolated 
solution itself. Such a third grid solution could be used in principle (possibly not in practice, for difficult 
nonlinear problems) to extrapolate a 6th-order accurate solution. The error estimate (and therefore the GCI) 
will always lag the best solution estimate. This is quite conservative when the conditions for validity of 
Richardson Extrapolation have been convincingly demonstrated by numerical experiments33. A heuristic 
extension for such situations (Roache, 1994) is to report the GCI for the extrapolated solution based on Eq. 
(5.6.1) with  replaced by 4 from Eq. (5.6.2), giving (for r = 2, p = 2, Fs = 3) 
 

3/|||][|][ 1  gridfineEsolutionedextrapolatGCI     (5.6.1.1) 
 
This agrees with the reported grid convergence criteria (Roache, 1982) of 0.17% for wall vorticity and 
0.13% for velocity. 
 An alternative heuristic uncertainty estimate for the extrapolated solution is given in the ITTC Manual 
(ITTC, 2002), Eq. (22), transcribed here as 
 

||)1(||][|)1(][ 1  ss FgridfineEFsolutionedextrapolatGCI    (5.6.1.2) 
 
with no limitation stated for Fs but only Fs = 1.25 seems appropriate and approximately consistent with Eq. 
(5.6.1.1), producing |ε|/4 compared to  |ε|/3 for Eq. (5.6.1.1). As noted, these heuristic uncertainty estimates 
for the extrapolated solution cannot be as well founded as those for the fine grid solution. Eça et al (2004) 
confirmed, using a non-trivial exact analytical benchmark solution, that the uncertainty estimation for the 
extrapolated solution is less reliable than that for the fine grid solution. 

5.7 GRID CONVERGENCE INDEX FOR THE COARSE GRID SOLUTION 

 Seemingly, if we have a fine grid and a coarse grid solution, we would be expected to use the fine grid 
solution, so reporting of the above fine-grid GCI of Eq. 5.6.1 would apply. However, a practical scenario 
occurs for which the contrary situation applies, i.e. we use the coarse grid solution.  
 Consider a parametric study in which hundreds or thousands of variations are to be run. For example, 
consider a three-dimensional time-dependent study of dynamic stall, with perhaps 3 Mach numbers, 6 
Reynolds numbers, 6 airfoil thickness ratios, 3 rotor tip designs, and 2 turbulence models: a total of 648 
combinations. For another, consider the Monte Carlo type study of groundwater transport with thousands 
of runs (WIPP PA Dept., 1992; Helton et al, 1995,1996). A scrupulous approach would require a grid 
convergence study for each case, but most engineers would be satisfied with one or a few good grid 
convergence tests, expecting, e.g., that a grid adequate for a NACA 0012 airfoil could be assumed to be 
adequate for a NACA 0015 airfoil. (In fact, this is often not justified by experience, e.g. stall 
characteristics can be quite sensitive to thickness ratio.) So for the bulk of the stack of calculations, we 
would be using the coarse grid solution, and we want a Grid Convergence Index for it. That is, we derive 
the (relative error) GCI from Eq. (5.4.1), not as the correction to the fine grid solution f1, but as the 
correction to the coarse grid solution f2. In this case, the error estimate changes and must be less optimistic. 
 

                                                
33  E.g. Roache, 1982; Shirazi and Truman, 1989; Blottner, 1990; Roache and Knupp, 1993. 
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The coarse-grid GCI is then  
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The last of these is easy to interpret; the error estimate for the coarse grid solution is just the error estimate 
for the fine grid solution, plus the difference between the solutions, which is . The GCI difference is then 
just Fs . 
 Applying this equation to the hypothetical cases in the second paragraph of Section 5.2, we see that a 
4% difference from a grid refined by 50% using a 1st-order method gives a coarse-grid GCI = 36%, 
whereas a 6% difference from a doubled grid using a 2nd-order method gives a coarse-grid GCI = 24%. 
Note that the higher-order method only appears to be working against us here, because we are coarsening, 
rather than refining, the grid. In actuality, the  for the higher order method will be smaller for the same 
grid refinement close to convergence. 
 GCI values for some common combinations of r and p, normalized to  = 1%, are given in Table 5.7.1. 

5.8 EXAMPLE GCI CALCULATION 

 A simple example of the calculation of a Grid Convergence Index follows. We choose the easily 
reproduced case of a steady-state Burgers equation  
 

0)1(,1)0(,0Re/  VVVVV xxx         (5.8.1) 
 
for Re = 1000 solved with 2nd-order centered differences on a uniform grid, and evaluate the one-
dimensional “shear” f = dU / dx at x = 1. Using a fine grid calculation with 2000 cells, we obtain f1 = 
529.41. Then we coarsen the grid to 1600 cells (r = 1.25) and obtain f2 = 544.48. The quantity typically 
reported from Eq. (5.4.3) would be || = 100% × (f2  f1) / f1 = 2.85%. The factor (r p  1) is (1.252  1) = 
0.5625. The magnitude of the Richardson Extrapolation error estimator for the fine grid solution from Eq. 

Fine Grid GCI  Coarse Grid GCI 
p r = 2 1.5 1.1 p r = 2 1.5 1.1 
1 3.00% 6.00% 30.00% 1 6.00% 9.00% 33.00% 
2 1.00% 2.40% 14.29% 2 4.00% 5.40% 17.29% 
3 0.43% 1.26% 9.06% 3 3.43% 4.26% 12.06% 
4 0.20% 0.74% 6.46% 4 3.20% 3.74% 9.46% 

 
Table 5.7.1. Grid Convergence Index (GCI) with Fs = 3 calculated from Equations 5.6.1 and 5.7.2 for 

common values of grid ratios (r) and orders of the basic numerical method (p), for both 
coarse grid solutions and fine grid solutions, normalized to  = 1%. 
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(5.4.2) is |E1| = || / (r p  1) = 2.85% / 0.5625 = 5.07%. The fine grid value of the Grid Convergence Index 
from Eq. (5.6.1) with Fs = 3 is GCI [fine grid] = 3 ||/(r p  1) = 3 × 2.85% / 0.5625 = 15.20%. 
Comparison with the exact solution fexact = 500.00 indicates that the exact magnitude of the fine-grid error 
A1 is 100% × |(f2 – fexact) / fexact| = 100% × |529.41 + 500.00| / 500.00 = 5.88%. As is typical, the 
Richardson Extrapolation error estimator E1 is not conservative (5.07% < 5.88%), whereas the GCI is 
conservative and quite so with Fs = 3 (15.20% > 5.88%), in the spirit of a 2 error band. With Fs = 1.25 
(see the following Section 5.9), the GCI = 6.34% > 5.88%, still conservative but more palatable. 
 If the coarse grid solution (or the coarse grid solution to a “nearby problem”) were to be used, the 
Richardson Extrapolation error estimator would be increased to |E1| + || = 5.07% + 2.85% = 7.92%. The 
GCI with Fs = 3 would be increased by 3|| as in Eq. (5.7.3b) to GCI [coarse grid] = 15.20% + 3 × 2.85% 
= 23.75%. The actual magnitude of the coarse grid error is 100% × |(f2  fexact) / fexact| = 100% × |544.48 + 
500.00| / 500.00 = 8.90%. Again, the Richardson Extrapolation error estimator E1 is not conservative for 
the coarse grid (7.92% < 8.90%), whereas the GCI is conservative and quite so with Fs =3 (23.75% > 
8.90%). With Fs = 1.25, the GCI = 9.90% > 8.90%, still adequately conservative. 

5.9 SHOULD THE COEFFICIENT BE “1” OR “3” OR “1.25”? 

5.9.1 Determining the Factor of Safety 

 The functional form of the definition of the GCI  as in Eqs. (5.6.1), (5.7.2), (5.7.3) is rational and 
objective, but the coefficient Fs = 3 is a judgment call. It could arguably be “1,” or conceivably “1.5” or 
“2” or something else between 1 and 3. 
 Fs is essentially a “factor of safety,” and the value Fs = 3 is possibly too conservative. As the quality 
and rigor of the grid convergence study increases, so does the conservatism of using the coefficient Fs = 3 
in the definition of the GCI. However, consider the increased uncertainty associated with practical 
complications such as the following: 
 
 • difficulty of attaining the asymptotic range in 3-D, 
 • rapidly varying coefficients from turbulent eddy viscosities and/or  
 • strong grid stretching,  
 • nonlinear systems,  
 • non-uniform behavior of various error metrics,  
 • experimental determination of spatially varying p,  
 • non-monotonic convergence, 
 • vagaries associated with defining a roughly equivalent r when 
  • when subgrids are not strictly geometrically similar,  
  • when power-law grid stretching is used,  
  • when regions are partitioned geometrically giving non-smooth spatially varying r,  
    (as in Domain Decomposition or multi-block grid generation methods), 
  •  and the surprisingly common and strongly not recommended practice of using rx  ry.  
 
 Such complications, while not necessarily contradicting the ultimate applicability of Richardson 
Extrapolation (i.e., in the asymptotic range), do increase the uncertainty associated with the error estimate 
for many practical engineering calculations. Likewise, if the grid convergence exercise is only performed 
for a representative nearby problem, uncertainty is increased. (See Cosner, 1995 for experienced testimony 
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that “nearby” problems adequate to predict grid resolution requirements can be difficult to find.) Also, see 
discussion in Westerink and Roache (1995) and in Chapter 6 on the distinction between formal, actual 
asymptotic, and observed convergence rates. These considerations provide additional rationale for retaining 
“3” as the coefficient, in the sense of a “factor of safety,” for reporting minimal two-grid convergence 
results. 
 As noted, using Fs = 3 makes grid doubling with 2nd-order methods the standard of comparison. This 
is not intended to make 2nd-order methods the goal, only the standard. (Like an IQ of 100, it is not meant 
to discourage genius.) It just means that for p = 2 and r = 2, we obtain GCI [fine grid] = . That is, it does 
not change what authors who use grid doubling with a 2nd-order method already have been reporting, 
namely . 
 Using the value Fs = 1 would make the GCI equal |E1|, the error estimator obtained from Richardson 
Extrapolation. As noted earlier, since this is the best estimate we can make given only the information from 
calculations on two grids, we can only expect equal probability that the true answer is inside or outside of 
this band. Also, simple tests on the steady-state Burgers equation will quickly demonstrate that Fs = 1 is 
not usually conservative; see Table 5.9.1 below. 
 So the direct use of the Richardson Extrapolation Error Estimator E1, i.e. GCI with Fs = 1, shows less 
than 50% probability of being conservative on this simple, model, 1-D problem. Is <50% probability 
acceptable for an error band? We think not. Also, use of Fs = 1 would  make grid doubling with 1st-order 
methods into the standard of comparison, i.e. for p = 1 and r = 2, the GCI [fine grid] calculated using Fs = 
1 would give GCI = . Clearly, we do not want 1st-order methods to be the standard of comparison!  
 A 50% “factor of safety” over the Richardson Error Estimator would be achieved with the value Fs = 
1.5, or the naive value of Fs = 2 might prove to be a neat and reasonable compromise. But much 
experimentation would be required over an ensemble of problems to determine a near-optimum value and to 
establish the correspondence with statistical measures such as the 2 band. Note that a true optimum would 
likely depend upon the family of numerical methods (e.g., medium-order FVM, high-order FDM or FEM, 
etc.) and upon the family of problems (e.g., turbulence, transonic, free surface, etc.).  
 All things considered, and after discussions solicited from many (on the order of 200) CFD 
practitioners, I had recommended in (Roache, 1994) the use of the value Fs = 3 in the definition of the GCI, 
even though I recognized and stated that it would be too conservative for high quality grid convergence 
studies. Of course, there is nothing to preclude an author from reporting both the GCI and the Richardson 
Error estimator E1. As noted, the motivation for using Fs > 1 is that Fs = 1 corresponds to a 50% error 
band, which is not adequate. For many reasons (see discussion above, and in Chapter 8) this is not unduly 
conservative when only two grids are used in the study. However, it is became clear that Fs = 3 is overly 
conservative for carefully performed grid convergence studies using three or more grid solutions to 
experimentally determine (or Verify) the observed order of convergence pobs (e.g., see the papers in Johnson 
and Hughes, 1995). For such high quality studies, a modest and more palatable value of Fs = 1.25 appears 
to be adequately conservative. However, for the more common two-grid study (often performed reluctantly, 
at the insistence of journal editors) we still recommend the value Fs = 3 for the sake of uniform reporting 
and adequate conservatism. 
 The 30 cases for Burgers equation in the above Table 5.9.1 were repeated for Fs = 1.25. These tests 
involved only 2 grids. There is no ambiguity about the order of convergence of the methods, with well-
defined p = 1 or 2, but not all of the cases are clearly in the asymptotic regime, and some of the error 
estimates were fairly large, e.g. 20 % in Case 5. The question addressed was the following. Is the 
recommended Fs = 1.25 still overly conservative? The answer is, clearly not. Of the 30 cases, 18 were 
“Normal” (as defined in the Table legend) or more conservative, i.e. either the coarse or fine grid reliably 
conservative. 
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Case p Re r (mc, mf ) Behavior 
1 2 10 2 20,40 Normal 
2 2 10 1.1111 36,40 Normal 
3 1 10 1.1111 36,40 Normal 
4 2 50 1.5 100,150 Normal 
5 2 1000 1.25 800,1000 Normal 
6 1 1000 1.25 800,1000 Normal 
7 2 5 2 500,1000 Normal 
8 1 1000 1.1111 900,1000 Normal 
9 2 30 3 100,300 Normal 

10 2 50 2 50,100 Normal 
11 2 50 1.1111 90,100 Normal 
12 2 50 1.0101 99,100 Normal 
13 1 50 2 50,100 Normal 
14 1 50 1.1111 90,100 Normal 
15 1 50 1.0101 99,100 Normal 
16 1 0.1 2 20,40 all are conservative 
17 1 0.5 2 20,40 coarse grid E1 is also conservative 
18 1 0.5 2 500,1000 Normal 
19 2 1 2 20,40 Normal 
20 2 10 2 20,40 Normal 
21 1 10 2 20,40 all are conservative 
22 2 100 1.1111 90,100 Normal 
23 1 100 1.1111 90,100 all are conservative 
24 2 1000 2 1000,2000 Normal 
25 1 1000 2 1000,2000 Normal 
26 2 10 4 25,100 Normal 
27 2 10 3.0303 33,100 Normal 
28 2 10 2 50,100 Normal 
29 2 10 1.1111 90,100 Normal 
30 2 10 1.0101 99,100 Normal 

 
TABLE 5.9.1. STEADY BURGERS EQUATION SOLUTIONS DEMONSTRATING THAT 

Fs = 1 IS NOT USUALLY CONSERVATIVE. 
The Richardson Error Estimator (E1) and the Grid Convergence Index (GCI) are applied to the Steady-
State Burgers Equation V Vx + Vxx/Re = 0. p = order of method. Re > 0 indicates boundary conditions of 
V(0) = 1, V(1) = 0, suggestive of stagnation flow. Re < 0 indicates boundary conditions of V(0) = 0, V(1) = 
1. r is the grid refinement ratio = mf / mc, where mf = number of fine grid cells, mc = number of coarse grid 
cells. Under the heading “Behavior,” the entry “Normal” indicates the following pattern: compared to the 
exact solution, (a) the E1 is not conservative, i.e. |E1| > |true error|, for both the coarse and fine grid 
estimators; and (b) the GCI is conservative, i.e. GCI < |true error| for both the coarse and fine grids. 
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 This is, of course, a small sample, but it does not indicate anything like the desired 2 band (~1 in 20) 
which would only allow for 1 or 2 non-conservative cases out of the 30. The low order methods faired 
worse, as expected. Considering only the 25 stagnation-like flows (Re > 0), 12 of 15 cases (more like a 1 
band) were conservative for p = 2 (the 2nd-order method), whereas only 3 of 10 cases were conservative 
for p = 1. Furthermore, these 3 were the very low Re Cases (16,17,18). 
 All 30 cases were conservative for Fs = 1.85, and 26 of 30 were conservative for Fs = 1.35. The 
implication is that the 2 band for this small sample would be achieved for roughly Fs = 1.5. However, I 
again emphasize that this is a toy problem: one-dimensional, steady state, unambiguous theoretical order of 
convergence, thorough iteration convergence, simplest possible boundary conditions, etc. It would seem 
that Fs = 1.5 is the minimum one could use reliably for 2 grid solutions. If one performs thorough grid 
convergence tests for a suite of representative problems of interest and establishes a convincing correlation, 
one could possibly convince the audience that Fs = 1.5 is akin to a 2 band. But in the absence of such a 
thorough and specific study, I still recommend Fs = 3 for 2-grid studies, and reserve Fs = 1.25 only for 
carefully performed grid convergence studies using three or more grid solutions to experimentally determine 
the observed order of convergence p. (See further discussion in Chapter 8.) 

5.9.2   Summary Recommendations for the Factor of Safety 

 The summary recommendations on the Factor of Safety for the GCI are thus as follows. 
 
(a) Use Fs = 1.25 for convergence studies with a minimum of three grids to experimentally confirm that 

the observed order of convergence pobs for the actual problem is reasonable, and 
(b) use Fs = 3 for two-grid convergence studies (since a pobs cannot be calculated and therefore there is no 

way to demonstrate that the grids are in or at least near the asymptotic regime). 
 
 Fs = 1.25 should not be used if the results from the minimum three grids produce a suspicious observed 
pobs. (See Section 5.10.6.) It is imprudent to use pobs > theoretical p in the GCI formula (unless there is 
some rare good reason to expect superconvergence). It is also recommended to look at the grid convergence 
results; no matter what the calculated numbers are for pobs, if the results look suspicious, then at least use 
Fs = 3, and possibly continue the grid convergence study. An example of suspicious results would be (from 
coarse to fine grid solutions) f = 0.12, 0.14, 0.15, 0.13, which might suggest that the coarsest two grids are 
outside the asymptotic range. (E.g. see Eça et al, 2009, Figure 2a.) Also, there is a real possibility that 
unlucky sampling of oscillatory convergence has given a false indication of  pobs close to theoretical. Unless 
there is some other indication that the convergence is monotone (e.g., more complete results for a nearby 
problem) then more than three grids may be appropriate, depending on the consequences. (It is easier to 
justify a single grid triplet calculation for a scientific paper than for a nuclear reactor safety analysis.) 
 If agreement of pobs with expected p is good, e.g. pobs = 1.97 or 2.05 for an expected 2nd-order method, 
one can proceed with some confidence, especially if this level of agreement applies to point values and more 
than one grid triplet has been used to calculate pobs. If pobs is very bad, e.g. pobs = 0.6 for one grid triplet and 
pobs = 3.7 for another, clearly you have a problem, and more grid studies are required to get into the 
asymptotic regime. As always, the gray areas are difficult to characterize with any generality. Is pobs = 1.7 
acceptable? Perhaps, and more likely if it holds (roughly) for more than one grid triplet and for point values 
as well as solution functionals. But the decision will depend on the consequences. The general 
recommendation is to look at all the results you have, weigh the consequences of your decisions, and 
consider doing more grid studies, applying upward pressure to management if necessary. Note that the 
farther away you are from apparent asymptotic convergence, the more likely it is that convergence is 
actually oscillatory and you might be getting misleading samples in the grids used. 
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5.9.3 §  Error Estimate vs Uncertainty Estimate or Error Bar 

 There exists considerable confusion over the distinction between an error estimate, e.g. that supplied by 
Richardson Extrapolation, and an uncertainty estimate, e.g. that supplied by the GCI. The source of the 
confusion is the time-honored term “error bar” which is not, as one might reasonably think at first glance, 
an error estimate at all, but rather an uncertainty estimate or confidence interval, i.e. a range of expected 
possible errors (to some “probability” or “confidence34 level” or “coverage”). The following Table 5.9.3.1 
(adapted from Roache, 2003a) lists the distinctions. 
 

An Error Bar (or Error Band) ...    An Error Estimator... 
 
...is a U95%.          ...is a (signed) U50%. 
 
...uses |E1| > 0         ...uses signed E1 > 0 or < 0 
 
...is not an ordered approximation     ...is an ordered approximation, 
   but an empirical correlation         based only on asymptotic theory, 
   based on computational experiments.      not based on computational experiments. 
 
...may be accurate (statistically) even   ...depends for accuracy upon the grid  
   outside the asymptotic range.        sequence being in the asymptotic range. 
 
...could be determined from data for the   ...is not determined from data for the  
   problem ensemble without an error estimator.    problem ensemble.        
 
...is what is needed for       ...is what is needed for  
   Calculation Verification prior to Validation.    an RE corrected solution. 
             
Table 5.9.3.1 Summary of Distinctions between Error Bars and Error Estimators 
________________________________________________________________________ 

 
 
 Also contributing to the confusion is the phrase “conservative error estimate” which also is better 
considered in terms of uncertainty rather than error. People argue that, since the RE result E1 is an error 
estimate, then Fs × E1 is just a more conservative error estimate, hence it should be called an “error 
estimate.” This may seem plausible at first, but a little thought will lead one to recognize that there is no 

                                                
34 “Confidence” is another loaded technical term. As a statistical term, it is dependent on assumptions and 
techniques of statistical analysis, rather than just a straightforward “coverage” or counting of cases for 
which Unum was conservative or not, compared to the actual error. A claim of “confidence interval” would 
be based on a conceptual model in which the examined data set of an individual study is taken to represent 
the entire population, which is inaccessible. If this data set is small, “small sample correction” techniques 
(like Students t-test) are applicable. The simpler “coverage” approach just claims (say) “89.2% coverage” 
for an individual study (perhaps small) with the contextual idea that the results of these small studies will 
eventually be aggregated (probably informally). If small sample corrections for “confidence interval” are 
made to each study, later aggregation is confused (because the small sample corrections are nonlinear and 
non-distributive). See also Section 5.14. 
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limit to conservatism, so Fs could be any number > 1. Then, there can also be such a thing as a non-
conservative error estimate, so Fs could be 0 < Fs < 1. This leads to the logical conclusion that any number 
with the same sign as E1 is an error estimate, either conservative or non-conservative. But half the real 
number line hardly deserves the dignity of the designation “error estimate.” 
 Oberkampf and Trucano (2007, 2008) make the following distinctions about uncertainty in measured 
quantities: 
 (a) an interval uncertainty, i.e. there exists35 a single true value, and that true value is believed to lie in 
the stated interval, but no other information is available concerning the true value; 
 (b) an imprecise probability distribution, i.e. the true quantity is a random variable [rather than a single 
value as in (a)] characterized by a known family of probability distributions whose parameters are only 
stated as intervals; 
 (c) a precise probability distribution, i.e. the true quantity is a random variable characterized by a 
known family of probability distributions whose parameters are accurately known. 
 Although presented for experimental measurements, the distinctions are relevant to numerical 
uncertainty. Clearly, numerical uncertainty in general, and the GCI in particular, is in category (a), an 
interval uncertainty. But while recognition of these distinctions is worthwhile, we also note that there is no 
distinction made36 in the combinations of different types of experimental uncertainties so the ultimate 
combination of numerical and experimental uncertainties will not be affected; see Chapter 11. 

5.9.4 §  Mixed Order Methods 

 The term “mixed order methods’ could indicate different orders in different coordinate directions (e.g. 
first order in t, second order in x and y) as above. However, it also could indicate the common situation in 
which some terms (e.g. advection) are discretized to first order and others (e.g. diffusion) are second order. 
Usually, as above, the mixed order situations are just treated as a first-order method and the error 
contribution from that lowest order term is estimated. That is, using the single-term lowest order expansion 
as in Eq. (5.3.1) repeated here, 
 

f f g h g h g hexact    1 2
2

3
3        (5.9.4.1) 

 
we use two grid solutions for f1 and f2 to solve for the g1 term (and fexact) and relegates all the other terms to 
O(h2). This simple approach wastes some information, and can be improved upon as in Roy (2003). 
Instead of limiting the analysis to terms of O(h) and evaluating g1 from two grid solutions, Roy includes 
another term and evaluates both g1 and g2 from three grid solutions (and higher). Besides providing for 
more accurate error estimates (for fairly well-behaved problems37) the analysis illuminates common 
difficulties in grid convergence behavior. Depending on sign changes in g1 and g2, non-monotonic 
convergence can be produced by mixed order methods (Roy, 2003) without the complications of shocks, 
switches in turbulence models, other nonlinearities, etc. 

                                                
35 Paraphrased slightly for emphasis. 
36 See ASME PTC 19.1 (ASME, 1986, 2006), NIST TN 1297 (Taylor and Kuyatt, 1994), ISO (1995), 
V&V20 (2009), Coleman and Steele (1995, 2009). 
37 The ITTC Manual (ITTC, 2002), page 5, noted that these multi-term power expansions are more 
restricted in use; two term expansions require five computational solutions, all of which must be within or 
close to the asymptotic regime. In general, an n-term expansion would require 2n+1 solutions. 
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5.10. ADDITIONAL FEATURES OF GRID CONVERGENCE STUDIES FOR VERIFICATION 
OF CODES AND CALCULATIONS 

 The following sub-sections are applicable to the use of the GCI for Quantification of Uncertainty of 
actual calculations, and were originally presented in that context in Roache (1994). However, the 
discussion is equally applicable to any systematic grid convergence study, whether or not the GCI is used 
(and, if GCI is used, to any value for Fs), and equally to Verification of Codes as well as Verification of 
Calculations. 

5.10.1 Non-Integer Grid Refinement 

 Although it is generally assumed that grid doubling is preferable, it is argued here that, especially for 
the computer limitations frequently encountered in practice for multidimensional problems, it may be better 
to use a smaller change in grid resolution, perhaps as low as 10%. Consider a base grid, and refine or 
coarsen. If engineering intuition or studies on related (nearby) problems have led to a good (economical, yet 
adequately accurate) grid selection for the base grid, then we are likely in the asymptotic range, but perhaps 
just barely. If we can afford to double the grid, we will certainly get more accurate answers, but the cost 
can be large. With an optimal numerical solution method, e.g. a good multigrid method, in which the 
computing cost is merely proportional to the number of unknowns, doubling a grid in three space 
dimensions and time will increase the cost over the base grid calculation by a factor of 16; if sub-optimal 
methods are used (which are much more common), the penalty is worse. If we coarsen the grid instead, the 
economics work for us, i.e. the coarse grid solution is only 1/16 as expensive as the base grid. However, the 
coarse grid solution may be out of the asymptotic range. This situation is especially evident in turbulent 
boundary layer calculations, wherein we need sublayer resolution (y+ < 1) for the first grid point off the 
wall. (For example, see Shirazi and Truman, 1989 or Wilcox, 1993.) This applies only when the turbulence 
equations are integrated to the wall; different requirements apply if wall functions are used. (For example, 
see Celik and Zhang, 1993,1995 or Wilcox, 1993.) 
 Since the theory of generalized Richardson Extrapolation is valid for non-integer r, it is easier to use a 
small value (unless the analyst is confident that the coarse grid with r = 2 will still be in the asymptotic 
range). However, there are practical limits to small r. For example, increasing the number of grid points by 
1 in a base grid calculation of a 100  100 grid gives r = 1.01, and the theory is still valid. (Indeed, it 
would still be better than no grid convergence study at all.) But the results will now be obscured by other 
error sources, e.g. the “noise” of incomplete iteration convergence and machine round-off error, especially 
for accurate solutions. That is, as we reduce the change in the discretization error by using r  1, the 
leading discretization error term may be swamped by noise. As an intuitive engineering guess, a minimum 
10% change (r = 1.1) is recommended. Of course, provided that the coarse grid is within the asymptotic 
range, it is intuitively obvious that the error estimates are more reliable for larger r, for grid refinement.  
 It is perhaps less obvious that the opposite is true for grid coarsening, i.e. when we keep the answers of 
the finer grid. In that case, there is more additional information, and therefore sharper error estimates, 
available for r ~ 1 than for r >> 1 (limited only by noise pollution from round-off and incomplete iteration 
errors). For example, consider a fine grid using 100 nodes. A coarse grid calculation using 90 nodes (r = 
1.1111...) contains more information (and is more expensive) than a coarse grid calculation using 50 nodes 
(r = 2). (This argument fails for a “coarse grid” = 100 node, in which case there is no new information.) 
 A reviewer of Roache (1994) expressed skepticism that one really could learn anything about grid 
convergence by changing the resolution by only 10%. A set of easily reproduced calculations was 
performed on the steady-state Burgers equation –V Vx + Vxx / Re = 0, with V(0) = 1 and V(1) = 0 
(suggestive of stagnation flow), Re = 10, and p = 2, with a fine grid of 100 interior nodes and coarse grids 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

125 

from 25 to 99 nodes. The results are shown in Table 5.10.1.1. As seen, the error estimator for the one-
dimensional “shear” f = dV / dx at x = 1 obtained using the coarse grid of 90 nodes (r = 1.1111, or a factor 
of 0.9 coarsening) is 3.2 times more accurate than the error estimator obtained using the coarse grid of 50 
nodes (r = 2, or a factor of 0.5 coarsening). There are practical limits on r → 1 from all sources of noise, 
notably incomplete iteration convergence and switching in RANS turbulence models. Thus the ASME 
Journal of Fluids Engineering policy statement (Celik et al, 2008) recommends the GCI with a minimum r 
= 1.3, but my experience has shown this is unnecessarily conservative for many (non-RANS) problems. 
Part of the difficulty experienced by RANS modelers may be the common use (default in some commercial 
CFD codes) of an inadequate criterion for iteration convergence, requiring only 10-3 reduction in initial 
residuals. (See Section 5.10.10.1.) 

5.10.2   Independent Coordinate Refinement and Mixed Order Methods 

 The simplest and most reliable way to apply the Grid Convergence Index is to use a single parameter r 
to refine/coarsen the grid in all coordinates, space and time. However, there are sometimes good reasons for 
not doing this. In calculations of boundary layer flows (whether using boundary layer equations, full 
Navier-Stokes equations, or something intermediate) it is often the case that grid convergence is easy to 
establish in the longitudinal direction (being essentially dictated by the free-stream flow, which is not 
sensitive to Reynolds number) but is more problematical in the transverse direction, being sensitive to Re. 
Also, computer resource restrictions may prohibit grid doubling in each direction simultaneously, but allow 
it one coordinate at a time; e.g., see the convincing studies in Zha and Knight (1996). Especially, in time- 
dependent problems it is much easier to develop a code that is solution-adaptive in the time-step than in the 
spatial grid, so that time discretization errors might be independently controlled (e.g., see Roache, 1991, 
1992a, 1993) and the systematic grid convergence test would be restricted to the spatial grid. 
 In such cases, the dominant directional component of GCI can be obtained orthogonally, by 
independent coordinate refinement.38 For example, in a 2-D time-dependent boundary layer calculation, if 
essential grid independence has been achieved in t and x, one may make an error estimate in y only using 
the 1-D GCI, and add (heuristically) the contributions from t and x. 
 

yxt

yxt

GCIGCIGCIfor
GCIGCIGCIGCI




         (5.10.2.1) 

 
It is important to note that the procedure must be performed globally, i.e. with complete global solutions 
obtained for each refinement in independent coordinate directions; attempts to apply the extrapolation 
procedure by lines do not produce ordered or usable error estimates. 
  Consistent Richardson Extrapolation error estimators cannot be obtained from just two calculations (a 
coarse and a fine grid calculation) when different r are used in different coordinate directions, because there 
is no basis for separating out the directional contributions. In this case, a conservative GCI could be used, 
based on the smallest directional r. For example, in a two-dimensional steady flow calculated in a fine grid 
of 100  100 cells and a coarse grid of 50  75 cells, unless other theoretical considerations apply, we 
would have to conservatively attribute the change in solution to the more modest grid refinement, and use r 
= 4/3 to calculate the fine-grid GCI from Eq. (5.6.1). Alternately and preferably, three grid solutions can be 

                                                
38 V&V1 incorrectly stated that the technique was more general. Thanks to Dr. F. Blottner for pointing out 
the error (Blottner and Lopez, 1998). 
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used in a 2-D problem, as shown by Roy (2004); see below. However, such directional splitting with three 
grids does not work for extracting observed p; see Section 5.10.6.1.  
 A similar situation occurs with mixed-order methods, e.g. the not uncommon situation of a method with 
1st-order time accuracy and 2nd-order space accuracy, or first-order in the dominant flow direction (say x) 
and second-order in y. A conservative approach would be to use p = 1 in Eq. (5.6.1), but a better estimate 
(and more optimistic GCI) would be obtained using separate grid convergence studies in space and time, 
using p = 1 for the time contribution and p = 2 for the space contribution from Eq. (5.6.1), and simply 
adding the results as in Eq. (5.10.2.1) provided that GCIt << GCIx,y. Alternately, one may use different r in 
different coordinates to compensate for different p. For time-dependent problems, Richards (1997) verified 
the theoretical order of convergence of an O(t, x2) method by a grid refinement study in which x was 
reduced by a factor of 2 and t by a factor of 4, giving a theoretical ratio of the errors on successive space-
time grids of 4; his representative experimental values (in his Table I, i) were 3.76, 3.95, 3.97. Similarly 
convincing verification was obtained for his extension of the “Completed Richardson Extrapolation” 
(Roache and Knupp, 1993) to space and time. For example, the completed Richardson extrapolation 
applied to the O(t, x2) method should be O(t2, x4). Reducing the x successively by factors of 3, and 
t by factors of 9, gives a theoretical error reduction by a factor of 81 for each successive grid refinement. 
Richards’ representative experimental values (in his Table I, iv, a) were 78.8 and 80.1, a remarkable 
Verification. 
 Kamm et al (2003) have shown how to extract observed convergence orders in space and time, 
including space-time cross-derivatives. It is surprisingly difficult, even with the assumption of same p in all 
spatial directions. They write the discretization error equation as 
 

...)()()()( TOHtxgtgxgff sr
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       (5.10.2.1) 
 
where subscript k refers to the spatial grid index and superscript ℓ refers to the time discretization index. 
Note the generality of the four convergence orders and three error coefficients. In their problem in Code 
Verification for which fexact is known, these seven unknowns require seven equations generated by seven 
different space-time grid solutions; the coupled equations are solved by Newton’s iteration. Roy (2004) 
stated that “their approach can be easily extended for error estimation by simply adding another mesh level 
and solving for fexact” but it is doubtful that a method requiring eight discretized solutions, even when 
limited to the assumption of equal order of convergence in all space coordinates, will see much use beyond 
Code Verification, even if it is not corrupted by noise in RANS or other difficult calculations. 
 The following approach due to Roy (2004) is presented for spatial differencing only and is based on 
known (theoretical) orders of convergence, but does allow for different convergence orders and refinement 
factors in different space coordinates in the absence of spatial cross derivative terms. The expansion is 
 

...)()( TOHygxgff q
ky

p
kxexactk        (5.10.2.2) 

 
where subscript k refers to the spatial grid index. The base grid k = a produces the solution fa. Consider 
first refinement [or coarsening] in only the x coordinate by rx, giving the grid k = b and producing the 
solution fb. Recall that the coefficients gx and gy depend on the continuum solution, so the last term of the 
equation is constant for both grids. Unlike the situation with p = q, we cannot solve for fexact from the two 
equations but we can solve for an aggregated term fx defined as 
 

q
kyexactx ygff )(            (5.10.2.3) 
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The two solutions on grids k = a and k = b give 
 

p
kxxa xgff )(           (5.10.2.4) 
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kxyxb xrgff )(              (5.10.2.5) 
These two can be solved for fx as 
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and the leading x-coordinate error term, 
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Similarly for refinement (or coarsening) in only the y coordinate by ry, giving the grid k = c, producing the 
solution fc and giving 

1
)(




 q
y

caq
y r

ffyg         (5.10.2.8) 
 
 A powerful aspect of this directional refinement process using three grids [even if p = q] is that 
comparison of Eqs. (5.10.2.7) and (-8) can guide the analyst in making further grid refinements; e.g. if 
gx(x)p << gy(y)q then the total error will be economically reduced by further refinement in y only. This 
information is not obtainable from a uniform refinement in both directions and two grids. 
 For hybrid methods that shift locally to two-point upstream differencing for large cell Re, the 
conservative p = 1 should be used. However, hybrid methods are often inaccurate, and often produce non-
monotonic convergence even for gross properties like reattachment length (Barton, 1995) making it difficult 
to have confidence in the extrapolation process. Hybrid methods are often not recommended (Barton, 1995; 
Leonard and Drummond, 1995) but the GCI has produced good uncertainty estimates even with these (see 
Section 6.23.2). 
 For methods that use higher order stencils for advection than for diffusion, the error will be dominated 
asymptotically by the lower order term. For example, for solutions calculated by Leonard’s ULTIMATE 
method (Leonard, 1991) which is 3rd-order for advection, the GCI should be reported conservatively using 
p = 2 in Eq. (5.6.1) or (5.7.2). Note that the accuracy advantage of mixed order methods is not lost in this 
process. The 3rd-order accuracy for the (dominant) advection term will produce smaller errors than a 2nd-
order method, so the level or size of error will be lower. However, the slope of the convergence 
asymptotically will be 2nd-order, so the extrapolation and error banding should be based upon p = 2. (See 
also Section 5.9.4.) All this applies to calculating a GCI when p’s are known or assumed. When the more 
scrupulous approach of calculating observed p’s is used, the techniques are more difficult. See Sections 
5.10.6 and 5.11. 

5.10.3   Non-Cartesian Grids, Boundary Fitted Grids, Adaptive Grids, Unstructured Grids 

 5.10.3.1 Non-Cartesian Grids and Boundary Fitted Grids 
 
 The procedures for calculating GCI definitely apply to non-Cartesian grids, including non-orthogonal 
boundary fitted grids, with some special considerations and caveats. 
 The Taylor series basis of Richardson Extrapolation applies to stretched orthogonal and non-
orthogonal grids as long as the stretching is analytical. It is cleanest to apply in the transformed plane (, , 
) where r is defined as above. The order of the extrapolation accuracy will now be affected by the order 
and iteration convergence of the grid generation equations. Shirazi and Truman (1989) found a surprising 
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sensitivity of the error estimates to discretization of metrics and Jacobians, and to incomplete iteration 
convergence. For another example, if strong exponential source terms are used (e.g. near trailing edges of 
airfoils) which depend strongly on h (e.g., see Thompson et al, 1985) then a refined-grid generation will 
pollute the Richardson Extrapolation. 
 However, even if the grid generation equations are not converged, making the actual Richardson 
Extrapolation less dependable, it is still recommended that the uniform GCI be reported rather than the 
simple raw data of . 
 For the simple power-law stretching in one coordinate, commonly used in boundary layer codes, the 
ratio of successive grid increments h is constant, i.e. 
 

h shi i 1            (5.10.3.1) 
 
where s is the constant stretching factor. Nodal comparisons can be made during grid convergence without 
interpolation if the coarse and fine grids have nodes in common. This is accomplished during a grid 
doubling/halving by requiring (Ferziger and Peric, 1996) that the fine-grid stretching factor s f  be related to 
the coarse grid sc  by 

s sf c            (5.10.3.2) 
and by requiring the initial fine-grid spacing h f 1 be related to the coarse grid hc1 by  
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            (5.10.3.3) 

 
The simpler strategy of inserting fine-grid points half way between the coarse-grid points introduces an 
additional truncation error term to differences centered (in logical space), but the additional error term is 
itself ordered. For a relatively coarse grid, the error is larger, but asymptotically the convergence rate is 
still 2nd-order (Ferziger and Peric, 1996). 
 
 5.10.3.2   Adaptive Grids 
 
 Solution-adaptive grid generation codes may have their own internal local error estimators. Most often, 
solution adaptive grid generation of either the redistribution type (Thompson, et al, 1985; Knupp and 
Steinberg, 1993) or enrichment type is not based on any true error estimator but on solution behavior 
(gradient, curvature, or simply resolution requirement) which is only loosely related to local error (which in 
turn is loosely related to the global error of interest herein). In such a case, the GCI reporting procedure 
recommended herein can be applicable if the solution-adaptive procedure is used only to obtain the base 
grid solution. This grid can then be changed non-adaptively, perhaps refined by a higher order interpolation 
or coarsened by simply removing every other point (as in Zingg, 1991,1992). Then the GCI of Eqs. (5.6.1) 
or (5.7.2) can be applied to this new grid. However, for time-dependent solution-adaptive grids, practical 
coding difficulties exist and it is not clear how to perform meaningful global error estimation nor uniform 
grid convergence reporting in this important situation. 
 
 5.10.3.3   Unstructured Grids 
 
 Another difficulty occurs for unstructured grids. If the base grid is unstructured, the GCI procedure 
would still apply if one used a systematic method of grid refinement, that is, structured global (vs. local) 
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refinement of an unstructured grid.39 For example, refining each base grid triangle into four new triangles 
(by connecting the mid-points of the sides) gives r = 2 for use in Eq. (5.6.1). However, if the refinement is 
also unstructured, as occurs in some algorithms and in user-interactive grid generation codes, there is no 
systematic and quantifiable grid refinement index like r to use in Eq. (5.6.1). Such grid refinement FEM 
studies are often reported simply in terms of the total number of elements used in the coarse (N2) and fine 
(N1) grids40. Use in Eq. (5.6.1) of an 
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        (5.10.3.3.1) 

 
where D is the dimensionality of the problem, and reporting this GCI is clearly preferable to simply 
reporting . But it does not have the firm basis of a structured grid refinement, and may significantly 
underestimate or overestimate the accuracy, depending on whether the grid refinement algorithm (or the 
intuition of the interactive user) refined the grid in the critical areas or not. For example, well-placed 
refinement in a relatively small critical area combined with coarsening in a larger but unimportant area 
could lead to improvement in global accuracy with a decrease in the total number of cells. (For example, 
see Pelletier and Ignat, 1995.) This would render the effective grid refinement ratio r, and the Richardson 
Extrapolation procedure, meaningless. 
 For unstructured grid refinement and structured or unstructured grid adaptation, I suppose it should be 
the burden of the algorithm developer to convince the reader/user that the local grid adaptivity process 
(sometimes based on a local error estimator or error indicator) can be usefully correlated with a meaningful 
engineering global error estimate, which is the real interest.41  
 For an early application of the GCI to unstructured grids with Finite Element Methods, using 
unstructured refinement, see Pelletier and Ignat (1995). They also show the correlation between the GCI 
results based on generalized Richardson Extrapolation with the theoretically distinct single-grid error 
estimators of the Zhu-Zienkiewicz (1990) class. (See also Chapter 6, Sections 6.7 and 6.8.) Pelletier and 
Ignat convincingly demonstrated the efficacy of their solution adaptive mesh generation algorithm. With a 
target increase of a factor of 3 in accuracy with the new mesh generation, they confirmed values a 
posteriori greater than 2. Hagen (1997) used the GCI theory with structured refinement of unstructured 
triangular grids in ocean calculations. 
 The systematic refinement of a non-structured triangular mesh described above, producing a well 
defined r = 2, does not work in unstructured 3-D meshes (e.g. see Hay and Pelletier, 2008). Local h-
refinement of FEM may improve accuracy but produces non-smooth mesh variation. An alternative 
approach is to use unstructured grid generation algorithms (like the advancing front technique) that 
distribute mesh elements according to a specified mesh density function, which can be taken as 
approximately uniform (restricted by boundary geometry), or arbitrarily user-specified, or, in its most 
                                                
39 As Roy (2004) observed, grid refinement is usually easier than grid coarsening for unstructured grids, 
and the opposite for structured grids. 
40 Another common method of reporting unstructured grid refinement is to pick some representative element 
size, e.g. average (element area) in 2-D, to calculate effective r. This is recommended in the ASME JFE 
policy statement (Celik et al, 2008) and used in V&V20. It has some appeal of specificity, but of course the 
dimensionalization does not affect the dimensionless r. 
41 In fluid dynamics, this is very difficult to accomplish convincingly for any problem which a fluid 
dynamicist would consider non-trivial (mainly because local truncation errors are advected downstream) 
but it can be done; see Schonauer et al (1981). 
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powerful application, within a solution adaptive remeshing procedure. If the mesh density distribution 
function of one mesh is uniformly reduced everywhere by the same factor, that factor will be an 
approximate or effective r. The new mesh is not geometrically similar to the original (and in fact the mesh 
topology will often change) yet in a rough sense the refinement or coarsening is uniform. Observed p have 
been calculated with good results using effective r in unstructured grid refinement in two 2-D studies: heat 
conduction (see Section 6.4.2 for details) and turbulent separated flow RANS calculations using solution 
adaptive remeshing (Hay and Pelletier, 2008). 
 In spite of these difficulties, unstructured grids will continue to be more dominant in computational 
PDEs. As noted in the review by Carey (2006), structured grids are “geometry challenged” [especially in 3-
D]. Ultimately, practice may go to Meshless Methods, as predicted in the review by Pepper (2006), but 
these are in a relatively early stage of development and no systematic and reliable methods for Calculation 
Verification are available. 

5.10.4   Shocks, Discontinuities, Singularities 

 In both his 1910 and 1927 papers, Richardson already considered the effect of singularities on the 
extrapolation procedure. These cases must be considered individually. If the form of the singularity is 
known a priori, it may be removed analytically. If unknown, its presence may be detected by checking to 
see if the asymptotic range has been reached (see below). Shocks and other discontinuities (e.g., contact 
surfaces) invalidate the Taylor series basis of Richardson Extrapolation, but unless the flow contains large 
numbers of complex shock patterns, the GCI procedure herein would still seem to have validity and be 
recommended, certainly an improvement over simply reporting the raw data for . As pointed out by 
Ferziger (1993), a more appropriate error measure here might be the shock position. Further experience 
with complex shocked flows is needed. 
 Blottner (1990) has shown how the concept of Richardson Extrapolation can be applied to 
systematically estimating the error due to artificial dissipation terms used in hypersonic shock calculations. 
The contribution of these terms to the GCI must also be calculated orthogonally to the other terms. If these 
terms are not estimated separately, the grid convergence tests will be polluted, since the (nonlinear) shock 
dissipation terms depend on h, and therefore the continuum problem being approximated changes from grid 
to grid. (This is the same difficulty that can appear with grid generation equations, noted above.). 
Blottner’s results will be presented in Chapter 6, Section 6.11. (See also Kuruvila and Anderson, 1985.) 
 Also, the theory of Richardson Extrapolation is not applicable to nonlinear flux limiters, but again we 
expect these to be local applications, and still recommend the reporting of GCI over simply reporting the 
raw data for . But we would also recommend more detailed investigation, e.g. perhaps 3 grids (see below). 
The point is that the presence of shocks, other discontinuities or singularities can complicate grid 
convergence studies whether or not the GCI is used for reporting the results, so these complications do not 
constitute a criticism of the GCI. 
 
 5.10.4.1 §  Detection and Treatment of Singularities 
 
 In a paper on Finite Element Analysis (FEA) of Computational Solid Mechanics (CSM) stress 
problems, Sinclair et al. (2006) presented a thorough work on the detection and treatment of singularities 
during grid convergence studies. The work should be equally applicable to other areas of computational 
PDEs although it remains to be tested. The methods can automatically detect and distinguish between cases 
of power singularities, logarithmic singularities, or simply grids not yet in the asymptotic range. Of course, 
there is a gray area and account is taken of ambiguous results; the most difficult cases to distinguish are 
weak singularities (e.g. a terribly difficult behavior of Hertzian contact stress converging at p ~ 0.1.)  
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 The authors used the approach of evaluating the performance of the singularity treatments by using 
realistic exact solutions with prescribed singular behavior produced by the Method of Manufactured 
Solutions. Their development of MMS was independent, and they referred to it as Tuned Test Problems 
(TTP) in a paper with both CSM and CFD examples (Sinclair et al, 1997). The evaluation exercises were 
thorough, with 21 numerical experiments on 14 trial problems with power singularities, 21 experiments on 
5 problems with log singularities, and 103 experiments on 18 problems with nonsingular stresses. The 
authors examined convergence for a stress of interest, denoted here42 by f. All the tests used a grid 
refinement factor r  2, and the empirical terms given below will depend on this. They considered several 
levels of convergence checks for non-singular problems that are also worthwhile. Alternative methods of 
convergence checking from the previous literature were found to be lacking: the two-mesh check (i.e. no 
evaluation of observed p) and the seriously misleading “linearly-increasing mesh sequence” (see discussion 
in Section 5.10.6.3). Rather than targeting 95% certainty as in the GCI approach, Sinclair et al. adopted a 
practical alternative approach to calculation uncertainty, to be described in Section 5.12.  
 The singularity detection methods of Sinclair et al (2006) are as follows. We relate here only their 
initial provisional convergence which is required in the singularity detections. With f1 = solution on the 
finest grid of a grid triplet, f2 = on the medium grid, and f3 = on the coarse grid, the computational solutions 
are judged to be converging if 

|||| 2132 ffff          (5.10.4.1.1) 
 
Of course, if all three values are so close that these differences are in the noise level, one would simply say 
that the solution has already converged. 
 
Power singularities 
 
 With R being the dimensionless radial distance from the singular point, the local stress f for power 
singularities by definition behaves as 
 

0)( 0   RasRfOf         (5.10.4.1.2) 
 
where f0 is an applied stress and  is the singularity exponent. Local computed values of stress are typically 
extrapolated from nearby points in the elements adjoining the singular point. The signature behavior of the 
power singularity during mesh refinement (0) is then as follows. 
  

0~/~/ 2132 asrffff        (5.10.4.1.3) 
 
Appropriate limitations on the convergence behavior (i.e. on f1, f2, f3 ) are required to avoid indeterminacies 
or worse, e.g. divide by zeros. To implement this asymptotic result, one obtains successive estimates of the 
singularity exponent  as follows. 

rff ln/)]/[ln( 3223         (5.10.4.1.4a) 
 

rff ln/)]/[ln( 2112         (5.10.4.1.4b) 
 
                                                
42 The notations are changed from that of Sinclair et al (2006) to be consistent with the rest of this Chapter. 
The usual notation for stress is σ.  
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again with appropriate limitations on f1, f2, f3. Then, one judges a power singularity to be present if these 
two successive estimates are approximately constant. The specific criterion tested by Sinclair et al (2006) 
is that the change in the successive values is less than 10% of the average value. 
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          (5.10.4.1.5) 

 
If this relation does not hold, then one judges there to be no power singularity. The authors were clear that 
this criterion is provisional, and depends on the grid refinement ratio r ~ 2, but they did test it on many 
cases, as already noted. 
 
Logarithmic singularities 
 
 The local stress f  for power singularities by definition behaves as 
 

0)ln( 0  RasRfOf        (5.10.4.1.6) 
 
The signature behavior of the power singularity during mesh refinement (0) is then 
 

0ln~~ 01223  asrfffff         (5.10.4.1.7) 
 
Successive estimates of the increment in stress f are obtained as 
 

3223 fff           (5.10.4.1.8a) 
 

2112 fff           (5.10.4.1.8b) 
 
which are useful only if they do not change sign during over the grid triplet, tested as  
 

0223 ff           (5.10.4.1.9) 
 
Then, one judges a log singularity to be present if these two successive estimates are approximately 
constant; again, the specific criterion tested is the change in the successive values less than 10% of the 
average value. 
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           (5.10.4.1.10) 

 
Implementation and Interpretation 
 
 Eqs. (5.10.4.1.1, -5 and -10) are all evaluated for the grid triplet. As stated, if Eq. (-1) and Eq. (-5) 
hold, then one judges a power singularity to be present. If Eq. (-1) and Eq. (-10) hold, then one judges a log 
singularity to be present. If none of them hold, then one terms the solutions non-convergent, meaning not 
converging over this grid triplet (or not yet converging). 
 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

133 

Possible Masking of Singular Behavior 
 
 Typically with CSM stress singularities, other (non-singular, or regular) contributions to stress are 
negligible near the singular point, i.e. the non-singular stresses are O(1) as R0. [Likewise for dependent 
variables in singular problems of fluid dynamics.] However, Sinclair et al (2006) noted that occasionally 
CSM stress singularities “occur in concert with a hydrostatic pressure that can mask their presence.” They 
stated that Eq. (-8) and Eq. (-10) can still be used to detect log singularities, but Eq. (-4) and Eq. (-5) 
require adaptation for power singularities. If the magnitude of hydrostatic pressure  is known, it can be 
subtracted out and Eq. (-5) used. If not, one needs to run another computation on a fourth, finer grid to 
obtain f11 and to evaluate the following equations (again with appropriate limitations to avoid 
indeterminacies). 
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Then Eq. (5.10.4.1.11) replaces Eq. (-4) in the evaluation of Eq. (-5), with the same interpretations. Even 
with this adjustment, Sinclair et al (2006) stated that it is possible for there to be masking of singular 
stresses to some extent. 
 
Future Extensions 
 
 This approach has already been convincingly evaluated for CSM 2-D stress problems, and could be 
used as a template for new studies of singularity detection, the details of which would likely vary for 
different problems. An important generalization to be developed and tested would be grid refinement factors 
1 < r < 2.  

5.10.5 Achieving the Asymptotic Range 

 The theory of Richardson Extrapolation, and therefore of the Grid Convergence Index, depends on the 
assumption that the Taylor series expansion (or at least, the definition of the order of the discretization 
implied by Eq. 5.3.4) is valid asymptotically, and that the two grids are within (or close to) the asymptotic 
range. For smooth elliptic problems, this is easy to achieve. (A 2nd-order accurate discretization of a 
Laplace equation with smooth boundary values is well behaved over virtually all discretizations.) For small 
parameter problems (e.g. Reynolds numbers >> 1) it is more problematic, and more than two grid solutions 
are required. The methodology presented herein does allow for detecting this situation in a straightforward 
manner, provided that the order of the method, p, is uniform. 
 If an exact solution is known to a model problem, we can monitor  
 

E
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             (5.10.5.1) 

 
as h is refined. Then the (approximate) constancy of Ep is a generally faithful verification of the order p and 
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an indication that the asymptotic range is achieved.43 In the practical case wherein the exact solution is not 
known, we perform at least three grid solutions and calculate two GCI, from fine grid to intermediate grid 
(GCI12) and from intermediate grid to coarse grid (GCI23). Then the (approximate) constancy of Ep  GCI 
/(Fs h p), or 

GCI GCI23 12 r p              (5.10.5.2) 
 
indicates that the asymptotic range has been achieved. 
 This indication that the asymptotic range has been achieved is usually faithful, in the author’s 
experience (Roache, 1982; Roache et al, 1990; Roache and Knupp, 1993). But an exception (and 
unfortunately, an important one) occurs in problems with multiple scales of solution variation wherein a 
finer scale of the problem variation has been completely missed in the grid refinements. For example, in 
dual-continuum models of transport in porous media 44 the time scale for diffusion and storage in the 
material matrix blocks may be orders of magnitude less than the time scale for essentially advective 
transport in the fracture system. Time-step refinement may indicate no substantial change in the results 
(i.e., a false indication of convergence) if the time step is of the order of the advective time scale. Similar 
situations occur in turbulent boundary layer studies where some minimal viscous sublayer resolution is 
required (see Shirazi and Truman, 1989; Wilcox, 1993) and in chemically reacting flows which can have 
more time scales than species. Adaptive ODE solvers are good at detecting multiple time scales, but in 
multidimensional flows, at present there seems to be no substitute for an independent estimate (from theory 
or experiment) of the physical scales of interest. 
 Since so many journal authors are reluctant to perform even the most minimal grid convergence tests 
with two grids (Roache et al, 1986; Roache, 1990), it may seem unrealistic to recommend three grids as a 
matter of course. In fact, it is required to have an indication that the calculations are in the asymptotic 
range, if this is not already inferred from experience with a nearby calculation as in, e.g., Nguyen and 
Maclaine-Cross (1988) or Blottner (1990). In any case, the GCI provides an easily achieved improvement 
over the simplistic reporting of raw data on . 
 G. de Vahl Davis (1983), in his classic benchmark calculations of a buoyancy-driven cavity, indicated 
local convergence rates of less than 1st-order for the relatively coarse grids used, even though the method 
was asymptotically 2nd-order accurate. In the absence of such meticulous work as that of de Vahl Davis, 
the reporting of a GCI based on the assumed p = 2 would be preferable to simplistic reporting the raw data 
of , but if there is any indication of less-than-theoretical convergence rates, the more conservative estimate 
with GCI evaluated from Eq. (5.6.1) or (5.7.2) using p = 1 should be reported. 

5.10.6   Extraction of the Observed Order of Convergence From Grid Convergence Tests 

 If an exact solution is known or manufactured (see Chapter 3), it is straight-forward to extract the 
order of convergence (corresponding to p in Eq. 5.4.1) from results of a systematic grid convergence test 
using a minimum of two grid solutions. This serves to Verify a Code. However, it is also desirable to 
Verify the observed order for an actual problem, since the observed order of convergence depends on 
achieving the asymptotic range, which is problem dependent, and since the observed order may differ from 
the theoretical order, or from the order verified for a test case, for a variety of reasons. (See discussion in 
Westerink and Roache, 1995 and in Chapter 6.) The following general method was presented in Roache 

                                                
43 For examples, see Chapter 3, Section 3.5, or Richardson, 1927; Steinberg and Roache, 1985; Roache et 
al, 1990; Blottner, 1990; Roache and Knupp, 1993. 
44 WIPP PA Dept. (1992), Helton et al (1995, 1996) 
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(1995a), “Verification of Codes and Calculations.” For an equivalent method with different notation 
(notably on the definition of the grid refinement factor) see Celik and Zhang (1995). 
 Blottner (1990) and others used graphical means, plotting the error on log paper and extracting the 
order from the slope. This procedure requires evaluation of the error itself, which is generally not known. If 
the finest grid solution is taken to be the reference value (unfortunately, often called the “exact” value, 
which it obviously is not) then the observed order will be accurate only for those grids far from the finest, 
and the calculated order approaching the finest grid will be indeterminate. Blottner (1990) improved on this 
by estimating the “exact” value by Richardson Extrapolation (see also Shirazi and Truman, 1989), but this 
procedure is somewhat ambiguous since the order is needed in order to perform the Richardson 
Extrapolation. 
 If the grid refinement is performed with constant r (not necessarily r = 2), the order can be extracted 
directly from three grid solutions, without a need for estimating the exact solution, following G. de Vahl 
Davis (1983, p. 254). With “1” being the solution on the finest grid in the present notation, 
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 A generalization of this procedure, not restricted to constant r, is possible using the generalized theory 
of Richardson extrapolation. Eq. (5.10.5.2) may be used to Verify an assumed order p. (It is not necessary 
to use the GCI itself.) One calculates  
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If   r p, then p is the observed order. However, Eq. (5.10.6.2) requires r to be constant over the three grid 
set, and it cannot be used to calculate p directly since p is implicitly present in the GCIs. The more general 
procedure is to solve the equation 
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for p. This is simple for r constant (not necessarily 2 or integer), giving  
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(Note that Eq. (5.10.6.4) differs from Eq. (5.10.6.1) only by higher order terms that depend on the non-
dimensionalization of ε’s.) But if r is not constant during the grid refinement, Eq. (5.10.6.3) is nonlinear in 
p. Usual solution techniques can be applied, e.g., direct substitution iteration, Newton-Raphson, etc. (even 
graphical). When considering the stability of the iteration, one should allow for observed p < 1. This can 
happen even for simple problems at least locally (de Vahl Davis, 1983). Unfortunately, behavior far away 
from asymptotic convergence can be non-monotone. Also, r ~ 2 will be easier to solve than r ~ 1, and r >> 
2 is probably not of much interest. For well behaved synthetic cases which have been tested, direct 
substitution iteration with a relaxation factor  ~ 0.5 works well. With  = previous iterate for p, the 
iteration equations are  
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Note this form of the iteration gives the exact answer in one step for the case of r = constant and ω = 0. 
 The slightly modified GCI of Celik et al (2008) eliminates indeterminacies caused by opposite signs of 
ε12 and ε23 but this can lead to a misplaced confidence when grid convergence is noisy. 
 Once p is known with some confidence, one may predict the next level of grid refinement r* necessary 
to achieve a target accuracy, expressed as a target Error Estimate E1 or GCI1, call it GCI*. With GCI23 
being the value from Eq. (5.6.1) for the previous two grids,  
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            (5.10.6.6) 

 
This result, of course, depends only on the assumed definition of order of the discretization error, i.e. only 
on Eb = error / h p, and not on the GCI theory itself. (If Fs = 1 is used in Eq. (5.6.1), then the GCI = Error 
Estimate E1.) 
 For those special cases in which an exact solution is known (e.g. in Code Verification, or for special 
metrics like dilatation = 0 for incompressible flow) the observed p may be extracted from only two grid 
solutions by solving Eq. (5.4.1) for p. 

)ln(/)1ln(
)/()( 121

rdp
ffffd exact




        (5.10.6.7) 

 

 5.10.6.1 §  Asymmetrical Grid Refinement45 
 
 As noted in Section 5.10.2, the extraction of p from grid refinement results does not work unless the 
refinement factor r is constant in all coordinates.  
 Eça and Hoekstra (2002b) demonstrated thoroughly that lack of strict geometric similarity in the grid 
sequence is a major contributor to noisy values of observed rate of convergence p. It is obvious that 
geometric similarity requires the same grid refinement factor in each coordinate. Salas (2006) investigated 
this effect in a systematic way, and disclosed a widespread mistake associated with it. By citing error 
estimation results from Workshops, he pointed out the prevalent practice of using the power series form for 
a 1-D problem (from Eq. 5.3.1), 
 

fe ~ fc + c hp              (5.10.6.1.1) 
and using it in multidimensional problems in an erroneous way. Users calculate a grid refinement factor r 
as the ratio of representative grid spacings defined as h = (hx hy)1/2 or possibly others, such as the diagonal 
h = (hx

2 + hy
2)1/2. The form does not really matter, since the grid refinement ratio r scales out. However, 

that practice only makes sense if the same r applies in each coordinate. Otherwise, another coefficient is 
introduced for each coordinate, and it would require four grid solutions (rather than three) to determine 
observed p using the correct 2-D form (Eq. 1.4 of Salas (2006)).  

                                                
45 This Section is taken from Roache (2006). 
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fe ~ fc + a hx

p + b hy
p            (5.10.6.1.2) 

 
Salas claimed there is widespread misunderstanding of this effect, and that current practices are flawed, 
particularly in external aerodynamics. 
 To avoid confusion, let us refer to the observed p calculated using the 1-D form applied to a grid 
sequence with rx ≠ ry as observed pseudo-1-D p, denoted p1s. 
 Using an exact solution for transonic flow (the Ringleb solution) Salas demonstrated that his 
theoretically second-order code exhibited observed p = 2.2 when rx = ry , but exhibited p1s = 9.94 for a 
particular case with rx ≠ ry . (See Eça and Hoekstra (2002b) for sometimes comparable anomalous results.) 
 Salas included a simple synthetic problem to illustrate his point. Upon examination, this problem raises 
another point that could be further investigated. It bears on the question of how one might use p1s > 
theoretical p in error estimations. 
 For p to apply in a multidimensional problem, r must be the same in all directions, unless one solves 
for the coordinate coefficients separately. It is also true that convergence itself does not depend on this 
condition. Consider the computational solutions on all possible 2-D (IJ) grids, starting with a 22 cell 
grid, as follows. 
  
 

2,2   2,3   2,4   2,5   2,6   2,7   2,8   2,9 
3,2   3,3   3,4   3,5   3,6   3,7   3,8   3,9 
4,2   4,3   4,4   4,5   4,6   4,7   4,8   4,9 
5,2   5,3   5,4   5,5   5,6   5,7   5,8   5,9 
6,2   6,3   6,4   6,5   6,6   6,7   6,8   6,9 
7,2   7,3   7,4   7,5   7,6   7,7   7,8   7,9 
8,2   8,3   8,4   8,5   8,6   8,7   8,8   8,9 

    9,2   9,3   9,4   9,5   9,6   9,7   9,8   9,9 ... 
 
Figure 5.10.6.1.1. All possible 2-D (IJ) grids. The grid doubling sequence is underlined. Symmetrical 
refinement with I = J proceeds along the diagonal. Any sequence that proceeds both down and to the right, 
such as the bold font path, also converges to the exact continuum solution. 
 
 
The computational solutions fg (I, J) would form a (discrete) single-valued solution surface above this 
discrete 2-D domain of definition. The exact (continuum) solution fe is approached down and to the right 
(but not just down, and not just to the right, which are only one-coordinate refinements). The grid doubling 
sequence is underlined; it is not necessary to follow this path. The preferred paths are anything along the 
diagonal (italics), for which r is not necessarily constant in the sequence (along the diagonal), but it is the 
same in each direction. But if we took another path down and to the right, e.g. the bold font path, we would 
still be heading towards the exact solution fe as (I, J)  (, ). 
 The evaluation of an observed p enables us to extrapolate along the path, analogous to a directional 
derivative. (I suppose the analogy could be made precise by somehow generalizing the discrete surface to a 
continuum surface.) The extrapolated value can be used as a better estimate of the exact (converged) value 
fe  and so gives an error estimate. Any path along the diagonal corresponds to the same r in each direction. 
This diagonal direction does not uniquely determine the observed value of p because different values of r 
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give somewhat different p (except asymptotically). The grid doubling sequence gives a somewhat different 
value of the observed p than the unit sequence (2,2), (3,3), (4,4), (5,5), etc.46  
 The extrapolation slope is clearly path dependent, since the solution surface is not flat. Although any 
path along the diagonal corresponds to the same r in each direction, others are possible. If the observed p or 
the  p1s  is not real, presumably it cannot be used, and we are far outside the asymptotic region. But if it is 
real, can it be used? If we are following the bold font path, we clearly do not want to use theoretical p, even 
if it is correct for the diagonal path. We want to use the slope appropriate for our path.  
 The question is: Will this extrapolation be accurate? Might it be that the somewhat arbitrary definition 
of h and therefore r, and the evaluation of a path-dependent p1s , produces an accurate extrapolation when 
used with a consistent evaluation of the coefficient c of Eq. (5.10.6.1.1)?   
 It would be of interest to try it for the exact (Ringleb) solution of Salas (2006) but solution values were 
not presented (only L1 errors in velocity). But when applied to the  synthetic second-order accurate problem 
results given in Tables 1 and 2  of Salas (2006) it works very well indeed. The synthetic problem is devised 
with fe = 1, p = 2, a = 1, b = 5 in Eq. (5.10.6.1.2). Using the same r in both directions (rx = ry = 2.0 for the 
first refinement, = 1.5 for the second) reproduces the “true” (diagonal path) value of p = 2, along with c = 
12.9 and the exact solution value fe = 1, as expected. If the same r is not used in each direction (rx = 1.6 
and ry = 2 for both refinements), the three grid solutions produce p1s  = 2.36 and c = 34.75, very different 
from the diagonal path, as is to be expected; however, used consistently with Eq. (5.10.6.1.1) they produce 
fe = 0.999 ~ 1. That is, extrapolation with the path-dependent observed p along that path is correct for the 
synthetic problem.  
 The conditions for use of p1s to estimate error remain to be determined. In a real problem with other 
contributors to noise, we would still be reluctant to base an uncertainty estimate on some observed p = 
9.94, and the consensus at the Lisbon Workshops (Eça et al, 2005, 2007a, 2009) was to enforce an upper 
limit on p to avoid too-optimistic uncertainty calculations. The suggestion to limit p ~ theoretical may be 
unnecessarily conservative if correct extrapolation along the convergence path is performed.   

 

5.10.6.2 §  Consistent Quadrature 
 
 In another fundamental paper, Salas (2008) demonstrated a source of noise in calculation of observed 
order of convergence p. Calculation of functionals of solutions (e.g. aerodynamics drag) require 
quadratures. As noted in Section 5.3, Richardson Extrapolation requires that the order of the quadrature 
must be consistent with the order of the computational PDE method, i.e. at least 2nd order quadrature if the 
computational PDE method is 2nd order. But more subtly, Salas has shown that quadratures that are 
algebraically consistent with the discretization produce observed order in much more faithful agreement 
with theoretical order. His results were limited to constant grid spacing. For more general situations, it is 
recognized that higher order quadratures are more dependable than those just matching the discretization 
order. 
 On the other hand, when quadrature accuracy is adequate, it is common experience that solution 
functionals often (not always) converge more smoothly than point values. See, e.g., Salari and Roache 
(1990), Hay and Pelletier (2008) and Eça and Hoekstra (2008b,c). 
 
 

                                                
46 The unit change sequence  (2,2), (3,3), (4,4), (5,5), etc. would produce a better approximation of a 
secant evaluation of a directional derivative, if we were envisioning a continuum surface of solutions. But 
in actual calculations, it would contribute to noise in p because of incomplete iteration error and round-off 
error, especially as (I,J)  (,). 
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5.10.6.3 §  Misleading Convergence Rate 
 
 In Section 5.10.4.1, we cited the paper by Sinclair et al. (2006) on Computational Solid Mechanics 
(CSM) stress problems which, among other contributions, showed that the technique of judging 
convergence by observing the “linearly-increasing mesh sequence” is seriously misleading. 
 This linearly increasing mesh sequence uses a mesh sequence such as 100, 110, 120 total elements 
irrespective of the dimensionality, and convergence is judged (effectively extrapolating) by a log-log plot. 
However common it may be in FEA CSM, it has no basis in analysis. Nevertheless, it occasionally has 
been used in CFD as well. Its inadequacy is easily demonstrated by a synthetic problem that converges at 
first order in 1-D, with the exact discretization error Eexact on the k-th grid given by  
 

Eexact = (fk - fexact) ≈ g1x = g1/N = g1/(I-1).        (5.10.6.3.1) 
 
A plot of Eexact vs N will look like plot of a scaled function ζ (N)  = 1/N, characteristic of a 1st order 
method. To disguise this 1st-order convergence, extend the dimensionality to 2-D with no variation in y, 
and plot Eexact vs N = (I-1)(J-1), noting that Eexact is still given by Eq. (5.10.6.3.1). The result will look like 
a plot of ζ (N)  = 1/N2 , characteristic of a 2nd order method, converging much faster. Go to 3-D for 3-rd 
order appearance. 

5.10.7 Method of Characteristics and Spectral Methods 

 It is not clear how or if the GCI would be applicable to calculations obtained by the classic method of 
characteristics, as used in gas dynamics, because of the possibly discontinuous solutions and the irregular 
gridding. The various Modified Method of Characteristics (e.g., see references in Roache, 1992b or 
Chapter 13 of Roache, 1998b) will produce more systematic grid refinement, but the concept of “order” is 
more tenuous for the Flux-Based MMOC (as evidenced by the fact that the accuracy improves as the 
Courant number increases above 1), and the GCI may not be applicable. Similarly, for spectral and 
pseudo-spectral methods, and certainly for spectral elements, different extrapolation procedures would be 
required. It is not known at this time how well the GCI would apply or could be extended. 

5.10.8 Non-Smooth Property Variation and the GCI 

 In aerodynamics problems, one typically deals with smooth property variations over modest ranges, 
and often with constant property problems. In groundwater flow and transport calculations, uncertainty and 
range are much greater, and sensitivity studies are often performed with Monte Carlo techniques used to 
generate property variations of orders of magnitude, even from one grid block (finite volume) to the next 
(e.g., see WIPP PA Dept., 1992; Helton et al, 1995,1996). Geologic layering produces discontinuous 
variations in properties of several orders of magnitude. 
 In these situations, it is not advisable to use non-integer grid refinement parameters r, because 
additional errors would be introduced by interpolation of properties. This confusion would be aggravated 
by the common use of harmonic averaging for properties (e.g., Roache, 1991, 1992a, 1993). Likewise, grid 
coarsening is not advisable if a coarsened grid would not resolve the scale of the property variations (often 
the case for expensive two-phase flow calculations, e.g. WIPP PA Dept., 1992; Helton et al, 1995,1996). 
The only approach applicable is a brute-force grid refinement by a factor of 2, which avoids any necessity 
for interpolation of properties. 
 The use of the GCI still has two contributions to such problems: (a) including the effect of the order p 
of the method in Eq. (5.6.1), and (b) economizing a consistent treatment of further grid refinement. That is, 
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a third grid (second refinement) need not involve the expense of another grid doubling (to a quadrupling of 
the base grid resolution) but can be done on a tripled grid, and reported consistently with the GCI. The 
difference in computer time between calculating the sequence (base h0, 1/2 h0, 1/4 h0) and the sequence 
(base h0, 1/2 h0, 1/3 h0) can be significant. Consider an optimal method with base-case computer time = T2 
in 2-D and T3 in 3-D, and time-step resolution increased in proportion to the spatial grid resolution. The 
quadrupling sequence in 2-D costs 73T2 while the tripling sequence costs 36T2; in 3-D, the costs are 273T3 
and 98T3 , respectively. These savings of a factor of 2 in 2-D and somewhat less than 3 in 3-D will be 
greatly amplified if sub-optimal direct solution methods are used. 
 

5.10.9 Non-Smooth Property Variation and Geostatistical Realizations  

 A more fundamental question arises when geostatistical methods are used to generate particular 
realizations of grid-block property variations with specified statistical parameters. Only the statistical 
results are of interest, not the solutions of the individual realizations. The question is then, should the grid 
refinement studies be performed separately from the geostatistical realizations? That is, should the solution 
of the partial differential equations be converged on finer grids with the assumed continuum property 
variation fixed at a geostatistically generated coarse-grid distribution, or should the geostatistical 
generation also change as the grid is refined? 
 This is not an easy question. Although definition of a fixed continuum problem for the grid refinement 
studies is conceptually easier, it is clear that substantial computer savings could accrue to the combined 
convergence approach. The results from both approaches should be statistically consistent, though not 
identical. In either approach, the grid increments should be less than (be able to partially resolve) the 
correlation length of the property variation. 

5.10.10   Iteration convergence 

 5.10.10.1   Stopping Criteria for Iteration Convergence 
 
 Iterative methods are always required for nonlinear problems solved by implicit formulations and often 
are used as part of an explicit formulation as well. Before any discretization error estimation is calculated, 
it must be ensured that iteration convergence is achieved. Otherwise, the incomplete iteration error will 
pollute the error estimation and uncertainty estimation. The iteration error is more critical for the error 
estimation than for the solution itself, and Richardson Extrapolation amplifies incomplete iteration errors 
(Section 5.3). 
 The stopping criteria for iteration convergence is similar to grid convergence testing in one important 
aspect: both must be properly normalized. For an iterative solution procedure in which the new iterate value  
f  k+1 is under-relaxed by a factor , that  must appear in the denominator of the stopping criteria.47 That 
is, many codes test something like 
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47  For example, see Roache (1972b, p. 174 ff; 1975, 1995b, 1998b), Roache and Ellis (1975). 
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where n is the iteration level, fnorm is some suitable normalizing value (or just non-dimensionalizing value) 
and tol is some convergence criterion like 104 or 106. This test can be met meaninglessly, regardless of the 
actual convergence, in a relaxation procedure such as 
 

f f fn new old   1 1 ( )         (5.10.10.2) 
 
by choosing  small enough. A simple modification of the convergence test is the form 
 

L tol 


              (5.10.10.3) 

 
For simple iteration schemes (such as SOR without immediate updating) it may be shown that this is 
algebraically equivalent to a criterion based on directly evaluating the residual. 
 Such iterative stopping criteria are still somewhat heuristic. Results by Eça and Hoekstra (2006a, 
2007, 2009b) indicated that iteration error estimators based upon the last performed iteration (like Eq. 
5.10.10.1) systematically underestimate the iteration error, a serious conclusion. They developed a method 
for estimation of iteration error based on extrapolating by geometric progressions; see Section 5.10.10.3. 
Another conclusion that contradicts common practice is that convergence of the L2 norm is not a reliable 
indicator for iteration convergence 48, whereas the more demanding L norm is reliable.  
 What is intended is an estimate of the incomplete iteration error, defined as  
 

 ff nn
i          (5.10.10.4) 

 
where the notation f ∞ suggests the limit of iterations. In the absence of accumulated round-off error, f ∞  
would be the exact solution of the discretized equations (rather than the continuum equations). Roughly,  
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for convergent iterations, the approximation being due only to effects of machine round-off error. An 
estimate of incomplete iteration error in terms of the iteration change was given by Ferziger (1988, 1993) 
as 
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where 1 is the (assumed) real principal eigenvalue of the iteration matrix (defined by the iteration scheme), 
which can be estimated from the history of the iteration. 
 For a simple iterative solver like SOR applied to a discretized Poisson equation, the use of a relaxation 
factor  less than the optimum value produces a real principal eigenvalue of the iteration matrix, making 
the normalizing of the stopping criteria easier to determine from the history of the iteration solution path. 
For SOR relaxation with larger  values, and for more intricate iteration schemes (generally the more 
efficient ones), the principal eigenvalue may be complex. Ferziger and Peric (1996) presented a method for 
normalizing the stopping criteria in this case, based on some assumptions and approximations that were 

                                                
48  However, see Roy and Blottner (2003,2004) cited below. 
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justified by their test cases. These numerical experiments indicated that data from as many as 50 iteration 
steps must be used to produce a reliable normalization for the complex eigenvalue situation, but the amount 
of coding and the computational time penalty are insignificant compared to solving the discretized 
equations. This method is recommended for consideration, and in fact was a starting point for later methods 
to be described in Sections 5.10.10.3-4. However, Ferziger and Peric (1996) noted that simpler methods 
based on monitoring either the reduction of the residual or the difference between successive iterates  (as 
above in Eq. 5.10.10.3) can also be used if normalized properly. (See Section 5.10.10.3 for a more recent 
method.) 
 A feasible approach for more efficient methods with complex eigenvalues would be to simply pause the 
iteration with the efficient method (e.g. GMRES, or SOR with optimum ) and replace it for some number 
of iterations with another less efficient method with real eigenvalues of the iteration matrix (e.g. SOR with 
smaller ) to estimate the iteration error. Since so many solutions published currently involve 10,000 - 
100,000 iterations, the penalty for estimating iteration error periodically over (say) 100 relatively 
inefficient iterations would be small. The assumption here is that the incomplete iteration error at step n is 
roughly a “state variable” for any step in the solution procedure, i.e. it is not strongly path-dependent but 
just depends on the values of the (provisional) solution at n. If the iteration error estimation method is valid, 
it should provide a useful estimate for any late stage in the process. Thus, the methods to be described in 
Sections 5.10.10.3-4, which depend on real eigenvalues, could be used. This process would also serve to 
selectively reduce high-frequency components of discretization error (e.g. Roache, 1998b), improving RE 
estimates. 
 For a stopping criterion, a commonly used but unjustifiable rule of thumb is to require at least three 
orders of magnitude decrease in properly normalized residuals for each equation solved over the entire 
computational domain. Two studies by Roy et al (2003, 2004), using MMS to produce a benchmark exact 
solution, indeed show that L2 norm “residual reduction tracks extremely well with global iterative error for 
a wide range of nonlinear flow problems” (cited in Roy, 2004). However, the scaling between residuals and 
iteration error is problem dependent and the prescribed three orders of magnitude reduction in residuals 
from their initial values based on poorly defined initial conditions is arbitrary. This criterion is used as a 
default in some commercial codes, but is demonstrably inadequate for many problems even for basic 
accuracy, without considering the added requirements of uncertainty estimation. For time-dependent 
simulations in which time accuracy is required (as opposed to just using time-dependent calculations to 
solve the steady-state equations), intra-time step iteration convergence at every time step should be 
checked, and example convergence trends should be documented for selected, critically important variables. 
The preferred approach is to reduce the iterative error to a level negligible compared to the discretization 
error. This does not necessarily require iteration to (nearly) machine zero. 
 
 5.10.10.2 §  Interaction of Iteration Convergence with Discretization Error 
 
 Iteration error and its interaction with discretization error has been thoroughly studied by Eça and 
Hoekstra (2006a, 2009b) for one class of problems with a RANS turbulence model; there is no reason to 
assume that other problems are more benign. A method for estimation of iteration error based on 
extrapolation by geometric progressions was developed and justified, and applied to realistic turbulent 
flows. These results show that the iteration error needs to be 2-3 orders of magnitude smaller than the 
discretization error to guarantee a negligible influence. This is often assumed, though seldom demonstrated 
convincingly. If the uncertainty Ui contributed by the (estimated) iteration error is much less than Ud 
contributed by the (ordered) discretization error, then obviously we can take the numerical uncertainty Unum 
to be 
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Unum = Ud           (5.10.10.2.1) 

 
where Ud = GCI or another numerical uncertainty estimate. If more care is taken and Ui is to be added, it is 
not adequate (conservative) to use RMS (Root-Mean-Square) addition, because the iteration error affects 
the results for discretization error, i.e. Ui  and Ud are not uncorrelated, violating the underlying assumption 
of RMS addition. Rather, the two must be combined by less optimistic simple addition. 
 

Unum = Ud + Ui            (5.10.10.2.2) 
 
 The same caveats that apply to discretization error convergence testing also apply to iteration 
convergence testing. Different variables, or the same variable evaluated at different locations, can 
iteratively converge at significantly different rates. 
 
 5.10.10.3 §  Estimation of Incomplete Iteration Error and Uncertainty by Least-Squares 
 
 Here we present details of the method for estimation of iteration error and uncertainty developed by 
Eça and Hoekstra  (2006a, 2007, 2009b) and further details on their general results already described in 
Sections 5.10.10.1-2. The estimation of numerical uncertainty was obtained using the Least Squares GCI 
(to be described in Section 5.11) but their results on iteration error are independent of this and are 
applicable to standard GCI or other uncertainty estimators. 
 The methodology employed in this study involves an excellent application of the Method of 
Manufactured Solutions (Chapter 3) outside of Code Verification. The earlier study on a real problem 
reached some of the same conclusions (e.g. that iteration error is usually underestimated) but the lack of an 
exact solution in the earlier study left “some room for dispute.” Using MMS to provide a realistic exact 
solution mimicking turbulent boundary layer flow, and a numerical solution converged to machine accuracy 
(~ 15 decimal figures), reliable evaluations49 of the iteration and discretization errors were made for 
intermediate numerical solutions at stages of the iteration convergence and/or grid convergence processes, 
as follows. 
 
• The difference between an intermediate numerical solution on any grid and the exact solution gives the 
total numerical error etm (true50, not estimated) on that grid. 
• The difference between an intermediate numerical solution on any grid and the solution converged to 
machine accuracy on the same grid gives the iteration error eim (true, not estimated) on that grid. 
• The difference between the solution converged to machine accuracy on any grid and the exact solution 
gives the discretization error ede (true, not estimated) on that grid. 
 
With the true errors for the study problem, the estimators for iteration error and discretization error can be 
evaluated, as well as the method of combining them to obtain as estimate of total numerical error. 
 
The Estimation Methods 
 
 The iteration error estimation is based on a geometric-progression extrapolation of the difference 
between consecutive iterations, using the iteration counter n as the independent variable. Many codes 

                                                
49 Assuming that ~ 15 decimal figure precision is sufficient to make round-off errors negligible. 
50 The use of the notation etm here departs from e used by Eça and Hoekstra (2009b). 
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(certainly multiphysics codes) involve several levels of iterative procedures; the iteration counter n refers to 
the outermost (or overall) iteration process. 
 The iteration error was estimated using norms of the change in the solution over the iterations. Two 
norms were considered. From previous experience (Eça and Hoekstra, 2006a) the principle focus was on 
the L∞ norm of the variable change between consecutive iterations. 
  

P
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 1|)(|)( 1         (5.10.10.3.1) 
 
where NP is the number of grid nodes (or cells) and f is the iterative change in f  which refers to any 
observed variable51. Besides this L∞ norm, the authors also tested the LRMS because it is often used as a 
convergence criterion. 
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Values of L = L∞ or LRMS at any iteration could be tried as iteration error estimator, but experience showed 
that none were reliable, especially when convergence was slow, so the authors adopted representations by a 
geometric progression 
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where n0 is the last iteration performed and q, related to the convergence rate, is determined from the ratio 
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For convergence, it is required that ρ < 1 or q < 0. Eq. (5.10.10.3.3) is equivalent to  
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qB 10log           (5.10.10.3.5b) 

Taking the logarithm of Eq. (5.10.10.3.3) gives 
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nnqfLfL nn         (5.10.10.3.6) 

 
Because of noisy convergence, it is not generally safe to solve this equation for q using only two 
consecutive iterations. The recommended procedure is to solve it in a least squares sense using the data of 
the last (m+1) iterations, where m remains to be determined. For economy of notation, we denote the 
logarithm terms by 
 

 
 

                                                
51 For reference to the original papers, note that the original notation φ has been changed here to f  for 
consistency with previous Sections. 
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For a least squares fit, both q and 0 are to be determined. We distinguish between q and its least squares 
fit, denoted by Q, and again for economy of notation denote the least squares fit of the logarithm term 0 
by  (without subscript). The fitting procedure gives52 
 

)1()(4

2)(4
22

0

0

0

0

0

0

0

0













mmnn

mnn
Q n

mnn

n
n

mnnn
n

mnn        (5.10.10.3.8) 

 

Qm
m

n

mnn n

21

0

0 




         (5.10.10.3.9) 

 
When the convergence is far from smooth, these fits Q and  may be corrected to Qc and c using the 
standard deviation of the fit Df as follows. 
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These corrections add the standard deviation of the fit to the logarithm of the norm at iteration n0 and the 
slope is corrected subtracting and adding Df at the extremes of the interval used for the fit,  00 ,nmn   
(Eça, 2009b). (These corrections were included in the subject studies.) For ρ < 1 (convergent), the sum of 
all terms of the geometric progression Eq. (5.10.10.3.3) with n  n0 is then 
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         (5.10.10.3.13) 

 
which is the desired extrapolated estimate of iteration errors, either ei∞ for L = L∞  or eiRMS for L = LRMS. 
 Not surprisingly53, these estimates of the iteration error are not reliably conservative. A candidate for a 
U95% uncertainty estimate for iteration error, denoted by Ui, is suggested by the GCI studies for 
discretization uncertainty, using a Factor of Safety = 1.25.  
 In summary, true iteration errors eim were compared to the four estimated quantities ei∞ , eiRMS , Ui∞ , 
and UiRMS , where  

                                                
52 These formulas are corrected from Eça and Hoekstra (2009b) by Eça (2009b). 
53 See Section 5.14.2. 
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ei∞ = L∞ (f)        (5.10.10.3.11a) 

 
eiRMS = LRMS (f)         (5.10.10.3.11b) 

 
using Eq. (5.10.10.3.13), and  

Ui∞ = 1.25 ei∞         (5.10.10.3.11c) 
 

UiRMS = 1.25 eiRMS           (5.10.10.3.11d) 
 
 The value of (m+1), the number of iterations over which to perform the least squares fit for the 
geometric progression, was determined by experimentation in the study. Larger m give better fits, provided 
that the initial erratic convergence behavior is avoided. The recommendation arrived at by empirical study 
is to not begin counting the sequence until a partial iteration convergence is reached using et ≤ 10-2 (see Eq. 
5.10.10.3.12 below). 
 
The Study  
 
 The authors used two measures of quality to evaluate the estimators ei (referring to either ei∞ or eiRMS) 
and Ui (referring to either Ui∞ or UiRMS). 
• The ratios between the estimators ei  or Ui and the true iteration error eim , i.e.  
  ei / eim  and Ui / eim , desired to be > 1. 
• The percentage F of grid nodes where the estimators ei or Ui fail to be conservative, i.e. where 
  ei < eim  or Ui < eim , desired to be F ~ 5%. 
An optimal error estimator would give ei / eim  ~ 1 everywhere. Although Ui / eim > 1 is desirable to 
accomplish conservatism, values >> 1 would suggest excessive conservatism.54 The value of ei / eim  varies 
greatly over the solution field for a turbulent boundary layer, so “the maximum value may not be very 
significant” and the minimum value over the grid was monitored. 
 The study problem was an exact manufactured solution (Eça et al, 2007a,b) resembling a turbulent 
boundary layer modeled with the baseline Wilcox k - ω model (Wilcox, 2006). (The general MS developed 
is capable of accommodating several turbulence models.) The continuity equation is satisfied identically. 
For isolating the sources of numerical errors, the turbulence quantities can be evaluated from the MS for 
use in the numerical solution, or more realistically the turbulence quantities can be evaluated from the 
numerical solution.55 The code used was PARNASSOS, which uses theoretical 2nd order discretization for 
all terms except convection terms, which are 3rd order (including the transport equations for turbulence 
terms). Options for flux limiters were not used. The quantities examined were the cartesian velocity 
components ux and uy and the pressure coefficient Cp. The code and the MS have been applied in various 
types of grids including non-orthogonal boundary-fitted grids (Eça and Hoekstra, 2004, 2006a, 2008b) but 
the subject study was based on orthogonal stretched cartesian grids. The stretching parameter in the 
boundary layer direction was 0.05, that is, the first cell dimension was 0.05 that of an equispaced grid. 
 The grid set included 18 geometrically similar grids covering an overall grid refinement factor of 6.67. 
The finest grid was 401×401 and the coarsest was 61x 61, producing 19x19 physical locations that are 
common to all the grids, avoiding the ambiguities of interpolation. 
                                                
54 See Section 5.15. 
55 Only the latter results are given in Eça and Hoekstra (2009b). Both results are given in Eça and Hoekstra 
(2007). 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

147 

 The exact solution from MMS was not used for an initial estimate, since this would have obscured the 
behavior of iteration error. 
 The internal convergence criterion for the (outer, or overall) iteration56 is specified by the input 
parameter et, stopping when the maximum (over the grid) changes all satisfy the following. 
 

(ux)max < et,    (uy)max < et,    (Cp)max < 0.1 et      (5.10.10.3.12) 
 
A key methodology of the study is to vary et and store all the flow fields for examination. 13 values of et 
were used, the smallest et = 0.5x10-14, corresponding to machine accuracy, and the remaining 12 values = 
10-N for N = 1, 2, 3, ...12. So the entire flow fields were stored and examined for all 18 grid sets and 13 
values of et. This is obviously not intended to be a model of industrial studies, but rather a research study 
for reliable evaluation of methods for estimation of iteration error that can be used in industrial studies 
without such exhaustive work. 
 
The Study Results 
 
 Highlights of the study results have been given in Section 5.10.10.1-2, but are repeated here with 
additional details. For more complete results in tabular and graphical form and much additional discussion, 
see Eça and Hoekstra (2007, 2009b).  
 Not surprisingly, some irregularities were noted for the initial iterations in the finest grids. The results 
for crude iteration convergence criteria (et = 10-1 to 10-4) are probably not of much interest. The useful 
criterion developed is to use turn-off criteria of et ≤ 10-5 and to not begin the least-squares fit of the 
geometric progression Eqs. (5.10.10.3.7-10), i.e. determining (m+1), until the criterion of Eq. 
(5.10.10.3.12) is met to a tolerance of at least 10-2. 
 The L∞ norm (with the geometric-progression extrapolation) produced the most reliable error estimator. 
The LRMS norm was not a good error estimator. Both eiRMS and UiRMS fail essentially for Cp. 
 The percentage of cases where ei∞ failed to be conservative is < 5% “for almost all combinations” of 
grid spacing and et but there were a few exceptions for uy. For those cases, Ui∞ was conservative except for 
some easily explained cases (unreasonable et = 10-1, or the coarsest grid with “strange behavior of the 
convergence rate.”) The minimum value of Ui / eim was > 1 but < 10 for most of the cases, “an important 
result because it shows that Ui does not overestimate the iterative error by orders of magnitude.” 
 Both the L∞ norm and the LRMS norm failed to be reliable when the geometric-progression extrapolation 
is replaced with the commonly used change over the last iteration, even with the Factor of Safety. The L∞ 
norm was the better choice of the two, but its performance degraded with improving grid refinement. The 
LRMS norm was “completely inadequate.” 
 The discretization error studies showed that estimated Ud generally increased (roughly linearly) with 
iteration error, though this was not guaranteed. As expected from diverse experience, et had a drastic 
influence on observed convergence rate pobs. For tight convergence criteria (small et ) pobs was monotonic 
for all three flow variables in close to 100% of the locations. For loose convergence criteria pobs became 
erratic. This confirms again that sufficient iteration convergence is required for Richardson Extrapolation 
(see Section 5.3). The more significant lesson is that many cases of erratic convergence described in 
publications are due to sloppy numerical work, specifically, inadequate iteration convergence, rather than 
deficient discretizations. The papers may be consulted for additional details. Probably the most important 
conclusion regarding iteration and discretization errors is the rule of thumb that the estimated iteration error 
                                                
56 Details on what this entails in the PARNASSOS code are given in Eça and Hoekstra (2007, 2009b). 
 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

148 

ei should be reduced 2 to 3 orders of magnitude below the estimated discretization error ed in order to have 
a negligible effect on estimated Ud. 
 Finally, the study showed that the usual statistical assumption of RMS combination of ei and ed is not 
justifiable. This failed to be conservative in more than 5% of the case, and in most of the cases by more 
than 50%. Significantly, this failure rate is not appreciably improved by higher grid resolution or tighter 
iteration convergence. This suggests that the fundamental assumption of independence of ei and ed is not 
correct, regardless of good estimates for the individual components.57 However, simple addition as in Eq. 
(5.10.10..2.2) gave zero failures in all combinations tested. 
 It will be easy to make an excuse to ignore these important results because they are limited to one 
problem, but it is unlikely that many researchers will be willing to perform such a thorough study. Probably 
the best to be expected is that conscientious modelers will follow these guidelines and report successes and 
failures anecdotally. 
 
 5.10.10.4 §  Alternative Estimation of Incomplete Iteration Error 
 
 Formally, the least squares iteration estimation method described above could be extended to f = 
computed functionals, which would not involve summations over nodes; this extension has not yet been 
tested but would seem to surely work. 
 Roy and Blottner (2000, 2001) earlier developed a method for estimation of incomplete iteration error 
and applied it to solution functionals (e.g., surface heat flux) rather than solution norms. Their method was 
based on similar assumptions but did not incorporate a least squares fit of the assumed parameters, so it is 
probably not as robust as the least squares approach of Eça and Hoekstra (2009b) but is simpler to derive 
and has been applied58 convincingly to solution functionals in difficult problems (2-D hypersonic flows 
with 1- and 2-equation turbulence models). The method was derived for time iteration in a time-accurate 
code but of course is applicable to any roughly time-like iteration with real eigenvalues of the iteration 
matrix over a (continuum) iteration parameter τ. The iteration error εn at quasi-time step n is expressed as 

 
nn ff             (5.10.10.4.1) 

 
where the notation f ∞ is used again to suggest the limit of long-time iteration. Neglecting round-off error 
accumulation, f ∞ would be the exact solution of the discretized equations, not the continuum equations. 
The observed iteration convergence roughly fits the empirical description of exponential decay in late time 
τ,  

  en             (5.10.10.4.2) 
 

These two preceding equations are combined to give 
 

)ln(ln  ff n        (5.10.10.4.3) 
This equation is applied to three consecutive time steps. The three equations are used first to 
eliminate α, and the final solution for f ∞ is facilitated by assuming constant time increments. The result 
is 

                                                
57 The same is true for combinations of outflow boundary error estimates and discretization error estimates; 
see Section 6.10.2. 
58 They did not address the issues of interaction of iteration error and discretization error. 
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The incomplete iteration error estimate is then 
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and the % error (relative to the estimated fully iteration converged value) is 
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with the usual warnings about normalization and dangers of dividing by near-zero. The parameter Λ 
corresponds in the work of Ferziger and Peric (1985) to the magnitude of the largest eigenvalue (spectral 
radius) of the iteration matrix, limited here to real Λ. 
 Consideration of Eq. (5.10.10.4.5) reveals that it is delicate, with Λ → 0/0 indeterminacy as iteration 
convergence is approached. Λ < 1 is required for convergence; in the continuum quasi-time parameter τ this 
means ∂2f/∂τ2 < 0. The indeterminacy problem will be worse for small time steps. This is the same behavior 
for iteration error estimation as the problem with grid refinement factor r → 1 in grid convergence studies. 
Here it may be mitigated by considering “n” to refer to an iteration macro-step, e.g. over perhaps 10-100 
inner iterations or τ-steps, with the same kinds of trade-offs discussed in Section 5.10.2 for r → 1. Even 
with the basic approach of Eq. (5.10.10.4.5-7), the method proved to be useable in difficult problems (Roy 
and Blottner, 2000, 2001, 2003). 

5.10.11 §  Discretization error estimation from a grid triplet without explicit evaluation of p 

 The AES method of Elizalde-Blancas et al. (2008) utilizes the idea that the extrapolation to fexact can be 
accomplished (in some cases) without explicitly evaluating observed p. [See also Celik and Zhang(1995) 
and Celik and Li (2005).] Following their approach, but assuming a well behaved problem with constant r 
and p, the procedure for Richardson error estimate E1 leads to an interesting result (Roache, 2008b). The 
errors E1 for the fine grid solution f1 , and E2 for the medium grid solution f2 , are evaluated using the 
dimensional form of Eqs. (5.4.2 - 3). 
 

E1 ≡ f1 -fexact  = [f2 - f1] / [rp - 1]       (5.10.11.1) 
 

E2 ≡ f2 -fexact  = [f3 - f2] / [rp - 1]       (5.10.11.2) 
 
Subtracting the first equation from the second leads to  
 

1/[rp - 1] = [f2 - f1] / [f3 - 2f2 + f1]        (5.10.11.3) 
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 This leads to a formula for the error estimation that does not involve r or p (although this could be 
misleading, since constancy of r and p are necessary requirements). Using (5.10.11.3) in (5.10.11.1) gives 
 

E1 = [f2 - f1]2 / [f3 - 2f2 + f1]        (5.10.11.4) 
 
Using the ε notation of Eq. (5.4.3b) (dimensional) with  
 

ε21 = f2 - f1 and ε32 = f3 - f2             (5.10.11.5) 
 
then (5.10.11.4) becomes 
 

E1 = ε21
2 /  [ε32 - ε21] = ε21 /  [(ε32 / ε21) - 1]      (5.10.11.6) 

 
 The latter form is better behaved for round-off error, and allows a confidence check to see if the results 
are consistent with expected convergence behavior. In the usual method, the observed p is compared to the 
theoretical p. As stressed by M. Hoekstra (Eça and Hoekstra, 2008), agreement for a single grid triplet is 
no guarantee of monotone behavior, but it is comforting, and more confidence is built with more grid 
triplets. In the present approach, we would look for [(ε32 / ε21) - 1] ~ [rp - 1] using known r and expected 
(theoretical) p. 
 Eq. (5.10.11.6) has been confirmed on synthetic problems, for which it is exact. For the well behaved 
first problem in Section 6.12, the method gives a factor of 2.956 when the assumed r = 2 and p = 2 would 
give a factor of 3. The GCI calculation with p = 2 shows that the GCI ratio (for r = 2), which should = 4 
for these assumptions, is actually 3.95. So both the GCI calculation with explicit evaluation of p, and Eq. 
(5.10.11.6), are consistent with observed p very slightly less than 2. For the airfoil problems in Section 6.9 
(turbulent flow) and Section 6.14 (inviscid), the convergence behavior is noticeably not ideal but fairly well 
behaved, and the p - free extrapolation works as well as the usual method with explicit evaluation of p. 

5.11 §  LEAST SQUARES GCI 

 Even when convergence behavior is far from ideal, the GCI can still provide reliable error bars if Fs = 3 
is used. However, tighter error bars often can be obtained using Fs = 1.25 and using a least-squares 
approach developed by Eça and Hoekstra59 to evaluate observed p. In bad cases, both Fs = 3 and least 
squares may be needed, as well as replacement of ε by the data range, and some other refinements, as 
described below. (Applications will be cited in Chapters 6 and 8.) First, we will consider tests to 
characterize the grid convergence behavior. 

5.11.1 §  Characterization of Apparent Grid Convergence Behavior 

 The grid convergence sequence of solutions is not always monotone. Causes of oscillatory convergence 
will be discussed further in Section 8.1; these include inadequate coarse grid resolution (being outside the 
asymptotic range), mixed order discretization, multi-block grid generation, shocks, interface tracking, etc. 
The following 3-grid test for observed (or apparent) convergence type 60 is based on ratios of successive 

                                                
59 Eça and Hoekstra (2000a,b, 2002a,b, 2004, 2007, 2008, 2009a, 2009b), Eça et al (2005,2007,2009), 
Raven et al (2002). 
60 Expanded from Stern et al, 2001; see also Roache, 2003 and Pelletier and Roache, 2006. 
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differences of solution values. With subscripts 1,2,3 referring to fine, medium and coarse grid solutions, we 
calculate the discriminating ratio R and recognize four apparent convergence conditions. 
 

]/[][ 3221 ffffR          (5.11.1.2a) 
 

(i)   Monotone convergence for  0 < R < 1       (5.11.1.2b) 
(ii)   Oscillatory convergence for R < 0 and |R| < 1     (5.11.1.2c) 
(iii)  Monotone divergence for  R > 1        (5.11.1.2d) 
(iv)  Oscillatory divergence for  R < 0 and |R| > 1     (5.11.1.2e) 

 
 The issue of possible misinformation has been discussed hypothetically by Coleman et al (2001) and in 
real calculations by Eça and Hoekstra (previously cited). Depending on the sampling from just a 3-grid 
sample, an actual oscillatory convergence can possibly appear to be either oscillatory, monotone diverging, 
or monotone converging. Moreover, an oscillatory diverging sequence can possibly appear likewise 
(Roache, 2003). Actually, the only conclusive 3-grid test result is that demonstrating oscillation, with no 
indication of it being oscillatory diverging or oscillatory converging. As a practical matter, such behavior is 
usually detected during exploratory calculations. Hypothetically, with nonlinear chaotic solutions a 
possibility, any kind of non-regular solution sequence is conceivable. The only way to rigorously determine 
convergence would be to perform a complete grid sequence, e.g. 51×51, 52×52, 53×53, ... 98×98, 
99×99,... Not only is this economically infeasible, it would fail because of corruption by round-off error 
and incomplete iteration error. As a practical matter, as the number of grid triplets increases, if the 
observed p’s stabilize, and especially if these are close to the expected theoretical rate (e.g. p = 1.96, 2.01, 
1.93... for a nominal second-order method) confidence increases. 

5.11.2 §  Noisy and Degraded Convergence Rates 

 Even if convergence is monotone (i.e. 0 < R < 1 in Eq. 5.11.11), the observed convergence rate p still 
can be noisy. If the observed p is indeed close to the theoretical p for the method, e.g. observed p = 1.97 for 
a nominally second-order method, one may proceed with some confidence. However, it must be 
remembered that a variety of factors can cause noisy p, i.e. a different grid triplet can produce a different 
observed p. Furthermore, sampling of the possible grid triplets could produce a misleading observed p ~ 2, 
when in fact more complete calculations would show considerable noise (or even non-convergence). 
Nevertheless, in the spirit of the targeted 95% certainty, if the observed p is close to 2, one may proceed 
with some confidence. A more scrupulous approach is to verify that the observed p is ~ constant by 
calculating p for at least two separate grid triplets. This requires performing a minimum of 4 grid 
calculations, which would allow as many as 4 grid triplets and observed p’s. Note that 4 grids (a,b,c,d) give 
4 possible grid triplets of (a,b,c), (a,b,d), (a,c,d), (b,c,d). However, Eça and Hoekstra (2000a, 2002a) limit 
their grid triplets to r  2, which may eliminate some triplets from a 4 grid set. 
 The consequences of noisy p should be kept in perspective. Noisy p does not necessarily indicate an 
unstable algorithm or divergence. The methods and even the grid resolution may be adequate for accuracy. 
Noisy p just makes the error estimation and uncertainty estimation somewhat problematical. 
 Another contributor to noisy observed p or simply degraded p (e.g. observed p ~ 1.2 for a theoretically 
second order method) is the use of any kind of interface tracking or moving boundaries and/or re-meshing 
algorithms. These can be a challenge to achieving and convincingly demonstrating second-order 
convergence rates even in the Code Verification stage. Likewise, the presence of singularities can degrade 
the observed convergence rate, even though the coding may be demonstrably error-free. 
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 When observed p over 4 over more grids is far from constant, the recommended procedure is to use a 
least-squares determination of effective p. 

5.11.3 §  Evaluation of Observed p by Least Squares 

 The evaluation of observed p by least-squares may seem to be a natural extension for noisy 
convergence, but few have attempted it. Eça and Hoekstra (previously cited) have developed it fully. It 
requires much testing to evaluate the procedures and justify the Fs in applications. They took an exhaustive 
look at grid convergence for several problems from laminar 2-D driven cavity to 3-D turbulent free-surface 
flows, using as many as 24 grid sets. i.e. grid triplets. (They are serious about quantification of 
uncertainty.)  
 They demonstrated that grid convergence can be remarkably consistent with theory for simple problems 
(the well-behaved Laplace problem, for which virtually any grid is within the asymptotic regime, gives 
observed p = 2.00) but for realistic CFD problems (3-D RANS solutions for the Wigley Hull and the 
KVLCC2 tanker) convergence is often not monotone and the observed p often involves significant scatter 
(noise) and is undependable. Chance grid sets may show observed p ~ 2, but other nearby sets fail. This is 
not unique to their problems or codes, but is (we believe) representative of CFD and possibly 
computational PDEs in general. 
 The authors showed that a major contributor to this noise is the difficulty of attaining geometric 
similarity of the grids with non-integer grid refinement and especially multi-block grid generation. The 
latter appears to be an unavoidable limitation. Without strict geometric similarity, the grid refinement 
factor r is not defined strictly. Numerical interpolation and/or quadrature is also a contributor. There are 
two very positive conclusions. Turbulence modeling is not a contributor, if switching functions are not 
used. And, the Reynolds Number does not have a significant effect on the intensity of the scatter in 
observed p. 
 For such problems with resulting data scatter in observed p,  Eça and Hoekstra developed the least-
squares procedure, requiring a minimum of 4 grid solutions, for determination of effective convergence 
rates, which provide improved error and uncertainty estimation for the difficult problems. For realistic 
problems, more than the minimum 4 grids may be necessary; they obtain (Raven et al, 2002) “fairly stable 
results using about 6 grids with total [overall] refinement ratio near 2.” The later incarnations of the 
method limit the p used, since it clearly would be imprudent to calculate GCI with observed p >> 
theoretical p. Although such superconvergence can occur, and would be appropriate to use if one were 
actually using the extrapolated solution (Section 5.4), it is usually not real but rather an artifact of noisy 
convergence and sampling. Observed p > theoretical p is generally an unreliable result, and it is 
recommended for uncertainty calculations that max p ~ theoretical p be used. On the other hand, there 
seems to be no reason to categorically reject 0 < observed p < 1. If observed p is < 1, it probably means 
that the coarsest grid is somewhat outside the asymptotic range, and the resulting uncertainty estimate of 
the GCI may be overly conservative. This is not an impediment to publication or reporting. 
 Eça and Hoekstra (2002a) applied the least squares approach to several models of convergence 
including the one-term expansion with unknown order p considered herein. Other possibilities considered 
were one-, two- or three-term expansions with fixed exponents. (For example, a two term expansion with 
p’s = 1 and 2 could be appropriate for mixed-order discretization arising from first-order advection terms 
and second-order diffusion terms (Roy, 2003), or perhaps directional bias.) The simplest method works as 
well, and is recommended, as follows. (The notation is that of Pelletier and Roache, 2006.) The assumed 
one-term expansion of the discretization error is 
 

p
ii ff               (5.11.3.1) 
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The least squares approach is based on minimizing the function61 
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where the notation f∞ suggests the limit of fine resolution (in the absence of round-off and iteration errors). 
Setting the derivatives of S with respect to pf ,,  equal to zero leads to 
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 The last equation is nonlinear and is solved iteratively by a false position method for observed p . The 
number of grids Ng must be > 3, and Eça and Hoekstra consider only 0 < p < 8. As noted previously, for 
use in calculating an uncertainty estimator as in the GCI, they further recommend restricting max p used to 
theoretical p. Another feature follows. 

5.11.4 §  Replacement of ε by Data Range 

 The least-squares version of the GCI (LS-GCI) primarily involves least-squares evaluation of observed 
p, as described above. A later feature developed by Eça and Hoekstra is the replacement of ε of Eq. (5.4.3), 
the change in the quantity of interest over the last two grids in the sequence or ε12 , by the data range ΔM 
over a range of grids. These are somewhat subjectively defined as all the grids calculated (Ng above) or 
those grids that seem to be in the acceptable range ( Ng), or just the last two grids, in which case ε = ΔM . 
This produces a more conservative uncertainty estimate, and is recommended for difficult cases. 
 However, what is definitely not recommended are ad hoc attempts to simplify the task of uncertainty 
estimation by replacing the GCI with an uncertainty estimator = Fs×ΔM (or simply ΔM or ε). To do so 
neglects the important functional dependence of 1/(rp - 1). Neither ΔM nor ε are ordered error estimators, 
and  ε can be made (almost) arbitrarily small by choosing r close to unity, limited only by r = 1 + 1/N. (See 
Roache, 2008b for further discussion.) To give a specific demonstration of just how serious this mistake 
could be, consider a well behaved problem with p = 1, and a 100D grid. Calculate the change in the solution 
ε for a change in the grid to 99D. (It could be done in principle: see Table 5.10.1.1.) Richardson 
Extrapolation shows that the ordered error estimate is  
                                                
61  Wood and Kleb (2002) have also developed software for least-squares determination of observed p. 
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 ε /[rp - 1] =ε / [(100/99) - 1] = 99 ×ε           (5.11.14.1) 

 
So ε alone would be unconservative by a factor of 99. Some estimator !  

5.11.5 §  Choice of Fs for the Least Squares GCI 

 Even with these later features of the LS-GCI (limitation of p and replacement of ε by ΔM ) poorly 
behaved problems (notably RANS turbulence models outside the asymptotic range) do not produce reliable 
uncertainty estimates with Fs = 1.25. (Examples will be cited in Chapters 6 and 8.) Consistent with the 
recommendations in Section 5.9.2, the simple solution is to use Fs = 3, resulting in a larger and somewhat 
unpalatable uncertainty estimate, when the observed p is suspicious, e.g. p > 2.2. But there is one more 
difficulty. Eça and Hoekstra (2008b) noted that this recommendation works well for a single case and a 
single verification quantity. But for a range of cases, e.g. base pressure variation over Reynolds number, 
the test may give different results for different ranges. Even for one problem, different verification 
quantities (e.g. velocity components) can produce slightly different p’s. Though not a problem in itself, the 
difficulty is that an insignificant variation in observed p (over location or parameter variation) can cause a 
jump in Fs from 1.25 to 3 and an unreasonable jump in uncertainty estimate. Obviously one could blend the 
change in Fs, but this introduces additional empirical parameters that can only be justified, practically 
speaking, on small scale ad hoc studies. This final aspect remains somewhat unsatisfactory at this time; the 
analyst can choose between the (perhaps) overly conservative Fs = 3, or tighten the uncertainty estimate but 
possibly introduce disconcerting jumps as Fs may switch from 1.25 to 3, for these poorly behaved 
problems. The preferred route is to do the work to achieve the asymptotic range. 

5.11.6 §  Further Refinements and Summary for the Least Squares GCI 

 Eça and Hoekstra developed further refinements to the Least Squares GCI. A good summary and 
evaluation is contained in Eça and Hoekstra (2009b) using MMS to produce a realistic exact solution for 
turbulent boundary layer flow using a k -  turbulence model. The paper also carefully examines 
incomplete iteration error (as described in Section 5.10.10.2) and its interaction with discretization error 
estimates. 
 The basic LS-GCI method uses Eqs. (5.11.3) to evaluate observed p by least squares. For a nominally 
second-order method, if observed convergence is monotonic and this observed p is between (roughly) 1 and 
2, the GCI is used with Fs = 1.25, i.e. GCI = 1.25×E where E is the Richardson error estimator. But if 
observed p < 1 (roughly), E tends to become overly conservative so E is replaced by the minimum of E and 
the data range ΔM (Section 5.11.4). Next, the estimated discretization uncertainty Unum = GCI can be 
increased by the (sample) standard deviation of the least-squares fit Us ,similar to the Df term of Eq. 
(5.10.10.3.10). This term is essentially never the most important part of the estimated uncertainty; it could 
only happen if the scatter were very large62, indicating something seriously wrong in the computation (Eça, 

                                                
62 Logan and Nitta (2006) perceptively noted that the additional uncertainty Us arises conceptually because 
the LS-GCI involves a “model of a model,” i.e. the least squares fit or model (with its uncertainty Us) of a 
one-term power series model of the convergence. Their small set of problems with “intentional choice of 
grid studies with oscillations in both exponent p and output quantity f ” led to such large Us that it alone 
provided conservatism without the need for Fs > 1. This result will be misleading for more reasonable 
problems, for which Us is negligible and Fs > 1 is necessary to attain 95% coverage. They also considered 
the variant of least squares minimization of Us +|E| rather than E, which result does not behave correctly 
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(2009). Finally, if observed convergence is not monotonic, ε is replaced by the data range ΔM and Fs = 3 is 
used. These refinements are summarized as (A-C) following (Eça and Hoekstra, 2009b). 
 
(A)  The apparent convergence condition is determined by Eqs. (5.11.1). Observed p is evaluated by LSQ 
fit of Eqs. (5.11.3). A correction (usually small) by (sample) standard deviation of the fit Us can be 
evaluated. 
(B)  For apparent monotonic convergence, the discretization uncertainty Unum is estimated as follows, with 
the GCI evaluated with Fs = 1.25. 
 (B1) For 0.95  p < 2.05, Unum = GCI + Us 
 (B2) For 0 < p < 0.95,  Unum = min { [GCI + Us], [1.25 ΔM ] } 
 (B3) For  p  2.05,   Unum = max { [GCI + Us], [1.25 ΔM ] } 
(C)  If the apparent convergence is not monotonic, 
         Unum = 3 ΔM  
 
 As noted previously (Section 5.11.5) the use of switches means that an insignificant variation in 
observed p (over location or parameter variation) can cause an unreasonable jump in uncertainty estimate 
Unum for poorly behaved problems. The preferred approach is to do the work to achieve the asymptotic 
range. 

5.12 §  PRACTICAL ALTERNATIVE APPROACH TO CALCULATION UNCERTAINTY 

 Rather than targeting 95% certainty as in the GCI approach, Sinclair et al. (2006) adopted a practical 
alternative approach to the evaluation of accuracy and prediction for Computational Solid Mechanics 
problems, including detection and treatment of singularities (see Section 5.10.4.1). They aimed to achieve 
and predict (in the error estimation) one of the four accuracy levels:  
 
  excellent, or < 1% error in stress prediction 
  good, or <5% 
  satisfactory, or <10% 
  unsatisfactory, or ≥ 10%.  
 
They evaluated the error estimate as an unambiguous success if the correct level is predicted, and 
acceptable if they missed by only one level, without worrying about being inside or outside target error 
bars, which is the GCI approach. This criteria is rational and seems appropriate, especially for the difficult 
problem of singularity detection, and probably would be easier to correlate with single grid estimators 
(Chapter 7). It would seem to be more in the spirit of expert opinion63. The GCI uncertainty approach has 
become well established, but the approach of Sinclair et al is a reasonable alternative and in step with 
engineering practice "in the trenches." 

                                                                                                                                                       
for more benign problems but provides further robustness, and another variant involving a “prediction 
interval correction extrapolation to h = 0.” They also use the term “Response Surface Method” for LS-
GCI. Although their methods are effective, the approach of Eça and Hoekstra is straightforward and more 
tested.  
63 As was the original GCI, where the criterion for acceptance was relating the actual ε to an equivalent ε 
for a second order method with grid doubling, deemed acceptable by expert opinion. See Section 5.6. 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

156 

5.13 §  INCORRECT ALTERNATIVE APPROACH TO UNCERTAINTY AND VALIDATION 

 In November 2004 a Workshop on V&V was organized by the U.S. National Institute of Standards 
and Technology (NIST) at their offices. The purpose was (Fong and de Wit, 2006) to “advance the 
research on a framework of methodologies for the verification and validation (V&V) of computer models of 
complex engineering systems with or without experimental data.” (Emphasis added.) Of course, Validation 
“with or without experimental data” is an oxymoron, so credibility was lost in the first sentence. Also 
requested was input from V&V practitioners (31 of the 50 participants were from outside NIST) on the 
NIST approach, notably to “assess and improve the resulting metrology-based approach to V&V” referred 
to as MV&V (Fong et al, 2004). For comments on the Workshop itself, see Roache (2006). 
 The basic approach, and the basic flaw, of metrology-based V&V is to treat the results of simulations 
like one treats statistical variations in a production manufacturing run.64 MV&V would replace the 
inconvenience of experiments with a kind of democratic approach called a “consensus mean” in which the 
results of various simulations are weighted and combined with statistics to arrive at the benchmark values. 
One might hope that at least a 4th order solution on 107 cells would be weighted more heavily than a 1st 
order solution on 102 cells, rather than a pure democracy of “one code, one vote.” But the coarse grid, 1st 
order solution would be counted as part of the Validation replacement for experimental data. We in the 
V&V community must be clear and unequivocal: 
 

No Experiments  No Validation 
 
 When it comes to complex engineering systems, I am not a purist. I would be open to the possibility of 
considering a claim to Validation and/or Verification of a system based on V&V of components and their 
interactions. There will be doubts about unanticipated coupling, exceeding parameter ranges, etc. Many 
have made a good case for the more demanding claim that only full systems experiments should deserve the 
claim of Validation. Likewise, I can defer to engineering judgment of experts in regard to interpolation and 
even extrapolation in the input parameter space, and determining the limits of the domain of Validation. 
And of course the criteria for acceptable level of Validation for applications may necessarily be 
compromised by one’s inability to perform good experiments (e.g. limitations on weapons testing) or the 
impossibility of controlled experiments (e.g. true astrophysical experiments, climate modeling, etc.). Again, 
I have no problem with claiming Validation for weak agreements, provided that some quantitative 
correspondence exists (e.g. parameter trends) and that the coarse level of agreement has some engineering 
or scientific utility. But the referent must be physical measurements, not simply an ensemble of un-
validated computations. 
 The suggested MV&V approach also covers Calculation Verification, in the same democratic fashion. 
This approach is not just questionable; I believe that it can demonstrated definitively to be wrong. If 
MV&V for Calculation Verification works at all, it should work for the best-behaved computational cases:  

(a) correct codes (i.e. no coding errors),  
(b) simple well-behaved linear problems (no singularities, no advection terms, e.g. a Poisson problem 

with a smooth source term),  
(c) regular mesh generation (e.g. uniform quadrilaterals or triangles),  
(d) rigorous iteration convergence criteria or use of direct solvers with insignificant round-off 

accumulation, 
(e) high enough resolution on all meshes used to provide monotonic mesh convergence behavior (very 

easy to achieve for the example Poisson problem). 

                                                
64 This concept is applicable to a statistical analysis of a state of the art; see Section 10.24. 
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 For these best-behaved cases, consider the MV&V approach of processing the results of N1 
hypothetical codes on N2 meshes. The hypothetical N1 codes all use the same continuum equations, 
including boundary conditions, so there exists an unambiguous correct mathematical answer. The 
hypothetical codes cover a range of orders of formal accuracy; to be specific, we consider orders of 
convergence (theoretical and observed) p = 2,4,6,8. Consider meshes starting from coarse resolution (say 
10 elements in each direction, giving accuracy of perhaps ~20%) but still fine enough (for this simple, well-
behaved problem) to be within the asymptotic range so that mesh convergence is monotonic. At the high 
end, we consider a large number, say 104 elements in each direction. 
 The MV&V method will always give a mean solution that is worse than the best solution. (The best 
solution would be the highest order method on the finest mesh.) This must be true because MV&V weights 
the best with the worst solutions (lowest order method on the coarsest mesh). Furthermore, the variance of 
the solutions will always give error bars (i.e. mean  ) that are inside the extremes of the results; yet the 
true answer is in fact always outside the set of all results. This is because the convergence in these best-
behaved cases is monotonic, i.e. the convergence is one-sided, so the correct answer is approached 
asymptotically, and it will never be obtained by any interpolation or averaging of individual computations. 
In fact, the best estimate is obtained by extrapolation, whereas the MV&V approach is always some kind 
of interpolation. 
 If we looked only at codes using 2nd order methods, and if the mesh resolution sampling were well 
covered, the MV&V estimate might loosely be expected to be close to the solution on a 103 mesh, whereas 
the true answer lies beyond that of the 104 mesh, and outside the error bars provided by the variance of the 
results. 
 If we looked at only one mesh, say the 102 mesh, the MV&V estimate might loosely be expected to be 
close to the solution obtained by the p = 2 or 4 method, whereas the true answer lies beyond the p = 8 
solution. However, for this situation the variance might provide a conservative error band. 
  Not surprisingly, the example MV&V exercise in Fong et al (2004) showed no significant mesh 
convergence tests (except for case CPS4). The essential point to bear in mind is that all the (correct) codes 
will give the correct answer asymptotically as the mesh is refined. So why not do it? And why give any 
weight at all to the CPS4 solutions in 1210 and 1420 meshes, when we have a 1480 solution that 
must be better than the first two? (The information from the first two solutions can of course be well used 
to extrapolate to a better estimate and provide error estimates, but this is not considered by the authors.) 
Also, since all the (correct) codes will give the correct answer asymptotically as the mesh is refined, there is 
no need to run the case “in as many FEA codes as possible.”    
 In summary, the MV&V has nothing to do with Validation (experimental agreement) and demonstrably 
cannot correctly do the Verification. The basic choice of a “consensus mean” is incorrect. To continue the 
analogy used in Fong et al (2004) with experimental results from different laboratories, the MV&V 
approach would be like statistically analyzing 100 laboratory results for the speed of light, one of which 
was provided by the Stanford Physics Labs, one by CERN, and the other 98 by high school physics 
projects. 

5.14 §  BAYESIAN VS STRICT FREQUENTIST INTERPRETATIONS FOR GCI 

 The interpretations of the uncertainty given so far for the GCI and similar numerical uncertainty 
estimators are intuitive and straightforward. As we described in Section 2.3.2.2, the most common type of 
error bar or “expanded uncertainty” denoted by U95% indicates that we want to put a ± error bar (or error 
band) around our calculated value that we expect to contain the true (mathematical) value in about 95% of 
cases, or with about ~20:1 odds. However, we noted that there are some underlying issues that are long-
standing controversies in the statistical and engineering communities. Intuitively, and in normal 
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conversation, one could also speak of ~95% level of confidence, or ~95% probability. But these are loaded 
technical terms to statisticians, and the associated debates strike at the heart of science philosophy. To 
begin, the word “cases” needs some consideration. 

5.14.1 §  Representative Populations for Computational Uncertainty 

 65To begin speaking carefully (which can be tiresome) about statistics, one needs to define a population 
on which statistics are done. As in Coleman (2002), the estimated computational or experimental solution 
value S is related to the true (computational or physical) value T by the definition of Uncertainty U95% , 
 

%95|| UTS              (1) 
 

in 95% of the cases.66  
 The very concept of error bars or probabilistic uncertainty statements for a computational result is not 
without a controversial aspect, and therefore must be addressed herein, even at the risk of pedantry. The 
computation of a single problem is deterministic, not probabilistic; there is a single unambiguous correct 
answer achievable with adequate grid (space and time) resolution. While an error estimate (such as that 
obtained with Richardson Extrapolation) is unquestionably appropriate, it has been argued (Oberkampf et 
al, 2004) that a probabilistic statement comparable to that used for experimental results is not appropriate. 
“We believe that representing the uncertain estimate of [numerical] error as a probability ... is not 
defensible, since convergence of numerical errors is more closely analogous to bias errors in experimental 
measurements.” Others (Coleman, 2002; Roache, 2003c) have argued that it is a reasonable approach to 
use uncertainty for computations. The key concept is that of a gambler’s bet, and formulating a consistent 
problem ensemble (or population, or class, or collective). 
 We might consider the class of all CFD problems, or more generally all computational PDE problems, 
or less generally all transonic airfoil problems. The more specific the class, the easier it would be to make 
precise the error measure for the class and to avoid normalizing ambiguities, i.e. we could look at CD or CL 
for airfoils. But if some fuzziness in the metric is allowed, we could meaningfully speak of a % error for a 
broad class of problems. For specificity in the discussion, consider the following “Publication Ensemble”: 
the class of all computational PDE problems (and CFD, MHD, laser, plasmadynamics, heat transfer, etc.) 
submitted to both the AIAA Journal and the ASME Journal of Fluids Engineering during the decade of the 
1990’s. This would define a population or collective of some hundreds of physical problems, and even 
more computational problems, since each solution presented (e.g. different methods, parameter sets, final 
grids) constitutes a separate entry (“case”) for our statistical ensemble. Whether or not an error estimate 
has been made for each entry, it is true that each entry has with it an associated exact asymptotic answer.  
 We are considering only grid convergence, i.e. the exact answer for the continuum differential 
equations, without considering the modeling accuracy of either (a) of the governing partial differential 
equations (the Validation issue, e.g. we are not considering the adequacy of turbulence models) or (b) of the 
far-field boundary conditions. The latter is another Calculation Verification issue, which can be addressed 
by methods analogous to a grid convergence exercise, e.g. systematically testing the sensitivity of answers 
to the position of the outflow boundary and the boundary condition imposed there, and thereby estimating 
                                                
65 This subsection is taken from Roache (2003a). 
66 Recall that there are two “true” values, the computational true solution (an idealization approached as the 
limiting solution of the mathematical model) and the physical true solution (also an idealization, 
approached conceptually as the limit of the perfect experiment). Assessment of the disagreement between 
these two true values, clouded by the uncertainties of each, is the subject of Validation. 
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that error. (See Section 6.10.) A complete “numerical error bar” would include these other factors, such as 
the estimate of uncertainty from finite domain size, as suggested by Karniadakis (1995). 
 To say that each entry in our ensemble has associated with it a true answer does not of course say that 
we know the true answer, any more than it does in an experiment. In both the computational and 
experimental situations, the “true answer” is an abstraction that is still useful as the standard. In both 
cases, it is meaningful to estimate bias errors, but in the experimental case one also can run repeat 
experiments (with different set-up position errors, different atmospheric conditions, drift in instrumentation 
errors, etc.) for a single problem and produce estimates of the random error. As the number of experimental 
replications increases, the mean converges (by definition of bias error) towards the correct value (defined in 
relation to the abstract “true answer”) except for bias error. This claim of convergence of the mean to the 
correct answer except for bias error might seem to import great power to repeat solutions, but this is 
illusory; it occurs simply because the difference between the converged mean and the true answer is defined 
as bias error. The estimation of bias error can be approached by repeated testing in various facilities, but 
the mean of these results does not approach the true answer, i.e. there almost certainly are experimental 
errors common to all facilities that are not random about the true answer, e.g. tunnel free-stream turbulence 
effects.  
 One could imagine a similar approach in the computational case, with a single physical problem being 
re-calculated with different grid sequences, different discretization methods, different iteration convergence 
criteria, etc. and thereby produce a distribution of results with random errors for a single problem. 
However, this concept is not of much practical importance, in my opinion. The more practical concept is 
the probabilistic assessment of the accuracy for the Publication Ensemble, stated as a “gambler’s bet.” 

5.14.2 §  Implied Uncertainty of an Error Estimate 

 Any one continuum mathematical problem has a correct answer, and for it we have one computational 
answer, with (hopefully) an associated signed error estimate Ee. As is well known, one cannot perform 
formal statistics with a sample size of 1. Yet if we consider an ensemble of problems, we can do statistics. 
We might be able to say something like the following: the true answers for all these problems lie within the 
given computational solutions  the associated error estimates, in 50% of the cases. Then we could say that 
we had 50% “confidence” (on this use, see footnote #34 on page 122), or a 50% confidence interval, and 
the absolute values of the error estimates would constitute a 50% uncertainty.  
 

%50|||| UEeTS            (5.14.2.1) 
 
Then for any one sample problem from the ensemble, a gambler’s bet would be even odds (1:1) or 50% 
probability that the true answer for the sample problem would lie within the given computational solution  
|the given error estimate|. 
 For an ordered estimator like E1, considering the wide range of problems in the Publication Ensemble 
or similar population, there is no reason to expect any preference for signs of higher order derivatives in the 
expansion of the error estimate. The true values will show no preference for being either > or < the ordered 
error estimate. Nor will this be changed by considering problems in which higher derivatives are not 
defined. It is also a reasonable assumption for any kind of best estimate, e.g. database values for material 
properties are just as likely to be high or low (unless they are “conservative” estimates vs “best” estimates). 
So quite generally, if δ is a signed estimate (ordered, or “best” in some sense) we can reasonably take 

 
%50|| U           (5.14.2.2) 
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For related discussion see Section 2.3.2.2 and Roache (2003a).  
 In computational and experimental practice, errors estimates have (consciously on unconsciously) been 
utilized as uncertainties of U50%. It has been argued (Oberkampf et al, 2004) that the grid convergence error 
of computations is more akin to experimental bias errors than to experimental random errors, and therefore 
the concept of uncertainty in computations is not appropriate. Even if the first part of the statement is 
granted, we assert (V&V20) that “uncertainty’ in the sense of a gambler’s bet is also applicable to 
experimental bias errors, in the same way that here it is applicable to computational errors, i.e. in the sense 
of an ensemble. Professional associations of experimenters (e.g. the Supersonic Testing Association) make 
assessments (estimates) of bias errors of their facilities. The ensemble of all these facilities can be treated 
as a population, and an overall estimate can be made of the state-of-the-art including an error bar or 
uncertainty estimate. In fact, it is impossible to use experimental data in any project involving Risk 
Assessment and Management without such an uncertainty estimate. Note that bias error estimates are not 
sufficient; an uncertainty estimate is required. But if only an estimate is given, without an explicit statement 
of probability, the only rational approach for an outsider with no additional information is to treat the 
absolute value of the error estimate as a 50% uncertainty. For example, Hemsch (2002) summarized a 
benchmark workshop organized by AIAA and NASA to Validate lift and drag predictions of a wing-body 
combination. 35 CFD calculations were presented. Statistical analysis indicated that the standard deviation 
of the solutions (even after exclusion of outliers) was 21 drag counts (CD  0 0001. ) while wind tunnel 
data is believed to be accurate to 4. (The industry goal is 1, on the order of 0.5% of total drag of a modern 
transport aircraft.) These results were quoted without criticism in Oberkampf et al (2002); I believe the 
exercise implicitly recognizes the legitimacy of probabilistic uncertainty statements for computational PDE 
results, and indeed the necessity of these for comparisons with experiments. 
 There remains a residual fuzziness in the statistical treatment of computational results, in that standard 
deviations are defined with respect to the mean of the data, whereas our error bars refer to deviations from 
the exact (x, t  0) solutions, which are not the mean. 
 When computationalists report an error estimate, e.g. based on RE, they are at best reporting an 
estimate of U50%, not U95%. The standard tolerance for experimental work is not 50% error bars, but 95%. 
That is, experimenters will present (graphically or algebraically) an error bar that includes 95% of the 
data67. Although experimental practice is such that a reliable U95% usually is not met, it is at least honored 
in the breach; it is the stated goal.  
 Validation involves calculation of discrepancies between experimental data including their uncertainty 
with computational data including their uncertainty. It does not make sense to base the Validation metric on 
|UEXP + UCOMP| when UEXP is a U95% but UCOMP is a U50%, i.e. merely an |error estimator|. The use of U95% 
means that the odds (gambler’s odds) of any particular sample drawn from the data set being within the 
[mean  error bar] are ~20:1. If the scatter is Gaussian, this closely corresponds to the 2- band 
(~95.44%). Note, however, that the definition of the error bar does not depend on the scatter being 
Gaussian or symmetric or even unimodal, and is unambiguously defined once some trivial details are 
addressed.68 Occasionally, other tolerances are used,  often corresponding to Gaussian 1- (~68%) or 3- 
(~99.7%). The customary 95% experimental goal has been specifically acknowledged and adopted by 
                                                
67 The reliability of the experimental error bar for random error component increases as the number of 
replications increases, a quality that ideally would be included in the definition of a metric for Validation 
(Oberkampf and Trucano, 2002; Oberkampf et al, 2004). 
68 For example, if there are only 10 data points, the error bars cannot contain 95% of the data, but either 
90% or 100%. Likewise, if some of the data entries are repeat values, the error bars may be forced to 
include more or less than 95%. The individual statement of the error bar is readily modified to clear this up, 
if necessary. 
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several CFD practitioners (see refs. 1,4,15-29 of Roache, 2003a), although the actual practice has often 
been inconsistent. Note that by focusing on the experimental data set, rather than the abstract “true 
(physical) solution”, the experimenter can meaningfully speak of a true error bar for the data, i.e. a quantity 
U95% such that [mean  U95%] includes 95% of the data. One could also conceive of theoretical models of 
the components of scatter (e.g., one could model position errors) and convolve these to develop a theoretical 
model of the true error bar, i.e. an estimate of the true error bar. 
 Likewise, returning to the Publication Ensemble, we may speak meaningfully of an abstract true error 
bar for this ensemble. That is, in principle we could re-evaluate all these problems with highly accurate 
numerical solutions, and establish a database of true computational solutions and establish U95%. 
Consideration would be given to normalizing across the entire data set, perhaps evaluating all metrics as % 
errors. If the dimensional local values are of interest, these could be normalized with a representative value 
for each problem, not by dimensional local values, to avoid near 0/0 indeterminacies. Alternately, if 
necessary for this mental exercise, we could restrict our ensemble to (say) drag calculation on airfoils. As 
in the experimental situation, we can now speak of a true error bar attainable in principle for the 
Publication Ensemble, and as well speak of methods for obtaining estimates of the true error bar. 

5.14.3 §  Bayesian vs. Strict Frequentist Statistics 

 All these issues will be familiar to any reader acquainted with the long-standing cultural divide between 
the Bayesian and (more traditional) strict frequentist schools of statistics. For applications of the GCI and 
other uncertainty estimators, common sense and engineering intuition are all that is needed, and this Section 
is not required reading. For those interested in pursuing the subject, three references are recommended: 
Kasser (2006), Wagenmakers et al (2009), and especially O’Hagan (2004). The subject is huge, the 
arguments are subtle, and emotions run strong. The consequences are stark, e.g. validity of interpretations 
of clinical tests of anti-cancer drugs. The publications bounce between declarations of boring and obvious 
statements to those of virtually impenetrable subtlety.  
 Statistics began with the frequentist approach (von Mises, 1957, first German edition 1928) in which 
“a quantitative probability concept must be defined in terms of potentially unlimited sequences of 
observations or experiments. The relative frequency of the repetition is the ‘measure’ of probability...” Von 
Mises termed these sequences “collectives,” now more often called populations. This approach also limits 
the statistics to application not to another data set of similar type as the original population, but only to 
new populations derived from the original by four types of allowable “mixing” operations; the full 
limitations of this strict interpretation is seldom acknowledged. Von Mises stated “It is brought out 
repeatedly in this book that the word ‘probability’ has a meaning in everyday language that is different 
from its quantitative meaning in probability calculus.” Thus we are again confronted with “mere 
semantics.”  
 Opponents of the strict frequentist interpretation are not opposed categorically to re-defining everyday 
language terms to a more specific meanings within a technical context. The problem is that practicing 
engineers and scientists need both meanings, and the strict frequentist approach does not allow both. Here 
is an example taken from Wagenmakers et al (2009). 
 Consider a frequentist confidence interval for the normal mean µ of a given population, µ: µ є {-0.5, 
1.0}. For a strict frequentist, the only correct interpretation is the following. When the frequentist 
procedure is applied many times to all kinds of possible data sets, the different intervals cover the true 
value of µ in 95% of the cases. This is counter-intuitive, and more importantly, irrelevant to researchers 
who want to learn about µ for their data. “Consistent with intuition, and consistent with what researchers 
want to know, this Bayesian interval conveys that there is a .95 probability that µ lies in {-0.5, 1.0}.” 
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(Wagenmakers et al, 2009.) This intuitive and useful interpretation is a misinterpretation to a strict 
frequentist. 
 If the reader has accepted the interpretation of the GCI data sets given earlier, then he has intuitively 
adopted a Bayesian interpretation. The Bayesian approach to statistical inference involves modeling all 
unknown quantities with probability distributions. This is exactly what engineers and indeed scientists have 
been doing for a long time. Note, however, that the arguments given above in Section 5.14.2 based on the 
gambler’s bet concept may have appeared naive and merely intuitive, but in fact these type of arguments 
are central to the most compelling arguments in Bayesian philosophy. 
 Why is the strict frequentist approach dominant, even though its usefulness is so limited? First of all, it 
is easy to teach a quantitative concept of probability in terms of relative frequencies occurring in indefinite 
sequences using intuitively appealing and familiar thought experiments: coin flips, dice rolls, poker hands, 
etc. Second, in spite of protestations by strict frequentists, people do use Bayesian inference, whether they 
acknowledge it or not. “Perhaps frequentist inference has survived so long because researchers translate the 
frequentist statistical outcomes to informal Bayesian conclusions.” (Wagenmakers et al, 2009) See also 
Kacker and Jones (2003), who pointed out that the internationally accepted and widely referenced ISO 
Guide (ISO, 1995; see also Chapter 11) recommends classical (frequentist) statistics for evaluating 
uncertainties, but it interprets the combined uncertainty from a Bayesian viewpoint.  
 This should not be surprising; it is the way we all assess risks and “probabilities” in our lives. This is 
illustrated pointedly in the personal anecdote of O’Hagan (2004) in a widely referenced, highly readable 
two-page article. (The author has served on the Council of the Royal Statistical Society.) 
 
 “It was my experience, as a young statistician, of analyzing data and producing frequentist tests and 
confidence intervals for other scientists69 that convinced me that the Bayesian approach is the right one 
for statistical analysis. I had great difficulty persuading the scientists not to misinterpret [see example 
above] the frequentist inferences I was giving them. And it was clear to me that this was because the 
correct interpretation was of no use to them. Frequentist inferences make only indirect statements about 
parameters, and can only be interpreted in terms of repeated sampling. Bayesian inferences directly 
answered the scientists’ questions, making statements that were unambiguously about the parameters 
they wanted to learn about. Since that time (more than 30 years ago now) I have been an enthusiastic 
advocate and practitioner of the Bayesian approach.” 
 
 The concept of relative frequency in an indefinite sequence of experiments is very valuable but it is also 
pertinent to Bayesian inference. It is sometimes stated that frequentists will apply the concept of probability 
only to objective and quantitative data, whereas Bayesians are subjective, a very dirty word. But in fact 
Bayesian philosophy is inclusive; it incorporates both objective and subjective probabilities, and if all the 
data are objective, as we would maintain for the GCI data, then that part of the analysis is objective. In 
developing the statistical base for the GCI (including the determination of the value for Fs) I have taken 
some pains to define populations. In this sense, I have tried to align with the strict frequentist philosophy as 
much as possible. I have not agglomerated all the studies into one data base, but each of the sampled data 
bases gives consistent results (bearing in mind the modest goal of roughly 95% coverage). But at the end, a 
strict frequentist would say that the GCI just covers that conglomerate data base. What we need is a 
statement that probably it applies to other cases as well. Our impression is that ultimately a Bayesian 
approach is required if we are ever to use any of such studies or analyses. 
 Traditional engineering classification on experimental errors (and corresponding uncertainties) 
distinguishes random and systematic errors. More recent terminology uses aleatory and epistemic 

                                                
69 Nuclear power engineers and scientists at the U.K. Central Electricity Generating Board (O’Hagan, 
2008). 
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uncertainty, with aleatory (from the Latin alea for dice) referring to uncertainty that is at least in principle 
reducible (through repeated experiments) and epistemic (same root as epistemology, i.e. the study of 
knowledge) referring to uncertainty due to lack of knowledge. The interpretation and application of the 
distinction between random and systematic, aleatory and epistemic uncertainties, is not so neat as usually 
presented; e.g. see NIST TN 1297 (Taylor and Kuyatt, 1994). The strict frequentist approach is only 
applicable to random errors or aleatory uncertainty. A good example is wind tunnel testing. Repeated 
testing of the same models in the same wind tunnel will give a distribution of results, the spread of which 
indicates random error or aleatory uncertainty. (If done thoroughly, as in the classic study of Aeschliman 
and Oberkampf (1997a,b) repeats are done on different days, with removal and reinstallation of models.) 
Such thorough and objective data obtained from a long sequence of experiments are amenable to frequentist 
analysis and to frequentist or Bayesian inference. But the differences from one wind tunnel facility to 
another, and our ultimate interest in the difference between these and reality (i.e. a free flight case) cannot, 
practically speaking, be considered as part of a long sequence. In fact, some experimental facilities are 
unique. Yet the errors must be estimated and assigned probabilities or uncertainties, based on engineering 
analysis, experience and intuition that develops from experience - hence the “subjective” part of Bayesian 
inference. Once these probabilities are assigned, they are treated identically, according to internationally 
accepted standards like ASME PTC 19.1 (ASME 1986); see other references and discussion in Chapter 
11. Intuition is not a mere new-age philosophy; it is developed from experience. (Intuition changes during 
education.) It is part of engineering and science, and should be incorporated into statistical analysis; 
statistics should not be done in an intellectual vacuum. 
 If the reader decides to pursue this subject, it is good to note that many arguments in the literature are 
beyond the level of ordinary engineering practice associated with V&V of computational PDEs, including 
such topics as null hypothesis testing, updating analysis with later data including the importance of prior 
probability assignments in Bayesian methods and some highly suspicious aspects for strict frequentist 
approach, discredited claims of objectivity (vs disguised subjectivity) for the frequentist approach, and the 
different flavors of the frequentist approach (Fisher vs Neyman and Pearson) that have become so 
unconsciously amalgamated that “the confusion between the two different approaches is now close to total” 
and “has rendered applications of classical statistical testing all but meaningless among applied 
researchers.” (Wagenmakers et al, 2009). Other piquant observations follow. 
 
 “I also believe that everyone is born Bayesian, and only lose this state of grace by being exposed to 
frequentist ideas.” (O’Hagan, 2008) 
 
 “We agree ....  that, deep down inside, what researchers really want is to draw Bayesian conclusions. 
Or, in the words of Dennis Lindley,  ‘Inside every Non-Bayesian, there is a Bayesian struggling to get 
out.’ ” (Wagenmakers et al, 2009) 

5.14.4 §  High Consequence Applications 

 Experience has shown that the GCI with the Factor of Safety Fs determined from a fairly extensive set 
of studies involving many hundreds of cases produces a dependable 95% uncertainty estimator, even for 
some poorly behaved problems, especially if the more demanding Least Squares GCI is used. If one is 
presented with a new computational PDE problem that is not radically different from those already tested, 
one can proceed with high confidence, similar to that accruing to the ordinary standards of confidence in 
experimental results and engineering analyses that have led to modern engineering marvels. But if one is 
confronted with a very high consequence analysis, e.g. nuclear reactor performance and safety, and with 
unusually complex physical problems (e.g. multiscale turbulence in highly variable property fluids) it 
would be imprudent to proceed without further support for Fs. This is straight-forward to achieve, with 
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sampled calculations at high resolution performed to assess the adequacy of the Fs, but the computational 
workload is high. Fortunately, such high consequence programs will naturally involve a large body of 
multi-parameter simulations, making it easier to amortize the cost of this determination. (See Section 6.33.) 

5.15 §  EVALUATION OF UNCERTAINTY ESTIMATORS FROM SMALL SAMPLE 
STUDIES70  

 The published literature contains methods for uncertainty estimation justified on one or two cases. This 
is notably the case for single-grid methods (Chapter 7) but is also true for many (indeed, most) multiple-
grid methods. (E.g. see Sections 6.25.2,3.) Several of the presentations and discussions in the Proceedings 
of the Third Lisbon V&V Workshop (Eça and Hoekstra, 2008) described success, or at least promise of 
success, for new or modified U95% estimators, based on a few test cases. What could this mean?  
 If we agree that the target is U95%, i.e. an estimator that includes the actual error in roughly 95% of the 
cases, then we would need to examine at least 20 cases to expect to find one for which the actual error is 
outside the U95% range. (Note this is not truly a “failure” because we do not want to pay the price of huge 
uncertainty estimates for ~100% coverage, including outliers.) Twenty cases would not be sufficiently large 
for dependable statistics; we would expect to need O(100) cases to have confidence in the claim of roughly 
95% coverage. “Cases” do not necessarily mean separate fluid dynamics problems, since the term includes 
multiple grid triplets for the same problem, but for a convincing evaluation of a method for general use we 
certainly need many fluid dynamics problems. To date, I think it is fair to say that only the only uncertainty 
estimation methods that have been subjected to a statistically significant database are the GCI and Least-
Squares GCI, and the related ITTC Correction Factor Method in its latest incarnation studied by Xing and 
Stern (2009); see Section 6.25.2). 
 In spite of this, I believe that the small sample studies are valuable. The analysts are essentially using 
their intuition, based on extensive computational experience, to cautiously infer something about the U95% 
statistical coverage from the performance on a few cases. Suppose that we have just one case, and it is in 
some sense representative (i.e. not a singular problem, not a terrible grid, there are some points in a 
boundary layer and along a backstep, observed p is reasonable, etc.). If the U95% estimate is 20% while the 
actual error is 0.2%, we would at least hypothesize, perhaps reasonably conclude, that the uncertainty 
estimator is far too conservative (by ~ two orders of magnitude) even though we all know that we cannot do 
any statistics with a sample size of one. Conceivably, we might do 100 total cases and find that it is non-
conservative in the other 99 cases. But we are not doing blind statistics uninformed by experience, and if 
such a study showed 99/100 cases were non-conservative and 1/100 showed the estimator was far too 
conservative, we would surely re-examine that special case, expecting to find that a mistake was made. 
Similarly, if we examined 5 cases and two were non-conservative but only by a little (say, U95% estimator = 
10% and actual error = 11%) we would be encouraged, even though if this pattern later proved to be 
replicated for 1000 cases, we would have verified not a U95% estimator but an inadequate U60% estimator. 
 Although these small sample studies, combined with well-founded intuition, are valuable, the 
convincing statistical evidence can come only with hundreds of cases, on some range of fluid dynamics 
problems. (Alternately, one could perform the evaluation only for a limited range of problems of interest, 
e.g. drag of ship hulls, claim only this success, and leave it to someone else to evaluate the U95% estimator 
on another problem like airfoil lift or structures, if that is their interest.) 
 With such statistically significant evaluations ultimately in mind, it seems ill-advised to be introducing 
too many new parameters into the U95% estimators and fine tuning them on small sample studies. Dr. Jay 
Boris noted ironically in the 1980’s that there were so many variations possible on discretization algorithms 
                                                
70 From Roache (2003a, 2008b). 
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that nobody ever needed to use the same algorithm twice. The same is obviously true of RANS turbulence 
models, with all their switches and knobs, tunable for each new problem. Researchers are creative, and we 
are now in danger of seeing the same situation for uncertainty estimators. However, Eça and Hoekstra 
(2008b) have pointed out, it is also true that excessively conservative uncertainty estimates that “jump” by 
a factor 3/1.25 = 2.4 due to noise around observed p ~ 0.95 or 2.05 are disconcerting and would probably 
not be used. For me, this is an unsatisfying state of our present methodology, but at least it only occurs for 
the most difficult problems. 

5.16 §  ON NOT DISCARDING OUTLIERS 

 The discarding of outliers of statistical distributions is an accepted part of science and engineering 
education. The discarding can be done informally (intuitively) or formally, based on well-established (19th 
century) mathematics and philosophy using Chauvenet’s criterion (widely used) or Peirce’s criterion (better 
founded but more cumbersome), both of which are objective and repeatable (Ross, 2003). The latter was 
used by Xing and Stern (2009) to evaluate a significant data set for their uncertainty method (see Section 
6.25.2). 
 It is my opinion that this process, whether done informally or formally, is invalid for numerical 
uncertainty studies unless further justification is given. As is often the case, convenient and well-established 
mental habits are applied reflexively without re-consideration of the underlying conceptual assumptions. 
We may ask, What is the conceptual basis for discarding a measurement just because it is significantly 
different from others in a data set (no matter that the discarding may be done “objectively” by a repeatable 
algorithm)? The textbook case is typified in Ross (2003) as follows. Ten pressure measurements (kPa) 
were recorded at one setting in an experiment, yielding values of: 
 
 101.2, 90.0, 99.0, 102.0, 103.0, 100.2, 89.0, 98.1, 101.5, 102.0  
 (mean 98.6, sample standard deviation 5.02). 
 
“The pressures of 89.0 and 90.0 appear suspect.” These both could be discarded intuitively, or analyzed 
formally resulting in discard of only the 90.0 value by Peirce’s criterion and none by Chauvenet’s criterion 
(Ross, 2003). The underlying conceptual assumption is that there exists one correct, “true” value, which 
has been corrupted (perhaps by human error). The data were all taken for the same physical problem and 
were recorded at one setting in an experiment, so it is reasonable to be suspicious of any outliers. 
 This is not analogous to the situation of evaluating numerical uncertainty estimators for a variety of 
cases. We cannot assume that a better-controlled “measurement” would have produced less noisy data. 
There is not a single true answer that we can reasonably expect to apply to all cases. We wish it to be true, 
we hypothesize it to be true, and so we test it to see how often it fails (target ~5% failure rate). But it is not 
reasonable to assume (in the strongest sense) that failure of some uncertainty estimator (say GCI) for a 
small number of difficult problems (say multiphysics with mixed type equations and step changes in 
parameters) can be discarded because GCI gives good estimates for a large number of benign problems 
(say strongly elliptic equations). Likewise for studies of the same physical problem wherein outlier “cases” 
might cover completely inadequate grids. A legitimate analog to the experimental measurements would be a 
situation of ten analysts using the same computational model on the same physical problem with the same 
parameters and comparable gird resolutions and discretization algorithms, with noisy variations coming 
from (hopefully higher order) effects such as minor details of coding, iteration convergence criteria, solvers, 
grid details. In this hypothetical situation, an outlier would be legitimately suspect and a candidate for 
discarding. But in the normal case, outliers for uncertainty evaluations can be viewed suspiciously (e.g. 
misapplication of GCI formulas, which has occurred) but they should not be discarded automatically. 



Chapter 5. Systematic Grid Convergence Studies and the ...GCI 
 

 

166 

5.17 §  INCREMENTAL COSTS OF GRID CONVERGENCE STUDIES: THE BLESSING OF 
DIMENSIONALITY 

 It is often heard that one cannot afford to do error estimation by grid convergence studies because of 
the high cost of multidimensional calculations. In fact, the incremental cost of grid convergence studies, 
when properly normalized, is less in higher dimensions. The “curse of dimensionality” is a well-known 
phrase and phenomenon of computational PDEs. In a 1-D problem, if we double the resolution, we double 
the number of grid points N, and we expect that the operation count and computer time will double, at 
least. In fact, for most iterative methods, the number of iterations will also increase with N, so the operation 
count  Na where a > 1, often a ~ 2. Optimal methods like true multigrid give a ~ 1.71 In a 2-D problem, 
when we double the resolution N in each direction, the operation count increases at least by a factor of 4. In 
time-accurate problems, generally the time resolution must be refined similarly to maintain consistent 
accuracy, so doubling resolution in a time-accurate problem with 3 spatial dimension (computational D = 
4) increases the operation count by at least a factor of 24 = 16. From another perspective, an factor of 2 
improvement in computer speed enables only less than a 20% increase in resolution. 
 However, for grid convergence studies, we coarsen rather than refine, and this curse becomes a 
blessing. Consider a computationally 4-dimensional problem (D = 4) and a grid refinement (obverse, 
coarsening) factor r ~ 1.3.72 Consider a base grid of 200 cells (or time steps) in each computational 
dimension, and coarsen by ~ r = 1.3 to produce the grid sequence n = 1,2,3,4 with N(n) = 200, 154, 118, 
90. With the cost of computing a solution on the base grid n = 1 denoted as Cost(1), we have the Cost(n) 
given by  

)1(4)1( 3.1
)1()1()(   nnD

Cost
r

CostnCost
         (5.17.1) 

 
Normalizing the cost of computing a solution on the base grid n = 1 to Cost(1) = 1, the Cost for each grid 
and the total cost  for the 4 grid sequence is 
 

516.1
043.0,123.0,350.0,1)(


nCost

       (5.17.1) 
 
or 52% incremental cost of obtaining solutions for a 4 grid convergence study compared to the base grid. 
 If one considers (correctly) that 2 grids are a minimum requirement, with a cost of 1.350, then the 
additional incremental (and re-normalized) costs for the third and fourth coarsened grids are (0.123 + 
0.043)/1.350 = 0.123, or a 12% incremental cost of obtaining solutions for a 4 grid convergence study 
compared to a 2 grid convergence study. This additional 12% cost allows one to calculate observed 
convergence rate p over as many as 4 grid triplets73 and/or use the Least Squares GCI. In practical 
situations, these penalties will be further reduced when amortized over time for problem definition and grid 
generation, and when combined with economies of sampling of input parameters (Section 6.33). 

                                                
71 For operation counts, see e.g. Chapter 10 of Roache (1998b) and Roache (1995b). 
72 For this example problem, we do not consider halving the resolution (which would make the argument 
overwhelming) since this may put the coarser grids of a sequence out of the asymptotic range. The value r 
= 1.3 is the recommended minimum in the ASME Journal of Fluids Engineering procedure using the GCI; 
see Celik et al (2008). If this minimum is accepted (but see comment at end of Section 5.10.1), then the 
economies calculated are worst-case. 
73 Grid triplets n = 123, 124, 134, 234. 
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5.18 CONCLUSION 
 
 It is recommended that results of systematic grid convergence studies be uniformly reported using the 
Grid Convergence Index of Eq. (5.6.10) or (5.7.2). The GCI provides uncertainty estimates or error bars 
based upon applying an empirically determined Factor of Safety Fs to a grid convergence error estimator 
derived from the theory of generalized Richardson Extrapolation. While not answering all questions 
involved with Verification of a calculation, this method at least enforces some uniformity in the reporting 
and is based upon an objective asymptotic estimate of the grid convergence error. Use of Fs = 1.25 should 
be restricted to convergence studies with a minimum of three grids that experimentally demonstrate an 
observed order of convergence p in reasonable agreement with theoretical p on the actual problem. For 
problems with noisy observed p, the Least Squares GCI of Section 5.11 is recommended. 
 Since the GCI will often be less optimistic than the simplistic  of Eq. (5.4.3), especially for the all-too-
popular 1st-order methods, some reluctance of authors may be anticipated. Fortunately, the formulas are 
simple enough to be applied a posteriori by editors and reviewers. It is urged that they do so in the review 
process to continue improving the quality of computational PDE papers. To quote Ferziger (1993), “... the 
frequently heard argument ‘any solution is better than none’ can be dangerous in the extreme. The 
greatest disaster one can encounter in computation is not instability or lack of convergence but results 
that are simultaneously good enough to be believable but bad enough to cause trouble.” 
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CHAPTER  6 
 

  APPLICATIONS OF  
SYSTEMATIC GRID CONVERGENCE STUDIES AND THE 

GRID CONVERGENCE INDEX (GCI) 
 
 
 

6.1 INTRODUCTION 

 This chapter presents applications of systematic grid convergence studies and the Grid Convergence 
Index (GCI) in both Verification of Codes and Verification of Calculations. The examples are taken from 
various articles in the open literature to exemplify good work and to illustrate the details of sensitivity for 
particular calculations. Such Verification is performed external to the code and therefore is applicable to 
commercial codes, with or without access to the source code (which would be dangerous). It is the easiest 
to apply of all error estimation or Verification methods (it just requires methodical plodding) and is the 
most reliable and flexible. 

6.2 TWO FURTHER EXAMPLES OF (PARTIAL) CODE VERIFICATION IN 
GROUNDWATER FLOW 

 Chapter 3 presented a detailed example of systematic Verification of code (produced by Symbolic 
Manipulation) using the Method of Manufactured Solutions to obtain the non-trivial analytical benchmark 
solution. This methodology is very general. Whether the benchmark solution is manufactured or not, or 
realistic or not, the Code Verification involves the same procedures. So long as the benchmark solution 
exercises all the aspects of the discretization, the Code Verification is convincing.  
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 Following are two further examples of (partial) Code Verification via systematic grid convergence 
studies, both taken from Roache et al (1990). In this paper, we described some our of experiences with 
formulating and applying several benchmark test cases in groundwater hydrology computational PDE 
problems. The problems were all single phase Darcy law flows. Three problem categories were considered:  
 
1. full 2-D groundwater hydrology flow codes tested on a steady problem with constant conductivity in 

stretched cartesian coordinates;  
2. Fortran subroutines produced by computer Symbolic Manipulation for the stencil array evaluation of 

tensor conductivity in general non-orthogonal 2-D and 3-D coordinates;  
3. particle tracking in 2-D and 3-D.  
 
Freedom from coding errors, consistency of the discretization, and order of convergence were Verified. The 
first two exercises, described below, demonstrate successful Code Verification and successful error 
detection. The third example of an unsuccessful “false negative” test will be presented in Chapter 8. 

6.2.1 Darcy Flow in Stretched Orthogonal Coordinates 

 Four codes were considered in this part of the study: SWIFT II (Reeves, et al, 1986), HST3D (Kipp, 
1987), MODFLOW (McDonald and Harbaugh, 1988), and SECO_FLOW (Roache et al, 1995). SWIFT II 
is a code developed by Intera Technologies for Sandia Laboratories. HST3D and MODFLOW were 
developed by the USGS (United States Geological Survey). SECO_FLOW (for Sandia-ECOdynamics) is a 
suite of codes (including 2-D and 3-D SECO_TRACKER and SECO_TRANSPORT) developed at 
Ecodynamics for Sandia Laboratories. SWIFT II and HST3D use primitive variables and allow for varying 
fluid compositions (e.g. brine, heat) whereas MODFLOW and the early version of SECO_FLOW allowed 
for only a pure component. (A version developed later included variable density.) SWIFT II and 
MODFLOW use a Marker-And-Cell (MAC, or Arakawa “C”) staggered grid (e.g., see Roache, 1998b), 
HST3D uses a non-staggered grid (i.e., collocated variables) and SECO_FLOW has options for either. All 
four use fully implicit (backward Euler) time differencing, and all four appear from the problem 
formulations and code descriptions to be uniformly 2nd-order accurate in space and 1st-order accurate in 
time. 
 The simplest formulation of the governing equations for this problem gives a single parabolic equation 
in terms of hydraulic (piezometric) head h. 
 

)( hk
t
hS s 



          (6.2.1.1) 

 
The codes considered all use stretched cartesian (i.e. planar orthogonal) coordinates, so the conductivity k 
may be tensor, provided that the principal axes of k are aligned with x and y; this is effectively a scalar 
conductivity assumption, since it is equivalent to a simple rescaling of x or y. All four use, or have options 
to use, harmonic averaging for the conductance (a combination of the physical variable conductivity and 
discretization terms), but for this first set of tests, only the constant k was verified. (Variable k tests, 
including full tensor k with discontinuities, will be described later.) 
 SWIFT II and HST3D treat much more complicated problems, so that many of their calculations are 
null for the simple problem described here. However, MODFLOW and SECO_FLOW are also fairly 
complex codes, owing not to the complexity of the governing PDE itself, but to the options for harmonic 
averaging and many modeling issues such as definition of aquifer properties, locally confined (artesian) or 
unconfined aquifer conditions, simulation of rivers, recharge, well schedules, inactive regions, etc. (All the 
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SECO codes have the feature of using separate grids to define aquifer properties and to perform 
calculations; this is highly advantageous for performing grid convergence studies.) All of these options 
introduce significant nonlinearities (step function dependencies on the dependent variable h) and coding 
complexities. Also, SECO_FLOW has both regional and local area grid solution capability (i.e. an 
elementary domain decomposition approach) and can treat discontinuous boundary definition of the general 
Robin type, whereas HST3D allows Dirichlet or non-homogeneous Neumann, and the other codes all use 
only homogeneous Neumann boundary conditions.  
 A benchmark (partial Verification) test case for steady flow was formulated as follows. With constant 
aquifer properties on a square domain of (0, a)  (0, a) and no wells, the boundary conditions are as 
follows. (The variable “h” = head for MODFLOW and SECO_FLOW, or pressure for SWIFT II and 
HST3D.) At y = a, the Dirichlet condition applies as  
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and on the other three sides of the domain, the homogeneous Neumann condition applies as 
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The analytic solution is 
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The domain chosen was 40 km  40 km, but these values, like the constant aquifer properties, scale out of 
the results for the test problem. The analytic solution was used to set initial conditions at all points.  
 SECO_FLOW uses this discretized analytic solution to set discrete boundary conditions, which means 
boundary values and values at the first interior cells. Thus, at boundaries with a homogeneous Neumann 
condition, the two-point difference equation for  h n/  is not set to zero, but to the discrete values from 
the exact solution, which only approach zero as the grid is refined.  
 Two problem sets are presented. Table 6.2.1.1 presents results for a uniform staggered (MAC) grid, 
and Table 6.2.1.2 for a stretched MAC grid. The Tables show maximum error ERR_MAX and 
COEFF_MAX = ERR_MAX · (IL – 1 + mac)2, where mac = 1 for the MAC grid, or mac = 0 for the 
collocated grid option. For a uniformly 2nd-order accurate solution, the value of COEFF_MAX should 
become roughly a constant as the grid is refined. 
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 The results in Table 6.2.1.1 display the expected 2nd-order accuracy (somewhat better). The maximum 
error occurs well away from boundaries, e.g., in the 40  40 grid, at (I, J) = (7, 34).  
 Table 6.2.1.2 presents the same type results, but for a stretched grid. The grid stretching used in x 
concentrated (arbitrarily) the stretching at x = 20 km in the 40 km  40 km grid, with a power-law 
stretching with b = 0.5. This gives a ratio of maximum to minimum x-spacing of 1.72 in the 5  5-cell grid, 
and 6.33 in the 80  80-cell grid. The grid stretching used in y concentrated the stretching at y = 23 km 
with b = 0.4. This gives a ratio of maximum to minimum y-spacing of 2.97 in the 5  5-cell grid, and 5.92 
in the 80  80-cell grid. 
 Again, the results display the expected 2nd-order accuracy, and the maximum error occurs well away 
from boundaries, e.g., in the 40  40 grid, at (I, J) = (35, 34). Asymptotic behavior is reached more slowly, 
and the maximum truncation error is larger, for the stretched grid than for the uniform grid, as is to be 
expected for a smoothly varying solution. This is the cost for the increased resolution near the grid 
concentration point (20 km, 23 km).  
 A second similar test problem, which we had previously used on SWIFT II tests, was also exercised on 
SECO_FLOW. At y = a, the Dirichlet condition applies as  
 









a
xcaxh 5.0cos),(         (6.2.1.6) 

 

...509.2
2

cosh 






c              (6.2.1.7) 

 
At x = a, the Dirichlet condition applies as 

IL  JL ERR_MAX COEFF_MAX 
5  5 1.129E–03 2.82E–02 

10  10 4.142E–04 4.14E–02 
20  20 1.390E–04 4.14E–02 
40  40 2.274E–05 3.64E–02 
80  80 4.902E–06 3.14E–02 

 
Table 6.2.1.1. Convergence of SECO_FLOW, Uniform Grid. (From Table 1 of Roache et al, 1990.) 

IL  JL ERR_MAX COEFF_MAX 
5  5 5.906E–04 1.48E–02 

10  10 5.354E–04 5.35E–02 
20  20 4.242E–04 1.70E–01 
40  40 1.704E–04 2.73E–01 
80  80 4.101E–05 2.62E–01 

 
Table 6.2.1.2. Convergence of SECO_FLOW, Stretched Grid. (From Table 2 of Roache et al, 1990.) 
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0),( yah            (6.2.1.8) 
 
and on the other two sides of the domain, the homogeneous Neumann condition applies as  
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The analytic solution for this second problem is 
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 This problem was considered for SECO_FLOW only because it caused difficulties for SWIFT II. 
Although the solution behavior is not significantly more difficult than the previous problem, it does contain 
Dirichlet boundary conditions on two adjacent boundaries. This causes a local error in SWIFT II near that 
corner. No such difficulty arises with SECO_FLOW, as expected. In the 80  80 uniform grid, 
ERR_MAX = 6.265E06 and COEFF_MAX = 4.01E02, which are comparable to the errors for the first 
problem. Also, the maximum error occurs at (I, J) = (22, 41) indicating no difficulty near the corner, in 
contrast to the SWIFT II results, which were clearly indicative of a larger error. The problem was not 
unknown to the code authors; the SWIFT II user manual indicated correctly that Dirichlet conditions at a 
corner cell, where different Dirichlet values apply at each side, will be over-written so that only the second 
entered value is active. Thus, the two adjacent faces of a corner cell cannot have different Dirichlet values. 
That is, due to coding peculiarities (attributable to its age), SWIFT II needs to have  
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 What we could not explain was that, even with the first problem (involving 3 Neumann and 1 Dirichlet 
boundaries), neither SWIFT II nor MODFLOW displayed 2nd-order convergence rates in the resolution 
ranges tested. Both of these use MAC grids. HST3D, which uses a collocated variable grid, did display 
2nd-order convergence rates (as did SECO_FLOW above, also using MAC grids). However, for a related 
problem with specified non-zero flux boundary conditions, HST3D proved to have an error by a factor of 2 
in the magnitude of the computed flux boundary value, only for a steady state calculation. The pressure 
solution itself was correct, but the post-processing evaluation of boundary flux was in error. It turned out 
that this coding error could easily be averted by changing the time differencing scheme selected for the 
steady state calculation. (The coding error was easily corrected by the author.) 

6.2.2 Darcy Flow with Tensor Conductivity in Non-Orthogonal Coordinates 

 The tests described above Verified SECO_FLOW and HST3D for the simple (and unrealistic, for 
groundwater modeling) cases of constant properties. The next tests involved a much more general problem, 
and exemplify the debugging that can be accomplished with this approach of systematic grid convergence 
testing. 
 Modules for the SECO_FLOW codes were developed that use 2-D and 3-D non-orthogonal 
coordinates and allow for tensor conductivity. The Fortran source codes for the stencil loading were 
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produced using computer Symbolic Manipulation, rather than hand coding.74 These code subroutines were 
verified by solving several test problems, the most difficult of which involves an ellipse shaped region on 
the unit square with a discontinuous jump in tensor conductivities across the boundary.  
 A driver code was written to test the code and theory of automatic generation of Symmetric Finite 
Difference Stencils in Generalized 3-D Coordinates (Steinberg and Roache, 1990). The goal of the exercise 
was to verify 2nd-order accuracy of the finite difference approximations to the continuum problem, the 
latter consisting of any second-order symmetric elliptic operator with tensor coefficients applied to a 
continuous function on an arbitrary connected domain in the plane. A discontinuous coefficient tensor 
model was included to simulate the case of abrupt changes in the permeability of adjacent geological 
formations.  
 The basic capabilities of the driver code were, therefore, to generate  
i. a set of transformations from logical space to physical space in the plane,  
ii. a symmetric elliptic operator, and  
iii. a set of boundary conditions based on the choice of solution function.  
 With these inputs, the stencil-loader code was called to generate the symmetric stencils. A simple point 
SOR solver then used the stencils to obtain the discrete solution. Finally, the discrete solution was 
compared to a known exact solution to obtain the global discretization error.  
 The irregular domain produces a general non-orthogonal grid, the most general problem for which the 
stencil-loader was designed. A number of other domains (e.g., rectangles, parallelograms, trapezoids) were 
also used during the debugging phase of this exercise, but were superfluous in the final Verification. 
Likewise, separate 2-D tests were run, but only the 3-D results are shown herein. The test problems were 
designed by Dr. P. Knupp. 
 
The Transformation 
 Two transformations were used. 
 
A. Unit Cube: 
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B. Irregular Domain: 
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74 For example, see Roache and Steinberg (1984), Steinberg and Roache (1985, 1986a, 1986b). 
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 Using the bound |cos (x)|  1, it is possible to show that the Jacobian of this transformation is strictly 
positive everywhere. The domain looks basically like a distorted cube. 
The Operator 
 Three possible choices of coefficients define the Operator.  
 
A. Laplace Operator. 
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B. Arbitrary Elliptic Operator with Continuous Coefficients. 
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with 0 < u, v < 2, and 

K = 
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Then D has positive eigenvalues. If we let 
 

K P DP 1             (6.2.2.8) 
 
then K has the same eigenvalues. Further, since P is an orthogonal matrix, K is symmetric. The elements of 
K are as follows. 
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For the numerical calculations, we took 
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C. Elliptic Operator with Discontinuous Coefficients. 
 The test case of discontinuous tensor conductivity was established by defining two regions, I and II, 
with continuous tensor conductivity in each but with a discontinuity at the boundary. To model the geologic 
situation, normal fluxes across a geological boundary were assumed continuous. 
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The unit cube domain was divided into the two regions I and II wherein I was an ellipse embedded in the 
unit cube.  
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On region I, we let 
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11 0 916361 12 0 095755
13 0139593 22 1466506
23 0 080348 33 0867133
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       (6.2.2.22) 

On region II, we let 
K KII I            (6.2.2.23) 

 
with  > 1. For our tests,  = 2. We then took as the solution f(x, y) = F(r), so that 
 

)ln()( rrFI            (6.2.2.24) 
 

)1ln(5.0)2ln()(  rrFII       (6.2.2.25) 
 
and the flux continuity condition reduces to 
 

K F K Fr I r II .        (6.2.2.26) 
 
This is automatically satisfied by the choice of F(r). Furthermore, F(r) is continuous and differentiable 
(even at r = 2), as is needed for F is to represent pressure or head. 
 
The Boundary Conditions 
 The general Robin boundary condition is 
  





    
f
n

f           (6.2.2.27) 

 
for each (continuum) point on the boundary of domain. For each of the four boundaries, the user selected 
from the following choices.  
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A. All Dirichlet: = 0, = 1

B. All Neumann: = 1, = 0

C. All Robin: = 1, = 1

D. Random: , 1

 

 

 

 0  

          (6.2.2.28) 

 
Choice D uses  and  varying randomly along a boundary.  
 The  was then computed, based on the user’s choice of solution function, f. 
 

A. f = 1 on all of domain (g = 0 for Laplace Operator)      (6.2.2.29) 
 

B. f = sin(  x)  sin(  y)  sin(  z)          (6.2.2.30) 
 

C. f = F(r) for discontinuous tensor           (6.2.2.31) 
 
The source term g is also computed from f, using g = Lf. The values of g and f are computed at cell centers, 
while  is computed on boundary cell faces. For the discontinuous tensor case, F(r) given in (6.2.2.24–25) 
must be selected.  
 
Interface Conductivity Evaluation 
 Finally, the user can define PDE coefficients (i.e. the conductance, a combination of the physical 
variable conductivity and discretization terms) at the cell interfaces either by linear or harmonic averages. 
For a uniform grid, harmonic averaging is equivalent to defining k at the cell face (i + 1/2) as  
 

)1()(
)1()(2)2/1(





ikik
ikikik

 
       (6.2.2.32) 

 
as opposed to the more obvious linear average 
 

 2
)1()()2/1( 


ikikik

 
       (6.2.2.33) 

 
Harmonic averaging is commonly used in groundwater flow codes. 
 
Debugging Successes 
 Several bugs in the 2-D codes were uncovered during the course of this Code Verification procedure. 
 
i. The coefficient averaging procedure was not defined on the physical boundary of the problem, giving 

zero coefficient values there. This was easily remedied by changing the way in which the metric 
coefficients were computed in the stencil-loader.  

ii. An error in the point-SOR routine at the corner stencils prevented 2nd-order convergence there.  
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iii. Two of the boundary loops used to compute the right-hand-side arrays in the stencil-loader were 
indexed over “i” when they should have been indexed over “j,” causing incorrect zeros in the right hand 
side array.  

iv. The corner stencil formula, e.g. at the lower left corner (i, j), was modified from  
 

)]1,()1,([
2
1),(  jifjifjif

 
      (6.2.2.34) 

to 
 )1,1()1,(),1(),(  jifjifjifjif

    
(6.2.2.35) 

 
to preserve 2nd-order convergence there. (This also required adding a few lines of code setting the 
right-hand-side arrays to zero during the computation of the corner stencils). With the 2-D code fixes 
built into the n-dimensional Symbolic Manipulation code, the 3-D tests uncovered only one additional 
bug. 

v. The right-hand-side arrays on the edges of the cube were not properly initialized to zero (being outside 
the needed loops). 

 
 When these items were corrected, the 2-D and 3-D stencil-loader routines were Verified to produce 
2nd-order accurate stencils for problems on general domains using non-orthogonal grids, provided smooth 
PDE coefficients were used. Solution function (B), Eq. (6.2.2.30) was used in all the runs shown here.  
 The full set of 3-D problems is described in Table 6.2.2.1. Linear averaging of the conductivities was 
used except in Run 10. Numerical results are given here only for Runs 1, 8, 9 and 10. 
 The symmetry of the solution and boundary conditions made Run 1, shown in Table 6.2.2.2, ideal to 
check the case x  y  z. As seen in the Table, the truncation error is the same no matter which 
direction is refined, and the maximum error occurs in the 21st-cell in the direction having 40 cells. 
Therefore, we can safely conclude there are no coding errors related to x  y  z. 
 In another experiment, Run 1 was repeated with the PDE coefficients set to zero in the ring of cells 
outside the physical boundary to obtain some idea of the effect of extrapolating these coefficients. The 
results showed that the accuracy was degraded to roughly 1st-order.  
 Run 8 in Table 6.2.2.3 shows the 2nd-order convergence of the continuous operator with Robin 
boundary conditions on an irregular domain, exercising all the metric terms in the 3-D boundary fitted 
coordinate transformation.  
 Runs 9 and 10 in Tables 6.2.2.4 and 6.2.2.5 show the convergence of the discontinuous coefficient 
problem on the unit cube, for linear and harmonic averaging of conductivities.  
 The theoretical basis for harmonic averaging (e.g. see McDonald and Harbaugh, 1988) is well 
established in 1-D. We found 2nd-order convergence in 1-D provided that the discontinuity stayed on a cell 
interface as the grid was refined, and that harmonic averaging was used; linear averaging produced only 
1st-order convergence. However, nonorthogonal grid multidimensional results in Tables 6.2.2.4-5 above 
are not impressive. For a discontinuous k with ratio  = 2 (which is mild by geologic standards), 3-D 
harmonic averaging is slightly worse than linear averaging at N = 5, and slightly better at higher resolution. 
Both certainly give a consistent discretization, but both are only 1st-order accurate. (Note the unity 
exponent in the last column.) The order of convergence was not restored to 2nd-order by aligning the grid 
with the discontinuity. 
 After the publication of Roache et al (1990), the basis for this section, Shashkov and Steinberg 
(1995,1996) showed how to correctly generalize the concept of harmonic averaging to 2-D. The solution is 
elegant but surprisingly expensive. (See also Shashkov, 1997 and Hyman et al, 1997.) 
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 The above tests Verify the accuracy of the spatial differencing. The time differencing was separately 
Verified by a simple test of the decay of a single Fourier component, the solution being obtained by 
elementary separation of variables (Roache et al, 1995). The separation of Verification for spatial and 
temporal differencing is justified only by the knowledge that the algorithms did not mix space and time  
derivatives (unlike algorithms such as Approximate Factorization, for example). One could argue that this 
is cheating on the Verification process, since it is not, strictly speaking, treating the code as a “black box.” 
As noted elsewhere, this approach amounts to partitioning the option matrix of the code, and greatly 
reduces the complexity of the option combination problem, if it can be justified. 
 This partitioning is further made palatable, even to one who is not familiar with the code structure, by 
the modest claim of only O(t) accuracy. In fact, it is difficult to imagine a non-contrived coding error that 
could produce reasonable time solutions and not be at least O(t) accurate. As noted in Chapter 3, Section 
3.14 titled “Warnings: What the Method Does Not Verify,” it is easy to make coding mistakes that do not 
strictly follow the algorithm as intended, yet do not affect the order of time accuracy. For example, in the 
fully implicit (backward time) differencing algorithm in the presently considered codes, the intention was to 
set the boundary conditions at the advanced time level (n + 1). If a coding mistake is made that results in 
some boundary values being lagged, i.e. set at time level n, stability might be affected, but the order of 
convergence would still test at O(t). The size of the error might be (slightly) affected, compared to the 

Run Domain Operator B.C. 
1 Unit Cube Laplace Dirichlet 
2 Irregular Laplace Dirichlet 
3 Unit Cube Continuous Dirichlet 
4 Irregular Continuous Dirichlet 
5 Unit Cube Laplace Robin 
6 Irregular Laplace Robin 
7 Unit Cube Continuous Robin 
8 Irregular Continuous Robin 
9 Unit Cube Discontinuous Dirichlet 
10 Unit Cube Discontinuousharmonic average Dirichlet 

 
Table 6.2.2.1. Conductivity Problem Configurations. (From Table 3 of Roache et al, 1990.) 

 
 

N xerr  at xerr · N2 
5  5  5 0.03356 (3, 3, 3) 0.839 

10  10  10 0.00796 (6, 6, 6) 0.796 
20  20  20 0.00202 (11, 11, 11) 0.808 
40  40  40 0.00051 (21, 21, 21) 0.816 

    
5  5  40 0.02224 (3, 3, 21) – 
5  40  5 0.02226 (3, 21, 3) – 
40  5  5 0.02226 (21, 3, 3) – 

 
Table 6.2.2.2. Run 1. (From Table 4 of Roache et al, 1990.) 
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intended algorithm, but the order would not be changed. On the other hand, O(t2) algorithms, especially 
those like Approximate Factorization that mix space and time differences, can easily be corrupted by 
coding mistakes to O(t). More scrupulous Verification is required, as in Salari and Blaine (1996); see 
Section 6.24. 

6.3 ISSUES IN CALCULATION VERIFICATION 

 The above examples involved accuracy Verification of Codes. The following examples involve 
Verification of individual Calculations, and assume the use of an already Verified code. This initial 
discussion on issues in calculation Verification is taken from Westerink and Roache (1995), “Issues in 
Convergence Studies in Geophysical Flow Computations.” 
 In performing systematic grid convergence studies, there are a variety of issues which lead to a level of 
uncertainty in the estimate which must be taken into consideration. These issues include the following. 
 

N xerr xerr · N 2 
5 0.06970 1.743 
10 0.02119 2.119 
20 0.00559 2.236 
40 - - 

 
Table 6.2.2.3. Run 8. (From Table 5 of Roache et al, 1990.) 

 
 

N xerr xerr · N 1 
5 0.05395 0.27 
10 0.02808 0.28 
20 0.01442 0.29 
40 – – 

 
Table 6.2.2.4. Run 9: Linear Averaging for K.  

(From Table 6 of Roache et al, 1990.) 
(Note the unity exponent in the last column.) 

 
 

N xerr xerr · N 1 
5 0.05906 0.29 
10 0.02079 0.21 
20 0.01301 0.26 
40 0.00688 0.28 

 
Table 6.2.2.5. Run 10: Harmonic Averaging for K.  

(From Table 7 of Roache et al, 1990.) 
(Note the unity exponent in the last column.) 
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 Higher order truncation term interaction even in the asymptotic range 
 Non-asymptotic truncation term interaction 
 Time-space truncation error interaction and related superconvergence 
 Effect of parameter convergence 
 The wavenumber distribution of the response will also affect observed convergence rates, and the 
response spectra will include flow features artificially generated by the numerics.75 The computations may 
also experience nonuniform behavior of various error norms. All these possible factors, and the others 
noted earlier in Chapter 5, introduce uncertainty into the Verification process based on Richardson 
Extrapolation or other methods, and provide further rationale for the safety factor Fs > 1 in the Grid 
Convergence Index. 

6.3.1 Formal, Actual and Observed Convergence Rates  

 It is a common feature of discrete solutions to PDEs to encounter convergence rates for complicated 
applications which are less than formal rates. It is assumed that the formal convergence rate is indicated by 
the leading order space and/or time truncation error terms. However, even in the asymptotic range (where 
discrete space and time steps tend to zero), formal convergence rates may never be achieved, leading to the 
definition of the actual asymptotic convergence rate. Even neglecting the well-recognized problems with 
computer round-off error, this actual asymptotic convergence rate may be different from the formal 
convergence rate when, for example, the formal analysis misses interaction between the leading order and 
subsequent order truncation terms in the error series (or when other approximations are required). This can 
come about due to the form of the truncation terms, which consists of products of the space step to a power 
and higher order derivatives of the response function. When gradients of the response function increase 
with increasing grid refinement, as they do in many nonlinear and/or complicated flows, the higher order 
terms in the truncation series continue to compete with the leading order truncation term.  
 Finally, the convergence rate actually observed in numerical experiments may be different from either 
the formal or actual asymptotic convergence rates, simply due to grid resolution not being adequate to 
achieve the asymptotic range. When the coarse grid Richardson Error Estimator does not equal 
(approximately) the fine grid Richardson Error Estimator computed for the same grid, this is an indication 
that the formal convergence rate is not being achieved. It is in fact common for the fine grid error estimator 
to be less than the coarse error estimator for the same grid, indicating that the observed convergence rate is 
less than the formal rate. A more complete discussion of the variety of factors that can influence the 
observed convergence rates will be given in Chapter 8, Section 8.1.  

6.4 TWO EXAMPLES OF THE EFFECTIVE GRID REFINEMENT RATIO 

6.4.1 A Posteriori Application of GCI Scaling  

 As an example of the effect of grid refinement ratio on the reporting of grid convergence tests, consider 
the following Figure 6.4.1 for local Nusselt numbers (normalized heat transfer coefficients) taken from the 
second-order accurate Finite Element solutions by Comini et al (1995).  
 The presentation of results looks converged almost to the plotting accuracy, perhaps 0.1%. However, 
the grid refinement is not a grid doubling, as noted in the legend. To calculate an effective grid refinement 

                                                
75 See also Hoekstra et al (2000b) for convergence study in wavenumber space. 
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ratio r as suggested in Chapter 5 for this unstructured grid, we could use either the ratio of (parabolic) 
elements, giving Eq. (6.4.1). 
 

21.1
1024
1505 2/1







elementsr

 
       (6.4.1) 

 
or the ratio of nodes, 
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elementsr

 
       (6.4.2) 

 
which are equivalent within the approximation of the empiricism of the concept of effective r for 
unstructured grid refinement. With p = 2 for the parabolic elements used by Comini et al, this gives  
 

GCI 






3

1
3

12 1
6 642

 


r p .
.           (6.4.3) 

 
With the small  ~ 0.1% this still indicates a level of grid convergence that is totally acceptable, especially 
considering the conservatism of the “safety factor” of Fs = 3 in the GCI; yet, it is considerably less 
converged than suggested by the original reporting. Even if we use Fs = 1, so that the reported GCI equals 
the Richardson Error Estimator, corresponding roughly to only a 50% confidence band, we would obtain  
 

2.4

2.0

1.6

1.2

0.8

0.4
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0 10 20 30 40

Re = 500

X = x/h  
 
Figure 6.4.1. Grid dependence of calculated distributions of local Nusselt numbers. Pr = 0.7, Re = 500. 

Solid lines represent results from a mesh with 1024 parabolic elements and 3273 nodes. 
Dashed lines represent results from a mesh with 1504 parabolic elements and 4725 nodes. 
(From Figure 4 of Comini et al, 1995.) 
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21.2)1( sFGCI             (6.4.4) 

 
somewhat less impressive than just . If results similar to Figure 6.4.1 had been obtained with only first-
order methods, the discrepancy in the reporting would be marked. For Fs = 3, we would obtain 
 

GCI = 14.63              (6.4.5) 
and for Fs = 1,  

GCI = 4.88             (6.4.6) 
 
again showing the difficulty of judging grid convergence with first-order methods. 

6.4.2 §  Justification of Effective Grid Refinement Ratio for Heat Conduction  

 The adequacy of using a simple effective r, as in Eq. (5.10.3.3.1), will depend on the target metric of 
the unstructured grid generation algorithm and the success of attaining it. If the grid generation algorithm is 
solution adaptive, there is no reason to expect the effective r to be adequate. But many unstructured FEM 
mesh generators allow input of user-defined normalized mesh density functions. With relative mesh density 
defined, the user can specify quasi-uniform mesh refinement by a factor that corresponds to r. True grid 
similarity is not possible (it is not even meaningful), but if mesh density is refined in an approximately 
uniform manner, we would expect the GCI based on effective r to provide good uncertainty estimates. Such 
a successful application was accomplished by Dr. K. Dowding in Section 7 of V&V20 on the heat 
conduction in the cooling fin of a heat exchanger. Effective r was successfully used in both Code 
Verification and Calculation Verification exercises. The four FEM meshes in the sequence contained 39, 
173, 680 and 2769 elements, as shown in Figure 6.4.2.1. 
 Details of the particular parameters used can be found in V&V20, but these do not affect the result of 
interest here. The locations 1 and 2 are near the mid-point of the circular segment on the left, referred to as 
Surface S1. The mesh sequence was defined to have a node at both these locations in all four meshes. If the 
mesh sequence were not defined with a node at these locations, the code output would need to be 
interpolated from the nodal solution to give the solution at the prescribed locations. Table 6.4.2.1 gives the 
results from the Code Verification study using MMS. Apparently, the coarsest mesh (mesh 4) is more or 
less on the border of the asymptotic region for the local temperature in this conduction problem. The other 
values are fairly well behaved, even for these unstructured grid sequences. 
 Alternately, the convergence rate for the sequence of meshes can be estimated with standard regression 
on the observed (log(h), log(Eh)) data over all 4 meshes. This result is listed in the last row of Table 6.4.2.1 
for comparison.  
 

Meshes Temp 
Loc 1 

Temp 
Loc 2 

Flux S1 L2 Norm  
Temp 

3 and 4 1.77 1.82 2.19 2.10 
2 and 3 1.96 2.03 3.16 1.96 
1 and 2 2.07 1.97 2.13 1.97 
Reg (1- 4) 1.93 1.94 2.55 2.01 

 
Table 6.4.2.1. Observed order of convergence pobs calculated using effective r in an unstructured mesh 
refinement for a heat transfer problem with manufactured solution (MMS). From Table 7-4, V&V20. 
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Mesh 4 
39 elements 

Mesh 3 
173 elements 

Mesh 2 
680 elements 

Mesh 1 
2769 elements 

 
 

Figure 6.4.2.1 Unstructured finite element meshes used in the mesh refinement study using effective r. 
(From Figure 7.2 of V&V20.) 

 
 
 For this MMS problem, the exact solution is known, so the observed p can be calculated from any two 
meshes. For the simulation problem (which differs from the MMS in boundary conditions and source term) 
the exact solution is not known, so three meshes are needed to calculate observed p. The mesh triplet of the 
three coarsest meshes (2,3,4) gave observed p = 1.99, and the triplet (1,2,3) gave 2.01. 
 These results for code verification and calculation verification give further confidence in the use of an 
effective r for unstructured grids. However, heat conduction is a benign problem, compared to those with 
advection terms, turbulence models, etc. Also, the performance will be affected by the quality of the grid 
generation algorithm and its ability to approximately match user-specified mesh density distributions, 
which itself will be affected by the particulars of the problem geometry.  
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6.5 BENCHMARK PROBLEMS FOR DRIVEN CAVITY FLOW 

 The simple driven cavity problem has been used for decades (Roache, 1972, 1998b) as an easily 
reproducible CFD problem. Ghia et al (1982) produced an early benchmark solution that was often cited 
for comparison purposes. Although no error estimate per se was included, the results can still be used with 
confidence for debugging purposes. See Table 6.5.1. More recent higher-resolution solutions were given in 
Botella and Peyret (1998), Bruneau and Saad (2006), and Prabhakar and Reddy (2006). The latter 
removed the corner singularity with a lid velocity distribution that = 0 at the corners (see Roache, 1975b). 

6.6 BENCHMARK PROBLEM FOR FREE CONVECTION  

 As common as the driven cavity problem is, it has a disadvantage, in that the moving lid introduces a 
singularity. In the upper corners, the velocity is discontinuous, and the vorticity is unbounded. (This does 
not prevent the vorticity from converging on the lid away from the corners; see, e.g., Roache, 1975,1995). 
De Vahl Davis et al (1979) devised a comparison problem specifically to remove the singularity but 
maintain the geometric simplicity of the driven cavity. Non-trivial motion is induced by a heated vertical 
wall. While requiring that the code include buoyancy terms, this problem is more realistic than the pure 
driven cavity, and contains no singularities. De Vahl Davis and Jones (1983) compared several contributed 
solutions for this problem, which showed a disturbing range of uncertainty, especially for the early FEM 
solutions.  
 De Vahl Davis (1983) produced a classic Benchmark solution of this free convection problem for 
comparison. He used systematic grid convergence and Richardson Extrapolation very carefully, with an 
experimental determination rather than an assumption of the local order of convergence. Seven years later, 
Hortmann et al (1990) recalculated this problem with modern multigrid algorithms and higher computer 
power. The increased resolution (up to 320  320 for most of the calculations, and 640  640 for one) of 
course provided more accurate answers and tighter error bands, but the original estimates of de Vahl Davis 
were confirmed. “For example, [de Vahl Davis] estimated the bounds for [dimensionless heat transfer rate, 
Nusselt number] to be 0.2%, 0.3% and 1.0% for Rayleigh numbers 104, 105, and 106 respectively; the 
difference to the present results is 0.08%, 0.06% and 0.2%.” Because of complexities of normalizing 
schemes, Hortmann et al (1990) should be consulted directly for dependable Benchmark comparisons. 

6.7 LAMINAR PLANE JET IMPINGING ON A HEATED FLAT PLATE 

 Pelletier and Ignat (1995) developed a simple analytical solution for the temperature field for an 
incompressible planar laminar jet impinging on a heated flat plate. They used the solution to calibrate and 
evaluate their solution adaptive unstructured grid generation methods, and to compare their Zhu-
Zienkiewicz type error indicators with the GCI extended to unstructured grids. (See details in the original 
paper.) The following parameters are:  = x2 y, a = 5000,  = 5,  = 4, 0 = 0.01 for Re = 50. 
 

u x e aa 4 1 22 22 ( ) ,   v xye aa  8 1 2
2 2 ( )     (6.7.1-2) 
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129-
Grid Reynolds Number Re 

Pt. No. y 100 400 1000 3200 5000 7500 10,000 
129 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
126 0.9766 0.84123 0.75837 0.65928 0.53236 0.48223 0.47244 0.47221 
125 0.9688 0.78871 0.68439 0.57492 0.48296 0.46120 0.47048 0.47783 
124 0.9609 0.73722 0.61756 0.51117 0.46547 0.45992 0.47323 0.48070 
123 0.9531 0.68717 0.55892 0.46604 0.46101 0.46036 0.47167 0.47804 
110 0.8S16 0.23151 0.29093 0.33304 0.34682 0.33556 0.34228 0.34635 
95 0.7344 0.00332 016256 0.18719 0.19791 0.20087 0.20591 0.20673 
80 0.6172 –0.13641 0.02135 0.05702 0.07156 0.08183 008342 0.08344 
65 0.5000 –0.20581 –0.11477 –0.06080 –0.04272 –0.03039 –0.03800 0.03111 
59 0.4531 –0.21090 –0.17119 –0.10648 –0.86636 –0.07404 –0.07503 –0.07540 
37 0.2813 –0.15662 –0.32726 –0.27805 –0.24427 –0.22855 –0.23176 –0.23186 
23 0.1719 –0.10150 –0.24299 –0.38289 –0.34323 –0.33050 –0.32393 –0.32709 
14 0.1016 –0.06434 –0.14612 –0.29730 –0.41933 –0.40435 –0.38324 –0.38000 
10 0.0703 –0.04775 –0.10338 –0.22220 –0.37827 –0.43643 –0.43025 –0.41657 
9 0.0625 –0.04192 –0.09266 –0.20196 –0.35344 –0.42901 –0.43590 –0.42537 
8 0.0547 –0.03717 –0.08186 –0.18109 –0.32407 –0.41165 –0.43154 –0.42735 
1 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
 

129-
Grid Reynolds Number Re 

Pt. No. x 100 400 1000 3200 5000 7500 10,000 
129 l.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
125 0.9688 –0.05906 –0.12146 –0.21388 –0.39017 –0.49774 0.53858 –0.54302 
124 0.9609 –0.07391 –0.15663 –0.27669 –0.47425 –0.55069 0.55216 –0.52987 
123 0.9531 –0.08864 –019254 –0.33714 –0.52357 –0.55408 0.52347 –0.49099 
122 0.9453 –0.10313 –0.22847 0.39188 –054053 –0.52876 –0.48590 –0.45863 
117 0.9063 –0.16914 –0.23827 0.51550 –0.44307 –0.41442 –0.41050 –0.41496 
111 0.8594 –0.22445 –0.44993 –0.42665 –0.37401 –0.36214 –0.36213 –0.36737 
104 0.8047 –0.24533 –0.38598 –0.31966 –0.31184 –0.30018 –0.30448 –0.30719 
65 0.5000 0.05454 0.05186 0.02526 0.00999 0.00945 0.00824 0.00831 
31 0.2344 0.17527 0.30174 0.32235 028188 0.27280 0.27348 0.27224 
30 0.2266 0.17507 0.30203 0.33075 0.29030 0.28066 0.28117 0.28003 
21 0.1563 0.16077 0.28124 0.37095 0.37119 0.35368 0.35060 0.35070 
13 0.0938 0.12317 0.22965 0.32627 0.42768 0.42951 0.41824 0.41487 
11 0.0781 0.10890 0.20920 0.30353 0.41906 0.43648 0.43564 0.43124 
10 0.0703 0.10091 0.19713 0.29012 0.40917 0.43329 0.44030 0.43733 
9 0.0625 0.09233 0.18360 0.27485 039560 0.42447 0.43979 0.43983 
1 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
Table 6.5.1. Results for u- and v-velocity components for driven cavity flow, from Ghia et al (1982).  
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6.8 K- MODEL OF A FREE SHEAR LAYER 

 In the same paper, Pelletier and Ignat (1995) developed a simple analytical solution for an 
incompressible free shear layer using the k- turbulence model. As in the previous section, they used this 
solution to compare their Zhu-Zienkiewicz type error indicators with the GCI extended to unstructured 
grids. (See details in the original paper.) The solution should be of considerable interest for turbulence 
modelers, since it displays most of the characteristics of an experiment of Patel (1973) yet is convenient to 
encode. Likewise, they developed analytical Benchmarks for variants of the k- model, the k-τ model and 
for the Wilcox (1993) k- model and variants. 
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6.9 TRANSONIC AIRFOIL CALCULATIONS 

 Zingg (1991,1992) applied the Richardson Error Estimator to airfoil lift and drag calculations in body-
fitted grids. Zingg’s work demonstrated the necessity of grid convergence testing even when experimental 
data are available. In 4 of 7 cases, experimental agreement was better with coarse grid calculations than 
with fine (Zingg, 1992).  
 The results of the Viscous Transonic Airfoil Workshop (Holst, 1987) indicated that “while turbulence 
modeling is a significant source of error in the computation of airfoil flows, particularly for separated 
flows, a large portion of the error is often associated with inadequate numerical resolution and an 
insufficient distance to the outer boundary of the grid” (Zingg, 1991). Zingg’s work convincingly brought 
these errors well within engineering accuracy. He used Pulliam’s well-established viscous airfoil code 
ARC2D (Pulliam, 1986) and the algebraic Baldwin-Lomax turbulence model with the thin-layer 
approximation to the full Reynolds-Averaged Navier-Stokes equations on structured non-orthogonal C-type 
grids. Zingg presented results for 8 different flow cases and two fine base grids, each base grid being 
coarsened two times by removal of alternate cells in each direction; thus, r = 2 and p = 2 in the Richardson 
extrapolations. Here, we present the lift and drag results for just two flow cases and the A7A base grid of 
497  194 points, with 401 of the 497 points on the body and 48 in the wake. Points were clustered at the 
leading and trailing edges with a spacing of 104 chords; the normal spacing at the body was 107 chords. 
The most coarse grids used still had adequate resolution of the viscous sublayer (with the largest y+ = 0.2 
for the first grid point, less than the commonly used value of y+ = 1). The outer boundary distance was 12 
chords. 
 The first result presented here is for subsonic flow, Zingg’s Case 3, a NACA 0012 airfoil at M = 0.16 
and angle of attack  = 12. The lift and drag coefficients are given in Table 6.9.1. 
 For this case, trailing edge separation was predicted on the upper surface (at about 96% of chord for 
the fine grid calculation.) Second order accuracy is Verified by the reduction in % changes by factors of 4 
as the grid is refined by factors of 2, from coarse to medium, and medium to fine, correct to the appropriate 
level of precision. This is a difficult case as judged by the drag calculation, which is 5.2% in error even for 
the fine grid of 497  194 points, compared to the best RE (Richardson Extrapolation) results (using the 
fine and medium grids). As Zingg noted, “Richardson Extrapolation is very effective for this case,” as can 
be judged by evaluating the results of RE from the medium and coarse grids, labeled “RE m-c” in the Table 
6.9.1. These give accuracy roughly equal to the finest grid for lift, and about a 9 improvement for drag 
(%CD = 0.6 compared to 5.2). Zingg noted the favorable economics involved with grid coarsening (see 

Grid CL CD % CL % CD 
Fine 1.3081 0.01327 0.3 5.2 

Medium 1.2957 0.01526 1.3 21.0 
Coarse 1.2563 0.02299 4.3 82.3 
RE m-c 1.3088 0.01268 0.3 0.6 
RE f-m 1.3122 0.01261   

 
Table 6.9.1. Lift and drag coefficients for NACA 0012 airfoil at M = 0.16 and  = 12. The “RE f-m” 

results were obtained by Richardson Extrapolation from the fine and medium grid solutions, 
and “RE m-c” from the medium and coarse grids. The %’s are changes from the RE results. 
(From Table 3 of Zingg, 1991.) 
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Section 5.17); a grid coarsened by removal of every other point gains a factor of 4 in number of points, and 
(roughly) another factor of 2 in number of time steps, so RE costs about an additional 1/8 or 12.5% of 
computer time. Applying these ratios to this case, the medium grid calculation requires about 1/8 of the fine 
grid calculation, and the coarse grid calculation requires another (1/8)2. So the medium-coarse RE requires 
about 9/64 or 14% of the time of a single fine grid calculation.  
 Allowing a little slack for additional arithmetic, the Richardson Extrapolation method on medium and 
coarse grids produces about the same error as the fine grid on lift and about 9 better on drag, plus it 
provides an error estimate (whereas the fine grid calculation alone does not), at about 15% of the cost!  
 The economics are improved in 3-D by another factor of 2, so RE m-c would cost about (1/16 + 1/162) 
= 17/256 or about 7% of the cost of a single fine grid solution. The cost could further be reduced by using 
coarse grid solutions as initial guesses for the finer grids. 
 Note, however, as discussed in Chapter 3, that we really require 3 grid solutions to be more confident 
that we are in the asymptotic range, and to evaluate the observed order of convergence p. Zingg found that 
the 3-grid solutions were well-behaved for the subsonic cases such as the above. But for transonic cases, he 
found that “the streamwise point spacing of the [coarse] grid is not sufficient, and shocks are excessively 
smeared. As a result, the extrapolated solutions [from the medium and coarse grids] generally do not reduce 
the error.” Accordingly, the coarse grid results are not included herein for the transonic Case 5, a NACA 
0012 airfoil at M = 0.55 and  = 8.34, shown in Table 6.9.2. 
 
 
 
 

 

 For this case, “there is a strong shock on the upper surface at about 20% chord. There is a small 
separated flow region after the shock and the flow finally separates at about 90% chord.” The fine grid 
solution is good, predicting lift and drag to within 0.4% and 0.2% respectively of the RE solution. [The 
GCIs for lift and drag, using the very conservative Fs = 3, would be 1.2% and 0.6%.] This is a high quality 
numerical solution for a strong shock transonic flow. Zingg noted that “the second-order artificial 
dissipation required at shocks scales with the grid spacing to first order. Therefore, Richardson 
Extrapolation can only be used if the global influence of the second-difference dissipation is small. This is 
likely if shocks are weak or well-resolved.” [Alternately, separate Richardson extrapolation can be 
performed separately for the dissipation, as in Blottner (1990) and Kuruvila and Anderson (1985); see 
Section 6.11.] Generally, Zingg (1991) found that the error in pressure drag is larger than the error in 
friction drag. See the original paper for these and other additional results, and comparison with 
experiments. (See also comments in Section 10.5.) 

 
Table 6.9.2. Lift and drag coefficients for NACA 0012 airfoil at M = 0.55 and  = 8.34. 
“RE f-m” results were obtained by Richardson Extrapolation from the fine and medium grid  
solutions. The %’s are changes from the RE results. (From Table 5 of Zingg, 1991.) 

Grid CL CD % CL % CD 
Fine 0.9977 0.03484 0.4 0.2 

Medium 0.9868 0.03509 1.4 0.9 
RE f-m 1.0013 0.03476   
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6.10   FAR FIELD BOUNDARY ERRORS 

 The one observation that can be confidently made about far-field boundary errors is that they are 
seldom evaluated. These errors are not ordered in  and therefore are not revealed in a grid convergence 
test. They may be considered part of the conceptual model error (like incompressibility or two-
dimensionality) but this does not excuse the analyst from some attempt to estimate them. The importance is 
highly problem dependent, and demonstrably will differ even within the same problem for different 
quantities of interest. 

6.10.1 Ordered Estimation of Far-Field Boundary Errors 

 In a later paper (Zingg, 1992) on airfoil calculations, Zingg systematically varied the position of the 
outer computational boundary, i.e. the far-field boundary. Inspection of his data indicates that Richardson 
Extrapolation can be applied to the estimation of far-field boundary errors, with the error proving to be 1st-
order in the inverse of distance to the boundary, as now shown. 
 Zingg’s (1992) Case 3 was a subsonic NACA 0012 airfoil at M = 0.16,  = 12, Re = 2.88106, with 
transition at 0.01 chords on the upper surface and 0.95 on the lower. From inspection of the data in his 
Table 8, “Results of outer boundary position studies,” it appeared that the errors for Case 3 were 
approximately ordered in 1/Lb, the distance to the outer boundary. Calculations proved to be remarkably 
consistent with this assumption. The Case 3 data are reproduced below in Table 6.10.1. The %CL and %CD 
were calculated as differences from the 96 chord solution. 
 Note that both %CL and %CD approximately doubled going from 24 to 12 chords, consistent with the 
assumption of boundary error BE ~ 1 / Lb where Lb is the distance from the airfoil to the outer boundary. If 
we make this assumption, extrapolate to Lb = , and re-calculate %C'L  and %C'

D  as differences from this 
extrapolated solution (as one does with the mesh spacing results), the behavior even more accurately fits 
the model of BE ~ 1 / Lb, as now shown. 
 If we were doing Richardson Extrapolation from Lb = 12 and 24 with the assumption that BE Lb

p~ /1  
and p = 1, it would look like the usual grid extrapolation with grid doubling and p = 1, i.e. 
 

)(~ 122424 LLLL CCCC            (6.10.1) 
 
However, since we are doing the analog of a grid quadrupling when we go from Lb = 24 to 96, the 
extrapolation now becomes 
 

3/)(~ 249696
'

LLLL CCCC              (6.10.2) 

Lb (chords) CL CD % CL % CD 
96 1.3111 0.01397 – – 
24 1.3121 0.01376 0.08 1.5 
12 1.3139 0.01349 0.2 3.4 

 
Table 6.10.1. Effect of outer boundary position on lift and drag coefficients of transonic airfoil 

calculations. % CL and % CD are differences from the 96 chord boundary values. (From 
Zingg, 1992, Case 3, Table 8.) 
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(That is, the factor of 1/3 appears either from the common doubling with p = 2, or from quadrupling with p 
= 1.) Applying this gives 
 

3108.1)3121.13111.1(3
13111.1~' LC        (6.10.3) 

 
01404.0)01376.001397.0(3

101397.0~' DC      (6.10.4) 

 
 Recalculating %C'L  based on the differences between CL and C'L  (rather than CL96), and similarly for 
%C'

D , gives the results in Table 6.10.2. (I have kept more significant figures than justified in order to show 
the asymptotic behavior.) 
 For the assumed BE ~ 1 / Lb, the theoretical ratios R of successive %C'L  and %C'

D  would be 4 from 96 
to 24 chords, and 2 from 24 to 12 chords. The actual values are shown below in Tables 6.10.3–4. 

Lb (chords) CL CD %C'L  %C'
D  

96 1.3111 0.01397 0.02289 0.4986 
24 1.3121 0.01376 0.09917 1.9943 
12 1.3139 0.01349 0.23649 3.9174 

 
Table 6.10.2. Effect of outer boundary position on lift and drag coefficients of transonic airfoil 

calculations.  %C'
L  and  %C'

D  are differences from extrapolated boundary values. 

Lb (chords) %C'L  R actual R theory 

96 0.02289   
24 0.09917   

  4.332 4 
12 0.23649   

  2.38470 2 
 

Table 6.10.3. Extrapolations for Boundary Error in CL. 
 
 

Lb (chords) %C'
D  R actual R theory 

96 0.4986   
24 1.9943   

  3.9998 4 
12 3.9174   

  1.9643 2 
 

Table 6.10.4. Extrapolations for Boundary Error in CD. 
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 As in the case of Zingg’s grid size calculations, the extrapolations for CL are a little noisy, since those 
calculations are already very accurate. The extrapolations for the less accurate CD are remarkably 
consistent with the assumption BE ~ 1 / Lb. The need for the unrealistic retention of so many significant 
figures is now evident; they are required to indicate any departure from the theory! The ratios are exact for 
anything less than 4 significant figures. 
 These new error estimates are slightly larger, which is to be expected since the original reference was 
Lb = 96 to approximate Lb =  and the convergence is monotone. The original estimate of 1.5% error for 
%CD at Lb = 24 now becomes %C'

D  = 2.0%. 

6.10.2 §  Importance of Far-Field Boundary Errors 

 Eça and Hoekstra (2009a) studied flow around a tanker at model and full-scale Reynolds numbers 
using three turbulence models, and systematically examined the influence of far field boundary location, 
independently varying the width and the length of the computational domain. Perversely, these two had 
opposite effects. The skin friction resistance was not significantly affected, but the pressure resistance 
varied by O(30%). (32% decrease with width, and 37.5% increase with length.) These results were not 
significantly affected by grid resolution. Clearly, there are many computational PDE problems that do not 
involve far-field boundary errors, or that are not strongly affected by far-field modeling, but this cannot 
always be taken for granted, notably in fluid dynamics. Another important conclusion of this study is that 
RMS combination of error estimates of outflow boundary errors and discretization error estimates is not 
conservative; rather, simple addition of absolute values is required. (See also 5.10.10.2-3 for similar 
restrictions on iteration error estimates.) 

6.10.3 §  Mapping for Far-Field Boundary Errors 

 A long-established approach for far-field boundary implementation is to map coordinates for an infinite 
domain onto a finite computational domain, and apply the conditions commonly used in analytical solutions 
to these boundaries exactly. It can be a very effective technique, but it is not a cure-all. Many commercial 
codes do not have this capability. Also, when the transformed grid spacing becomes larger than the scale 
length of the solution structure, anomalous solutions can result (Roache, 1998b). However, this technique 
has the advantage of converting the far-field error into an ordered error that can be evaluated by grid 
convergence tests. 

6.11 ARTIFICIAL DISSIPATION EFFECTS 

 Blottner (1990) has used the same convergence procedure to estimate effects of artificial dissipation 
terms in hypersonic flow calculations. Blottner’s study used the boundary fitted coordinate Navier-Stokes 
code NS3D in the axisymmetric option to calculate hypersonic (M = 5) laminar flow over a spherical nose 
tip at Re = 1.8875106. The code is 2nd-order in space and time, and incorporates both an implicit 2nd-
order and an explicit 4th-order artificial dissipation De. The form of De used is 
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in which S is a user-defined weight (a smoothing parameter), J is a normalizing Jacobian, Q represents each 
of the conservation variables, and  and  are the streamwise and cross-stream general coordinates. 
 Since both the implicit and explicit artificial dissipations are ordered terms, either or both of these 
could be evaluated simply as part of an overall grid convergence study. However, it is also of interest to 
separately evaluate the explicit artificial dissipation De, since the effects of this term can be extrapolated to 
De  0 for a fixed grid as well. For a particular grid, one obtains solutions with two values of S, and 
extrapolate the solution as follows.  
 

Q S Q S D

D Q Q
S S

( )   

 



0 1 1

1 2

1 2

        (6.11.2) 

 
 Table 6.11.1 from Blottner (1990) shows this extrapolation for three different grids, each a multiple of 
two, for the pressure and heat transfer rate at one representative point, on the body surface and 90 away 
from the stagnation point. (The iteration convergence criteria was tight, L2  108.) 
 Note the double convergence involved. For each grid, the extrapolation gives the corresponding 
solution for S  0, but the values are significantly different for each grid. For the coarse grid, there is some 
departure from linearity for the effect of S (see Blottner, 1990, Figure 2). For the finest grid, extrapolation 
to S  0 proved to be unnecessary, since the pressure is already converged to 5 significant figures for S = 
20 and 10. This is consistent with the fact that the explicit artificial dissipation is also an ordered 
approximation. See also Kuruvila and Anderson (1985) and Zingg (1992). Salari and Roache (1990) 
showed that the convergence as artificial dissipation is reduced in Approximate Factorization solutions of a 
compressible flow code is well behaved even at low Mach numbers (M = 0.1); see also Section 6.28 below. 

Grid Cells S Pwall /Pfreestream qwall 
22  24 0 1.62258 7.97707 

 5 1.61099 7.76188 
 10 1.60598 7.97235 
 20 1.58938 7.96763 
 40 1.56158 7.86627 

44  48 0 1.57535 8.27713 
 5 1.57453 8.27711 
 10 1.57437 8.28781 
 20 1.57339 8.29849 
 40 1.57137 8.31405 
 80 1.56760 8.33694 

88  96 0 1.56433 8.42643 
 10 1.56427 8.42615 
 20 1.56421 8.42587 
 40 1.56409 8.42526 

 
Table 6.11.1. Influence of explicit artificial dissipation parameter S on surface pressure and heat flux 

q [kW/m2]. (From Blottner, 1990, Table 2.) 
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Blottner noted that “This result indicates that the [explicit] dissipation term introduces a significant error 
for the coarse grid solution, but the fine grid solution [for pressure] is only slightly in error.” However, “it 
appears that the heat flux requires a finer grid before this type of analysis can be used effectively.” 
 [Note also the dangers of compensating errors in the pressure solution. The pressure solution on the 
coarse grid with large dissipation (S = 40) is 1.56158, which differs by only 0.2% from the best fine grid 
solution extrapolated to S = 0, which is 1.56433. (Some intermediate value of about S = 39 would give 
equality.) Such a spot check, without systematic convergence studies, could be dangerously misleading, 
especially since the errors for the heat flux do not compensate, but add.] 
 The paper of Blottner (1990) contains many more details, including Richardson Extrapolation for the 
grid convergence. 

6.12 SINGLE AND DUAL POROSITY CONTAMINANT TRANSPORT: 
SOURCE LOCATION  

 Grid resolution studies of radionuclide transport in fractured porous media were performed by Salari et 
al (1995) using a finite volume code, SECO_TRANSPORT. Transport calculations were performed for the 
grid convergence test using both single and dual-porosity models. (All the SECO codes have the feature of 
using separate grids to define aquifer properties and to perform calculations; this is highly advantageous for 
performing grid convergence studies.) The velocity field for the transport calculations was provided by an 
algebraic relation, removing any additional errors that might influence transport convergence results. The 
GCI was used to examine the convergence results. The grid convergence results for radionuclide transport 
calculations in porous media proved to be significantly influenced by the plausible but improper modeling 
of the source in a finite volume grid during the grid refinement. A source term could be modeled as a point 
source, or can have some physical dimensions. The distinction was shown to have major consequences for 
grid convergence tests. 

6.12.1 Transport Code 

 The SECO_TRANSPORT code developed by K. Salari (Salari et al, 1992, Roache 1993; Salari and 
Blaine, 1996) is one of the suite of SECO (Sandia–ECOdynamics) codes that perform groundwater flow, 
transport, and particle tracking. SECO_TRANSPORT computes multiple component solute transport in 
(possibly) fractured porous media using single porosity or dual porosity models. It allows for radioactive 
decay and generation of daughter products.  
 The dual porosity model is a conceptualization of the geologic system as a matrix of porous material 
with fractures. When no significant fractures are present, all flow and transport takes place in the rock 
matrix. When significant fractures are present, flow in the fracture system dominates flow in the matrix 
system; one may safely neglect flow in the matrix, but not transport in the matrix. The contaminant 
disperses from the fracture system through the interface (possibly including a skin resistance due to clay 
lining) and into the matrix system, where it also decays, reacts chemically, etc. As a pulse of contaminant 
passes a point in the fracture system, some contaminant concentration will diffuse into the matrix, then be 
released again into the fracture fluid (usually water) after the advective pulse has passed. One could try to 
model the system of fractures as a single-porosity system, but the behavior is qualitatively altered. (It is a 
question of scale.) The mathematical behavior of a dual porosity system vs. a single porosity system is 
distinct enough to be used to interpret field pumping experiments. 
 The matrix block equation of the dual porosity model can treat the matrix material and a clay lining. 
For the fracture-matrix system, transport in the fracture is produced by advection and the related 
hydrodynamic dispersion/diffusion, while transport in the matrix block is assumed to be dominated by 
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molecular diffusion. Thus, the governing partial differential equations contain advection-dispersion (in the 
fracture system only), adsorption, source, and decay terms.  
 These equations are solved using an efficient Approximate Factorization procedure with implicit 
boundary conditions. The code uses an implicit Total Variation Diminishing (TVD) scheme with three-level 
time differencing and directional splitting for improved accuracy and execution time. The algorithms are 
2nd-order accurate in space and time. In our applications, the flow field for transport was usually obtained 
from the SECO_FLOW code (Roache, 1993) or equivalent. 
 The SECO_TRANSPORT code on a 80  80 mesh is about 35 times faster than the classical approach 
(using direct banded solvers) and requires about 6 times less memory. The solution produced is more 
accurate and less diffusive for low-high Peclet number cases compared to the usual 2-point upstream 
differencing calculation. 

6.12.2 Problem Definition for Source Location  

 To run the SECO_TRANSPORT code, a flow field is needed and is usually generated by the 
SECO_FLOW code. In Salari et al (1995), the intention was to conduct the study independent of the flow 

code so that the convergence of the flow field is decoupled from the transport. A non-trivial 2-D flow field 
representative of an active study was constructed using analytical relations as follows. Initially, a coarse 
grid representation of the desired velocity field was established, followed by crudely fitting the components 
of this field, u and v, with analytical functions. The velocity fields generated by these functions were 
examined and the following functions were chosen by R. Blaine to represent the flow field: 
 

u a a x x a y y  1 2
2

3
2ln( ) ln( )        (6.12.2.1) 

 
))ln(exp( 3

3
2

21 ybxxbbv         (6.12.2.2) 
 
where 0  x  1, 0  y  1, and the coefficients are given in Table 6.12.2.1. 
 For the test problem, coordinates were scaled by 5000 m and velocity components by 2.5E10 m/s to 
obtain representative values for physical domain and velocity magnitude. The maximum divergence of the 
flow field scaled by maximum velocity was about 1.0E5 1/m which was adequate for the test problems. 
(The interest was in adequately representing the structure of the representative velocity field, rather than in 
using a truly divergence-free velocity field.) Since the flow field was defined analytically, the velocity field 
could easily be constructed on an arbitrary grid. This is an advantage for the grid convergence study. 
 For the grid convergence test, we used 3 uniform grids (x = y) of 40  40, 80  80, and 160  160 
cells. The x’s for each grid are 125, 62.5, and 31.25 meters. The point source Q is assumed to be located 
at 1437.5, 3837.5 meters and there are two rectangular discharge boundaries as shown in Fig. 6.12.2.1. 
The integrated discharges from these boundaries were used in the convergence study because they were the 

i 1 2 3 
ai 0.046969054 0.114209345 0.613161177 
bi 1.374151646 6.544653318 1.327978144 

 
Table 6.12.2.1. Coefficients for Equations 6.12.2.1–2. 
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performance measures for the radioactive waste disposal site under study. For both model problems, single 
and dual-porosity, the parameters were as follows. 
 
 matrix porosity = 0.16       • longitudinal dispersivity = 100.0 m 
 matrix tortuosity = 0.0001      • transverse dispersivity = 10.0 m  
 fracture tortuosity = 1.0       • transported actinide 233U 
 fracture spacing, aperture = 3.5 m, 0.0035 m  • decay constant = 1.39E13 1/sec 
 free water molecular diffusion coefficient = 1.7E10 m2/sec. 
 
 See Salari et al (1992) for details of the continuum equations. The time for the transport is 4500 years 
starting at 1000 years ending at 5500 years. Three different t’s were used: 22.5, 11.25, and 5.625 years, 
which correspond to 1000, 2000, and 4000 time-steps respectively. 
 The time-dependence of the source function for the transport calculation was constructed using a half 
sine function over the pulse duration of ~3200 years with maximum amplitude of 1.0E15 kg/s. The source 
release began at time 1005 years. The total mass injected (233U) over 3200 years was 3.1832E5 kg. 
 One of the important aspects of setting up this convergence study was to relate the physical location of 
the source Q to the different grids. For a finite difference calculation, the computed properties exist at node 
points. This allows for a physical location to be preserved through arbitrary integer grid refinements. 
However, this is not the case for a finite volume grid where the computed properties are located at cell 
centers, and grid doubling will not preserve a physical location. (In order to retain the location of a cell 
center during grid refinements, the grid size would have to increase by a factor of 3.) Therefore, for grid 
doubling, a finite volume grid poses the following difficulties. 
 Assume the source location corresponds to a cell center on the coarse grid, so that the grid doubling 
splits this cell into four cells. Now, one has to decide which of the four new cells can be associated with the 
source. It should be apparent that this is an arbitrary choice and, in any case, that the continuum location is 
now positioned at the edge of a cell, rather than at the center. Since the computational representation covers 
the cell, the effective position is always located at the center of the cell, consistent with a second-order 

 
 
Figure 6.12.2.1. Groundwater Transport Domain Including Location of the Point Source.  

(From Figure 1 of Salari et al, 1995.) 
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representation. Thus, the grid doubling with a finite volume representation effectively moves the point 
source by x/2 and y/2, introducing a first-order error in the location of the point source. Further grid 
doubling would introduce a similar choice. This process is shown in Figure 6.12.2.2a and is labeled as 
improper modeling of the source. 
 Intuition might suggest that such a small change in effective location would only affect results in the 
immediate neighborhood of the source, but would not affect rate of convergence of global results such as 
integrated discharge. Our results showed that this is not the case. 
 In order to remedy this shortcoming of the finite volume grid one has to physically preserve the initial 
cell associated with the source. This means that as the grid is refined, for example from one coarse cell to 4 
medium cells and to 16 fine cells, the total injected mass should be equally distributed among the smaller 
cells. As a result, the area and location of the initial coarse cell are preserved as well as the total mass 
injected. This is shown schematically in Figure 6.12.2.2b and is labeled the proper modeling of the source. 
As shown below, only the latter approach will produce the correct 2nd-order convergence behavior.  

6.12.3 Results on Source Location  

 The study was conducted for transport calculations using single and dual-porosity models on three 
different x-y spatial grids. Only the x-y spatial grid convergence tests are of interest herein, but we also 
examined time-step convergence, verifying adequate resolution over three different time steps. For brevity 
and focus, these tests are not reported herein; the results presented here were obtained with the smallest t. 
Likewise, for the dual porosity calculations; the matrix block was discretized with 15 stretched cells into 
the dual porosity direction. The minimum cell size (which occurs at the fracture-matrix interface) was 
0.001 (nondimensional). Since the diffusion rate into the matrix is slow, there was no need to further refine 
the mesh at the fracture-matrix interface for finer fracture grids. In any case, the primary results of the 
spatial x-y grid convergence results presented herein would hold for any reasonable time and dual-porosity 
resolution. 
 Figures 6.12.3.1–2 show the results for the single and dual porosity calculations for all three grids. The 
233U concentration contours for single-porosity are shown at time = 4150 years and dual-porosity results 
and the breakthrough curves for the single and dual porosity calculations are shown at time = 5000 years. 
In both single and dual porosity calculations there are noticeable differences in the concentration contours 
going from the coarse to the medium grids; however, the concentration contours remain relatively the same 

(a) Improper Modeling

SOURCE AREA,
COARSE GRID

SOURCE AREA,
MEDIUM GRID

SOURCE AREA,
FINE GRID 

 

 

(b) Proper Modeling

SOURCE AREA 
FOR ALL THREE GRIDS

 
 
Figure 6.12.2.2. Effective Change in Source Location or Size as Grid is Refined. (a) Improper 

Modeling of the Point Source. (b) Proper Modeling of the Point Source (From Figure 
2 of Salari et al, 1995.) 
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between the medium and the fine grid solutions. The breakthrough curves for both transport models do not 
show any visible variation through the grid refinements. Note that MT1 and MT2 are the discharge 
boundaries 1 and 2 shown in Figure 6.12.2.1. 
 Tables 6.12.3.1–2 present the convergence results for dual-porosity calculations for discharge surfaces 
1 and 2. In this case, the source is modeled properly by preserving the initial source “cell” size and 
location. The theory indicates that the ratio of successive fine-grid GCIs should equal 4 for a grid doubling 
with a 2nd-order method in the asymptotic range. As the ratios of GCIs in the Tables show, we attained 
2nd-order convergence for the integrated discharge for both surfaces. 
 Tables 6.12.3.3–4 present the same dual-porosity calculations as shown previously in Tables 6.12.3.1–
2, with the exception that the source is now improperly modeled with a single cell on all grids. From the 
behavior of the ratio of GCIs, it is clear that the convergence is no longer 2nd-order. In fact, examination of 
the integrated discharge column shows that the convergence is not even monotone. 
 Tables 6.12.3.5–6 present the results for the single-porosity calculations for both discharge surfaces 
and the proper modeling of the source. The solutions are 2nd-order accurate as shown by the ratio of the 
GCIs. 
 Tables 6.12.3.7–8 present the same single-porosity calculations as shown previously in Tables 
6.12.3.5–6, with the exception that the source is now improperly modeled with a single cell on all grids. 
Again, the results are similar to the dual-porosity calculations in that they are no longer 2nd-order accurate. 
 The level of numerical accuracy attained in these calculations is far beyond that ordinarily expected of 
groundwater transport predictions. The high resolution is necessary to unambiguously Verify the principal 
results of sensitivity to the representation of the source term. If the discharge boundaries were farther from 
the source, the asymptotic convergence results would have been corrupted by computer round-off error. In 
fact, it is somewhat surprising (and encouraging) that the asymptotic convergence rates were in such good 
agreement with theory even in Table 6.12.3.1, in which the variation in integrated discharge occurred only 
in the 5-th significant figure. However, the results would be more pronounced if the integrated discharge 
boundary were closer to the source and/or if the grid were more coarse. It will be worthwhile, and involves 
little effort, to use the proper modeling of the source Q described herein in practical modeling work. 
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Figure 6.12.3.1. Dual-Porosity Calculations with Proper Source Modeling. Concentration contours and 
breakthrough curves for all three grids at time = 5000 years. (From Figure 3 of Salari et al.) 
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Figure 6.12.3.2. Single-Porosity Calculations with Proper Source Modeling. Concentration contours at 

time = 4150 years and breakthrough curves at time = 5000 years for all three grids.  
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Grid Integrated Discharge GCIfine GCI ratio 
40  40 2.2110467E5   
80  80 2.2115032E5 0.021 %  

160  160 2.2116186E5 0.0052 % 3.95 
 
Table 6.12.3.1. Grid convergence results, dual-porosity, proper source modeling, surface 1.  

(From Table 2 of Salari et al, 1995.) 
 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 1.4098546E5   
80  80 1.4102589E5 0.028 %  

160  160 1.4103605E5 0.0072 % 3.98 
 
Table 6.12.3.2. Grid convergence results, dual-porosity, proper source modeling, surface 2.  

(From Table 3 of Salari et al, 1995.) 
 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 2.2110467E5   
80  80 2.2278868E5 0.75 %  

160  160 2.2200042E5 0.36 % 2.08 
 
Table 6.12.3.3. Grid convergence results, dual-porosity, improper source modeling, surface 1.  

(From Table 4 of Salari et al, 1995.) 
 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 1.4098546E5   
80  80 1.4145352E5 0.33 %  

160  160 1.4127100E5 0.13 % 2.54 
 
Table 6.12.3.4. Grid convergence results, dual-porosity, improper source modeling, surface 2.  

(From Table 5 of Salari et al, 1995.) 
 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 3.0177976E5   
80  80 3.0173064E5 0.016 %  

160  160 3.0171838E5 0.0041 % 4.01 
 
Table 6.12.3.5. Grid convergence results, single-porosity, proper source modeling, surface 1.  

(From Table 6 of Salari et al, 1995.)  
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6.12.4 Summary on Source Location:  
      1st-Order Performance with a 2nd-Order Code 

 This study (Salari et al, 1995) showed that the grid convergence results for radionuclide transport 
calculations in porous media were significantly influenced by plausible but improper spatial modeling of 
the source Q in a finite volume grid during the grid refinement. The most obvious approach degrades the 
experimental order of accuracy attained grid convergence tests to 1st-order. The proposed solution is to 
preserve the initial area and location of the source. The implementation of this method is quite simple and 
effective, as has been shown in the examples, and will obviously be applicable to source term 
representations for problems other than transport in porous media. 
 Perhaps the point of this study of most general interest is that the code itself had previously been 
rigorously Verified to be 2nd-order in space and time. (See the synopsis of the Verification and 
Confirmation exercises from Salari and Blaine, 1996 given below in Section 6.24.) Indeed, the observed 
convergence rate in the present example with proper source term modeling confirms the 2nd-order 
accuracy. However, even with a correct code, improper modeling (not coding) caused degradation to 1st-
order accuracy of the particular calculation (rather than the code). By no stretch of imagination could this 
failure be construed as a fault of the code builder or the code itself; the failure arose in the use of the code. 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 2.7125801E5   
80  80 2.7120203E5 0.021 %  

160  160 2.7118813E5 0.0051 % 4.03 
 
Table 6.12.3.6. Grid convergence results, single-porosity, proper source modeling, surface 2. 

(From Table 7 of Salari et al, 1995.) 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 3.0177976E5   
80  80 3.0219098E5 0.14 %  

160  160 3.0196543E5 0.075 % 1.81 
 
Table 6.12.3.7. Grid convergence results, single-porosity, improper source modeling, surface 1. (From 

Table 8 of Salari et al, 1995.) 
 
 

Grid Integrated Discharge GCIfine GCI ratio 
40  40 2.7125801E5   
80  80 2.7141090E5 0.056 %  

160  160 2.7131694E5 0.035 % 1.63 
 
Table 6.12.3.8. Grid convergence results, single-porosity, improper source modeling, surface 2. 

(From Table 9 of Salari et al, 1995.) 
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6.13   CONVERGENCE BEHAVIORS FOR MIXED-ORDER METHODS 

 The previous example from Salari et al (1995) illustrates an important aspect of the convergence 
behaviors for mixed-order methods. Although the code itself is demonstrably uniformly 2nd-order accurate, 
the inappropriate modeling of the source term Q caused an observed (an indeed, asymptotic) 1st-order 
convergence rate. The “method,” including the inappropriate modeling for Q, is now a mixed order method, 
like one obtained by using 1st-order upstream discretization on advection terms with 2nd-order on diffusion 
terms, or like one obtained using uniformly 2nd-order on interior points and 1st-order discretization of 
boundary conditions. Since the magnitude of the error is ultimately dominated by the lowest order terms, 
one may ask what, if any, is the advantage of using higher order accuracy whenever possible, if any 1st-
order discretization requires p = 1 to be used in the extrapolation and error estimation/banding? 
 The answer is shown in Figure 6.13.1 for hypothetical examples, qualitatively comparing the 
convergence behavior of three hypothetical methods. Method A is a uniformly 2nd-order method, as shown 
by the slope of ~2 in the log/log plot of error vs x. Method B is a hybrid method, in which the advection 
term is a weighted combination of 1st-order and 2nd-order discretization, the (adaptive) weighting 
depending on the cell Reynolds number. The weighting of the 1st-order discretization goes to zero as the 
grid is refined, so that ultimately the convergence rate would be 2nd-order; however, over the observed (and 
usually, the practical) range of x, some intermediate rate of convergence 1  phybrid  2 is observed (or 
more complex behavior; see below). Method C is a 4th-order method except for some locally 1st-order 
treatment, e.g. the inappropriate Q described above, or an outflow boundary condition, or a small (non-
adaptive) weighting of a 1st-order discretization of advection used to “filter” a marginally stable method 
(e.g., see Roache and Dietrich, 1988). 
 Over the range shown, hypothetical Method C is more accurate than A, in the sense that its error is 
smaller. Yet its convergence rate is slower, as evidenced by its slope of ~1. Note that even though C is 
more accurate than A, the extrapolated solution (and therefore its error estimation/banding) is correctly 
obtained using p = 1 for B and p = 2 for A. Likewise, the extrapolated solution for the hybrid Method B is 
best obtained empirically using the observed rate phybrid. 
 The behavior described above for the hybrid Method B is intuitively appealing and often observed in 
practice, i.e. 1  phybrid  2 is observed. However, Roy (2003) has shown that this smooth behavior can be 
an unjustified idealization, depending upon the relative signs of competing error terms in the solution. In an 
elementary yet elegant analysis of model equations, Roy has shown that mixed order differencing of 
advection and diffusion terms can be a source of oscillatory convergence. (Other sources can contribute, of 
course, including shocks and other strong nonlinearities.) His analysis based on model equations is shown 
to be applicable to practical computation of a hypersonic flow. 

6.14 GRID CONVERGENCE OF ZERO DRAG COEFFICIENT 

 When inviscid equations are used to model airfoils in shock-free flow, the drag should be zero. This 
known exact value can be used to monitor grid convergence, as in Jameson and Martinelli (1996). This 
variable is not only convenient, but it is deserving of attention because of its engineering importance, as 
noted by the authors. “In aeronautical applications the accurate prediction of drag is particularly important, 
and an error as large as 0.0005 is significant since the total drag coefficient of the wing of a transport 
aircraft (including friction, vortex and shock drag) is in the range of 0.0150.” Their calculations using the 
H-CUSP scheme are zero to 4 significant figures on a 160  32 mesh, as shown in the following Table 
6.14.1, which also demonstrates the roughly 2nd-order convergence rate. 
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 For non-zero drag coefficient problems, grid convergence estimation requires at least three grid 
solutions to estimate p, as noted previously. Jameson and Martinelli also gave examples of time-dependent 
calculations for incompressible flow over an oscillating cylinder, obtaining a value of p for the maximum 
(over the oscillation cycle) drag coefficient MD (not the original notation) in three grids. In a transparent 
notation, 
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“which is close to 2.” Better Verification is obtained for incompressible vortex shedding from a stationary 
half-cylinder at Reynolds Number = 250, for maximum drag coefficient MD, maximum lift coefficient ML, 
and Strouhal number S (a dimensionless shedding frequency). 
 
 
 
 

ln (error)

ln( x)

B

A

C

 
 
Figure 6.13.1. Qualitative convergence rate and error magnitude for three hypothetical methods. A is 

a uniformly 2nd-order method. B is a hybrid 1st- to 2nd-order method. C is a 4th-order 
method for the dominant terms, with a minor term or boundary condition discretized with 
only 1st-order accuracy. 
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“which are indeed close to 2.” Note that Strouhal frequency is not a difficult quantity to predict physically 
nor to converge mathematically, because it is essentially an inviscid phenomenon and therefore fairly 
insensitive to viscous modeling, boundary layer resolutions, etc. (These calculations were all carried out 
with the outflow boundary located 16 diameters downstream, presumably based on some unreported 
sensitivity calculations.) The paper (Jameson and Martinelli, 1996) also contains an excellent example (in 
its Figures 30 and 31) of the radical improvement in convergence for the drag polar produced by 
graduating from a 2nd-order time-accurate method to a 3rd-order method. 

6.15 ANOMALOUS RESULT POSSIBLY DUE TO GRID STRETCHING 

 Steffen et al (1995) used the GCI to report a grid convergence study on a calculation of incompressible 
flow in a rectangular nozzle using a well-Verified code with a k- turbulence model. They used GRIDGEN, 
a commercial code grid generation package (Steinbrenner and Chawner, 1992) to generate a 10 block, 
structured, generalized coordinate mesh with cells clustered towards the nozzle walls and exit plane. The 
base grid contained 450,000 cells, and grid refinement and coarsening of 10% was used to generate 3 grids, 
with the motivation of keeping the solution in the asymptotic range (see discussion in Chapter 5). The GCI 
values were calculated with r = 1.1 and p = 2 for two functional quantities: (a) the axial location at which 
the jet centerline velocity has decayed to 1/2 the value at the exit plane, and (b) the axial location at which 
the jet half-velocity-width along the nozzle minor axis has spread from 0.5 to 1.5.  
 The results were fairly convincing for functional (a). In their notation, the coarse-to-medium grids 
GCI(c-m:a) = 10.3%, and the medium-to-fine GCI(m-f:a) = 7.64%. These notations correspond to GCI23 
and GCI12 in Eq. (5.10.5.2),   

 
Mesh 

RAE 2822 Airfoil 
Mach 0.50,  = 3 

NACA 0012  
Mach 0.50,  = 3 

Korn Airfoil 
Mach 0.75,  = 3 

40  8 0.0062 0.0047 0.0098 
80  16 0.0013 0.0008 0.0017 
160  32 0.0000 0.0000 0.0000 

 
Table 6.14.1. Drag Coefficient on a Sequence of Meshes using the H-CUSP Scheme.  

(From Table 2 of Jameson and Martinelli, 1996.) 
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GCI GCI23 12 r p             (6.15.1) 
 
Recall that approximate satisfaction of this equation indicates the asymptotic range. With rp = 1.12 = 1.21, 
the above values give 

10 3% 121 7 64% 9 24%. . . .            (6.15.2) 
 
Considering the inherent difficulties of grid smoothness across boundaries of 10 grid blocks, this is 
reasonable satisfaction (~10%), and indicates that all 3 grid calculations are in the asymptotic range for 
functional (a).  
 However, the results for functional (b) were anomalous, with GCI(c-m:b) = 3.44% and GCI(m-f:b) = 
4.81%, an incorrect trend. The authors noted that these results were “located in a region of the 
computational mesh where stretching could have affected the accuracy. This deserves further study before 
a solid conclusion can be reached.” It would appear likely that the results are adequately converged for both 
functionals (a) and (b), as the authors believe, but that the assumption of observed p = 2 is not Verified due 
to grid stretching problems of the type discussed in Chapter 5, including subtleties associated with multi-
block grid generation methods. No matter what the final conclusion might prove to be, this sort of candid 
and painstaking reporting of grid convergence tests builds confidence effectively. 

6.16 NON-SMOOTH PROPERTY VARIATION: GLOBAL ERROR NORMS 

 The general issues of non-smooth property variation were discussed in Chapter 5. Here, we present 
results of a particular study, and special considerations for global error norms. 
 Ruge (1995) performed a thorough study of grid convergence and an evaluation of the GCI for 1-D 
two-phase flow in porous media with non-smooth property variation. The 1-D convergence study was 
performed to support 2-D studies of a geologic waste repository.76 The 2-phase Darcy flow code uses 
mixed 1st- and 2nd-order spatial differencing and adaptive 1st-order time differencing, common for this 
class of problems. Beginning with a base case of 61 spatial cells, four levels of spatial refinement (by 
factors of 2, 4, 8 and 16 from the base case) were used, and the effect of timestep refinement (with the 
same nominal refinement factors) was also examined. In preliminary 2-D studies, Ruge found that the 
spatial error dominated, so that error estimates could be examined in terms of refinement of spatial step  
alone; however, for the more extreme refinement possible in the 1-D problem, this was not true. The 
nominal time-step refinement factors sometimes were overcome by the solution-adaptive time-stepping 
algorithm, producing higher than nominal refinement. This caused some inconsistency with the temporal 
order inferred, compared to runs wherein the nominal (scheduled) time step refinements were followed.  
 This study focused on global rather than local convergence, and Ruge found that the estimates of 
convergence could depend strongly on the quantities compared and the norms used. A major factor was the 
cell alignment of faces with the boundaries of the computational domain. As already noted above in Section 
6.12, in this grid configuration, doubling the number of cells requires the location of the center of a single 
cell to shift by /2 (See Figure 6.12.2.2.). Combined with non-smooth property variation, this can confuse 
grid convergence calculations. It was necessary to avoid any kind of interpolation across the coarse grid 
cell faces, since discontinuities in the problem coefficients can interfere with accuracy and affect error 
estimates. For this reason, spatial comparisons were made only within cells, and comparisons between two 
levels of discretization were made only on the coarser level, i.e. the finer mesh solution was transferred to 
the coarser mesh, where the non-smooth properties were defined to be piecewise constant. This allowed 

                                                
76 WIPP PA Dept. (1992), Helton et al (1995, 1996) 
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2nd-order interpolation between fine level cell centers (within a coarse grid cell, so that material properties 
are constant) to obtain fine-grid values at the coarse level cell centers. Comparisons were further 
complicated by the fact that the 1-D problem of interest represented a highly stretched quasi-radial mesh, 
so that uniform subdivision in the coordinate did not produce uniform subdivision of volumes. 
 Consequently, initial attempts at grid convergence studies clearly showed that it was necessary to 
carefully define the norms used for measuring solution differences over space and time. With S k the space 
of grid functions f k defined on the level k refinement grid, so f k  S k, and v the volume of the ith cell, Ruge 
used the following volume-weighted discrete approximation to the spatial L2 norm. 
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The time norm was defined similarly, with the simplification that the solutions being compared were all 
stored at the same sequence of timesteps, regardless of what sequence they were calculated on (further time 
step refinements being skipped over) so that the level need not be specified for t. With f  being assumed 
piecewise linear on each time interval, the normalized L2 norm in time was defined as follows. 
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The time norm was applied to the space norm to obtain the full norm, as follows. 
 

tSk kff )(
  

         (6.16.3) 

 
 The norms as defined do not commute, but Ruge found that the order in which the norms were applied 
to obtain the full norm did not have much effect. The same norm order was used consistently in all the 
comparisons. Generally, consistency is important to the convergence study. “The norm of the difference 
between two functions can depend heavily on the level on which it is measured, so that when norms of 
several differences are involved in a GCI calculation, for example, all functions involved should be 
weighted to some common level.” (Ruge, 1995) 
 With the dependent variables of interest being pressure and saturation, Ruge found the temporal order 
q = 1 in most cases. The spatial orders of convergence for the global measures of pressure were found to be 
approximately p = 2 at all refinement levels; however, the p = 2 result is largely an artifact of the highly 
stretched quasi-radial mesh, which makes most of the spatial region covered to be in virtually uniform flow. 
Near the modeled waste repository, where spatial variations were significant, the convergence order was 
only p = 1. For the saturation, p  2 on the coarser levels, but decreases to p  1 on the finer levels. [This 
would indicate that the coarser levels of mesh refinement are not in the asymptotic range of convergence, 
contrary to Ruge’s statement.] The methods used are mixed order, so that use of the more conservative a 
priori values p = 1 and q = 1 in the GCI calculation was expected to be more conservative. Indeed, Ruge 
found that the GCI generally was about 4 times the actual error, compared to the factor Fs = 3 in the GCI 
definition (see Chapter 3). [Note, however, that the actual 2-D calculation of engineering interest involved 
much more coarse resolutions than Ruge’s 1-D study, so the additional conservatism of Fs = 3 is probably 
appropriate.] Thus, Ruge (1995) concluded that “the GCI is performing well in our case.” 
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6.17   DIFFICULTIES OF SPECIAL METHODS 

 Special methods of discretization requires special consideration for Calculation Verification. Here we 
mention some aspects of special methods in CFD: discrete vortex method, LES and DNS methods. 

6.17.1 Discrete Vortex Methods  

 Discrete vortex methods in fluid dynamics can present particular difficulties for grid convergence 
testing because of sensitivities. In discrete vortex methods, there is no grid. Rather, the discretization 
involves the selection of a finite number of vortices. The velocity field at every point needed is calculated 
from the Biot-Savart law, summing over all the vortices. The velocity field is calculated at each location of 
the vortex centers, and the velocity field is then used to move the vortices in a Lagrangian calculation. 
Implicit algorithms are difficult to implement efficiently, and virtually all the published methods use fully 
explicit differencing. Stability requires the addition of a viscous core to the inviscid vortex, which has a 
singularity at the center. Although physical vortices have a viscous core of size ordered by the Stokes 
radius, the modeled vortices can have much larger cores without destroying the accuracy. In fact, it is 
necessary for stability that each vortex stay within the viscous core of a neighbor; if vortices move apart so 
this condition would be violated, the vorticity is locally redistributed between old vortices and new vortices 
“injected” into the simulation. Hugo (1995) has shown that this condition corresponds to a physically 
intuitive requirement that the flow field at a neighboring vortex in a one-dimensional simulation is not 
changed, i.e. if a vortex is injected outside the core, the induced velocity at neighbors changes, evidently 
leading to instability. 
 The operation count for a fully viscous flow field (such as the driven cavity problem at low Re) is 
prohibitive. The efficiency of the method comes from the fact that vortex resolution is not required in the 
inviscid regions. For example, in the calculation of a shear layer, vortices are only required in the shear 
layer, not in the free stream region. However, the rapid increase in computer time with the number of 
vortices N makes convergence testing difficult. The time step convergence is straightforward. Because of 
the requirement for the viscous core, and the (usually) non-physical modeling of the core, it is not clear to 
what system of equations the method would converge in the limit of N  . Convergence issue are further 
complicated when the modeling is statistical, e.g. aero-optical phase distortion due to turbulence 
fluctuations; see Jumper et al (1994), Jumper and Hugo (1995), Hugo (1995). 

6.17.2 §  LES and DNS Methods  

 Large Eddy Simulations (LES) and Direct Navier-Stokes (DNS) methods are alternatives to the RANS 
turbulence models. (E.g. see the review of LES methods given by Madnia et al, 2006.) Although they have 
higher requirements for resolutions, they have a better chance of providing accurate solutions for more 
general problems than RANS, which are typically tuned for specific classes of flow problems, often quite 
limited. LES and DNS pose some challenges to the use of grid convergence for assessing code accuracy, 
but fundamentally the approach described in Chapter 5 can be followed. In any method, care must be taken 
to assure grid resolution sufficient to minimally resolve the physics of the problem, e.g. boundary layers 
and thermal gradients must be adequately resolved, but this is particularly important in LES. As noted in 
Section 2.4 of V&V20, the LES filter width is usually related to a measure of the grid resolution, and thus 
as the grid resolution is changed during the grid convergence study, the filter width also is changed. This 
means that the partitioning of energy between the resolved and unresolved scales is changing. Thus, if users 
are not careful as the grid convergence study is executed, they may be solving a different problem for some 
of the coarse-grid resolutions if the boundary between resolved and unresolved scales changes significantly 
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from grid to grid. The same analysis applies to DNS, in that coarser grid resolutions may not resolve the 
same set of appropriate flow scales adequately to qualify the simulation as DNS. A DNS simulation by 
definition resolves all pertinent flow scales (in the frequency domain) up to viscous dissipation. 
 Several new approaches for calculation uncertainty (generally, “assessment measures”) for LES were 
developed by Celik et al (2006). The new measures that they considered are very specific to the physics of 
turbulence and involve (a) fraction of total kinetic energy, (b) grid size relative to Kolmogorov and Taylor 
scales, (c) effective subgrid/numerical viscosity relative to molecular viscosity, (d) power spectra of 
turbulent kinetic energy. They also took initial steps to address a subtle and important topic, segregation of 
numerical and modeling errors, which are closely linked in LES unless the LES filter width is defined 
separately from the mesh size h. This latter approach has significant advantages (as noted in Section 3.13); 
without it, there is no continuum equation that LES solves, other than full Navier-Stokes equations in the 
limit. So, for example, a Code Verification study using MMS could only use a manufactured solution for 
the Navier-Stokes equations. While the usual Code Verification process applies in the limit, the  process 
would not have Verified the coding of LES features. Of special interest is the approach of Celik et al 
(2006) using 3 solutions on 2 grids. The “standard” (unperturbed) LES model is applied on two grids to 
estimate the purely numerical error using an assumed theoretical rate of numerical convergence. Then a 
modified (perturbed) LES model is used on the finer grid to estimate model error. The numerical and 
modeling errors are combined using absolute values to attain some conservatism, in the spirit of an 
uncertainty estimate. The paper is highly recommended for the presentation of the background as well as 
the new approaches. 

6.18 OBSERVED CONVERGENCE RATES FOR  
EULER EQUATIONS WITH SHOCKS 

 This section summarizes results of Engquist and Sjogreen (1996) as presented in Yee and Sweby 
(1996) on the observed convergence rate for discontinuous (shock) solutions of the Euler equations (for 
inviscid, compressible flow) using high-resolution shock-capturing schemes such as TVD (Total Variation 
Diminishing) and ENO (Essentially Non-Oscillatory) schemes. The critical lesson and mathematical 
distinction is that the Euler equations are a system of hyperbolic conservation laws, and the convergence 
rate behavior unfortunately cannot be inferred from the study of a model scalar equation (i.e., for a single 
variable). 
 For a shock-containing solution of a scalar nonlinear conservation law, the characteristics point into the 
shock. TVD, ENO and similar schemes going back to the original FCT, or Flux-Corrected Transport 
algorithm of Boris (see Book et al, 1975) adapt to a low order scheme just at a shock, since the concept of 
high-order is meaningless across a discontinuity. According to the linear theory of Kreiss and Lundqvist 
(1968), dissipative schemes like these damp out the errors propagating backwards against the direction of 
the characteristics. Thus, it is reasonable to expect that the locally large errors at the shock will stay in the 
immediate vicinity of the shock. In numerical experiments with formal pth order methods , one usually 
obtains O(p) convergence away from the shock. 
 For systems of equations, complications arise because other families of characteristics exist, and it 
becomes possible that the large error at the shock can propagate out into the entire post-shock 
(downstream) region by following a characteristic that emerges from the shock. An example is given for 
quasi-1-D nozzle flow (using a model system of equations that exhibit shocks; see Yee and Sweby, 1996 
for details) for an area distribution given by Eq. (6.18.1). 
 

)48.0tanh(347.0398.1)(  xxA             (6.18.1) 
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 The exact steady-state solution for the model equations used has a shock at x = 5. Figure 6.18.1 shows 
the error in momentum obtained using a formally 4th-order ENO methods (part a) and a formally 2nd-order 
TVD method (part b), for three grids containing 50, 100 and 200 points.  
 The apparently constant jumps in error between the three grid solutions is due to the log scale used; 
when the observed convergence rate p is calculated, the result for the ENO method (between the 100 and 
200 point grids) is 3.9 before the shock, in good agreement with the formal rate of p = 4, However, the 
observed rate is only p = 1 downstream of the shock, indicating that the 1st-order error at the shock is being 
propagated downstream. Likewise for the TVD method, the observed rate upstream of the shock is p = 2.2, 
somewhat better than the formal rate of p = 2, but downstream of the shock it deteriorates to p = 1.1. 
Similar results are obtained for 2-D Euler solutions. 
 In these example calculations, the exact solution of the model problem is known, so 2 grids suffice to 
determine the observed convergence rate p. For non-model problems wherein the exact solution is not 
known, it would be necessary to perform at least 3 grid solutions to calculate p, and 4 to verify that the 
observed p is constant, i.e. that the calculation is indeed within the asymptotic range. Unless such thorough 
testing is performed, the above calculations on model problems would dictate that error estimation and 
banding should be done assuming the post-shock p = 1. 

6.19 COMPLETED RICHARDSON EXTRAPOLATION 

 The calculations in Roache and Knupp (1993) that Verify the method of Completed Richardson 
Extrapolation provide a good example of the sensitivity of the grid convergence testing. See details in 
Chapter 3, Section 3.12.2. 
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Figure 6.18.1. Effect of Grid Resolution on Error in Momentum for a Quasi-1-D Model System of 
Equations Exhibiting a Shock. (a) 4th-order ENO method. (b) 2nd-order TVD method. 
(From Yee and Sweby, 1996, Figure 4.3.) 
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6.20 TRUNCATION ERROR IN ELLIPTIC GRID GENERATION 

 Methods of generating curvilinear, boundary-fitted grids by solving elliptic equations are highly 
developed; e.g., see Thompson et al (1985) or Knupp and Steinberg (1993). The seminal paper in this area 
was that of Thompson, Thames and Mastin (1974) which used the following grid generation equations. 
 

0)(2 2    QxPxJxxx         (6.20.1a) 
 

0)(2 2    QyPyJyyy        (6.20.1b) 
where 

   x y2 2            (6.20.1c) 
 

     x x y y          (6.20.1-D) 
 

   x y2 2           (6.20.1e) 
 

J x y x y                 (6.20.1f) 
 
J is the Jacobian of the transformation. 
 These are PDEs for the physical (x, y) coordinates in the transformed coordinates (, ) and are solved 
in the (, ) “logical” plane, with easy boundary conditions. (Note that no interpolation of boundary 
position is required.) An earlier method (for triangle grids) due to Winslow (1967) is recovered when the 
source terms P and Q are taken to be zero. It was claimed that this homogeneous elliptic method of grid 
generation has the theoretical property that the grid lines should not cross, i.e. the grid transformation 
generated should automatically be “one-to-one and onto.” However, the present author showed by simple 
hand calculations (exact solutions) on a trivial 3  3 example problem that the method could easily be made 
to fail (Roache and Steinberg, 1985). For a horseshoe shaped region (geometrically similar inner and outer 
ellipses, with size ratio of 2), as shown in Figure 6.20.1, the 33 grid produces only one interior point. The 
position of this point falls on the boundary for a critical aspect ratio AC = 3 2   2.1. For aspect ratios 
smaller than this, the degenerate 1-point grid generation is acceptable. For aspect ratios larger than this, the 
point falls outside the region, i.e. the grid lines are crossed. Furthermore, crude grid resolution studies 
indicated that the critical aspect ratio did not diminish very rapidly with increased resolution, as shown in 
Figure 6.20.2.   
 It was far from clear whether or not this failure of the homogeneous elliptic grid generation equations 
indicated an error in the theorems of Thompson et al (1974). The question was later essentially resolved 
(with some reservations) by Knupp and Luczak (1995) who showed (a) that the failure was sensitive to the 
boundary parameterization, and (b) that the failure was due to truncation error. That is, in the limit of , 
  0, a correct grid is generated. (However, the phenomenon remains a problem at finite grid 
resolution.) 
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a) b) c) d)
 

Figure 6.20.1. Horseshoe shaped region for elliptic grid generation, showing the grid folding failure of 
the homogeneous grid generation equations for the degenerate 3  3 grid. A is the 
aspect ratio of the ellipses, and the ratio of outer to inner ellipses = 2. (From Roache and 
Steinberg, 1985, Figure 2.) 
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Figure 6.20.2. Variation of the critical aspect ratio AC with mesh size. The theory would indicate  

lim (0) AC = . (From Roache and Steinberg, 1985, Figure 3.) 
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6.21 ONE DIMENSIONAL MOVING ADAPTIVE GRID PROBLEMS 

 Salari and Steinberg (1994) developed a flux-corrected transport (FCT) algorithm suitable for moving, 
solution-adaptive grids for difficult 1-D shock propagation problems. They discussed limitations of the 
algorithm, as well as its significant successes. Clearly, such algorithms are much more efficient than fixed 
grid methods, yet there are difficulties associated with Verification of Calculations. 

6.22 GCI APPLICATION IN SOLUTION-ADAPTIVE NON-INTEGER GRID REFINEMENT 

 Lotz et al (1995, 1997) present an exemplary application of the GCI in solution-adaptive grids with 
non-integer grid refinement. The subject problem was the aerodynamics calculation for viscous transonic 
flow over supercritical airfoils with blunt trailing edges (more specifically, divergent trailing edge or DTE 
airfoils) designed to create a “rooftop” pressure distribution on the upper lifting surface. The Briley-
MacDonald (1977, 1980) Approximate Factorization method was used with explicit artificial dissipation, 
and turbulent boundary layers were modeled with a mixing-length model; the objective was to quantify the 
numerical uncertainties (i.e., Verification of the Calculation) rather than Validation of the turbulence 
model, etc. The GCIs were evaluated for several quantities: three aerodynamic coefficients, shock location, 
physical extent of the recirculation wake behind the blunt trailing edge, and distributions of the surface 
pressure coefficients.  
 Initial grid distributions were established with increased mesh density in the anticipated shock 
locations, then new grids were adapted to the initial solution. Then the new grids were refined for the grid 
convergence study. Three grid resolutions were used. The advantages of non-integer grid refinement (see 
discussion in Chapter 5) are evident; over all three grids, the overall grid refinement ratio is only r13 ~ 1.68 
(compounded of r12 ~ 1.27 and r23 ~ 1.32). The relatively constant GCI over both refinements indicates that 
all three grids are reasonably in the asymptotic range except in the wake. Interestingly, the distribution of 
local GCI for the local pressure coefficients was almost uniform around the airfoil, except in the shock -
boundary layer interaction region and at the point where turbulence transition was fixed. [This uniformity 
suggests that the adapted grid distribution is appropriate, i.e. near-optimum.]  
 The evaluation by Lotz et al (1997) of the numerical uncertainties indicates good convergence for lift, 
but only fair convergence for moment and drag, and indicates that drag calculations are more sensitive to 
numerical error. This is partially in contrast to Salari and Roache (1990), who also found lift to be the 
easiest to converge, but who found moment errors to be more slowly converging than drag. However, a 
related result in a similar vein is shown in Table 1 of Lotz et al (1997). Although the value of the GCI is 
larger for drag than moment, the variation in GCI (from coarse-medium GCI to medium-fine GCI) is larger 
for moment than drag. This would suggest that the relative error for moment is less than that for drag, even 
though the asymptotic behavior is not as good; this is perhaps unexpected, but not really contradictory. In 
any case, both the calculations of Lotz et al (1997) and Salari and Roache (1990) on viscous airfoil grid 
convergence studies, as well as countless other studies, make it clear that convergence of any functional 
cannot be assumed a priori to guarantee the same quantitative level of convergence for any other functional 
(as discussed earlier in Chapters 4 and 5; see also Chapter 7). 
 These studies (Lotz et al, 1995, 1997) clearly show the power and utility of the GCI in providing 
conservative error bands without the computational expense of successive grid doublings (see discussion in 
Chapter 5). 
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6.23 HIGH QUALITY GRID STUDIES LEADING TO A SAFETY FACTOR OF 1.25 

6.23.1 Original Studies 

 Many studies previously cited in V&V1 taken together led to the suggestion made in Chapter 5 that the 
value of the “factor of safety” used in the GCI [Eqs. (5.6.1), (5.7.2–3)] be adopted as Fs = 1.25, but only 
for such high quality studies with a minimum of 3 grids to experimentally ascertain the observed rate of 
convergence p.77 As noted in Chapter 5, Section 5.9, for the more common 2-grid study, we still 
recommend the value Fs = 3 for the sake of uniform reporting and adequate conservatism.  
 These studies included notably  Lotz et al (1995, 1997) and those in the ASME publication edited by 
Johnson and Hughes (1995), including Chang and Haworth (1995), Salari et al (1995), Pelletier and Ignat 
(1995), Celik and Karatekin (1995), Leonard and MacVean (1995), and Ruge (1995). The following 
studies (and others too numerous to mention) published since V&V1 have confirmed this choice. 

6.23.2 §  Terrassa Group Results 

 The Heat Transfer Group at the University of Catalonia - Terrassa (Cadafalch et al, 2002) presented a 
uniquely far-ranging application of the GCI that allowed further evaluation of the conservatism of the GCI 
in finite volume computations on steady state fluid flow and heat transfer; see also Roache (2003b). The 
authors treated the following seven problems, any one of which would constitute a study deserving of 
publication:  
 2-D driven cavity (laminar), with 5 levels of grid refinement 
 Variants of the driven cavity problem with 2-D inclined walls, with 5 levels of grid refinement 
 3-D driven cavity (laminar), with 4 levels of grid refinement 
 axisymmetric turbulent flow (low Re k- ) through a compressor valve, tanh stretching, zonal refinement, 
power-law advection differencing, with 5 levels of grid refinement 
 3-D premixed methane / air laminar flat flame on a perforated burner, with 7 levels of grid refinement 
 free convection heat transfer from isothermal cylinder in a square duct, three zones, tanh stretching of 
body-fitted grid, with 5 levels of grid refinement 
 2-D linear advection-diffusion model problem, rotated 1-D exact solution, with 6 levels of grid 
refinement.  
 
 Both global and local GCI were calculated. Cartesian staggered and boundary-fitted non-staggered 
grids were used, with two numerical schemes (upwind differencing and SMART or power-law 
differencing). As recommended in V&V1 (see Section 5.9.2,3 above) when three or more grid solutions are 
used to calculate an observed rate of convergence p, the authors used GCI with factor of safety Fs = 1.25. 
They tested all nodes for monotone or oscillatory convergence (as observed over the grid set used). A 
global observed p was used in the local GCIs. (Using local p was erratic; Cadafalch (2002).) The authors 
presented local observed p and local volume-weighted GCI, deviations from global values, and fraction of 
nodes that were oscillatory vs. (observed) monotone. (Boundary nodes are excluded.) As many as 1/3 of 
the nodes were determined to be oscillatory. The exact solutions being unknown, the benchmark or 
                                                
77 We note again that Fs = 1.25 should not be used if the results from minimum three grids produce a 
suspicious observed p. It is imprudent to use observed p > theoretical p in the GCI formula (unless there is 
some rare good reason to expect superconvergence). 
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reference solutions were those obtained using the highest order method on the finest grid. As in all such 
exercises, this makes the GCI evaluation less conclusive for the finest grid sequences, but the evaluations 
from the other grid sequences should not be significantly affected. 
 The authors’ conclusions included the following. For the linear model problem with exact solution: 
“The GCI has predicted the real absolute discretization error for all the studied situations quite well.”  For 
all problems: “The certainty of the error band estimators has been checked by comparing its value to the 
“exact” [reference value, highest-order method on finest grid] absolute error of the numerical solutions, 
always obtaining very reasonable values.” 
 In Roache (2003b) I summarized some conclusions obtained from examination of the results in 
Cadafalch et al (2002) which shed light on the question of the conservative (or non-conservative) character 
of the GCI in the engineering sense. That is, how often is the actual error greater than that banded by the 
GCI? The stated goal has been the 95% certainty (5% uncertainty, what would be roughly a 2 error band 
if the distribution were Gaussian), the same error band typical of experimentalists, i.e. ~19 out of 20 cases 
produce GCI < actual error, over an ensemble of computational PDE problems, including physical 
problem, grid sequence, and numerical methods. The results were most encouraging for the recommended 
factor of safety Fs = 1.25 for 3 or more grids.  
 There are various ways to discard outliers or otherwise interpret the results. Basically, I could see only 
one table entry that was worrisome: Table 5, top line, UDS axial velocity, p =1.2, GCI = 1.8, error = 3.0. 
Not bad for 176 table entries! 
 The net result was 14 NC (non-conservative) of 176 entries, or 8.0%. Restricting the count to the 
SMART algorithm, the net result is 2 NC of 88 entries, or 2.3%. For the UDS algorithm, the net result is 
12 NC of 88 entries, or 13.6%. This justifies the claim in Section 5.6 and elsewhere that lower order 
methods are not only less accurate, but their error estimates (and uncertainty estimates or error bands) are 
less reliable. Neglecting all cases with p < 1, which might arguably be considered, we would obtain a net 
13/127 for 10.2%. It is seen that discarding p < 1 cases discards proportionately more conservative results. 
This probably is due to the fact that p is increasing as convergence is approached, so that the lag effect 
makes the estimator and error band more conservative. That is, the fine grid calculation has a p larger than 
the average (observed) p over the three grids. 
 In summary, from the limited perspective and interest of determining the conservativeness of using the 
GCI with Fs = 1.25, the results of Cadafalch et al (2002) lead to the following conclusions. 
 (1) Confirm that the recommended Fs = 1.25 used with 3-grid studies to determine the observed p is 
roughly compatible with the target error band (5% uncertainty). 
 (2) Confirm that UDS is not only less accurate than higher order methods but is less reliable, i.e. the 
error estimates and error bands are not as reliable. 
 (3) Suggest that reliable GCI may be calculated using a global observed p even though as many as 
~1/3 of the node values are known to be converging non-monotonically. 
 (4) Suggest that there is no necessity to discard results with observed p < 1, probably because p is 
increasing as convergence is approached, so that the lag effect makes the estimator and error band more 
conservative. This leads to excessively conservative GCI for SMART calculations, but this is not an 
impediment to publication standards. These conclusions from the seven different physical problems 
computed in Cadafalch et al. (2002) agree with my own experiments on the Burgers equation and with 
other papers cited earlier, provided that those papers also use careful multi-grid studies with experimental 
determination of observed p. 
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6.23.3 §  Confined Detonation Problem by SwRI 

 A difficult practical problem for the application of the GCI is shown in Fig. 6.23.3.1 from V&V20, 
Section 2.3.3 by Dr. C. J. Freitas of Southwest Research Institute. The highly nonlinear problem consists 
of an explosive charge (TNT) detonated in a rigid, fluid-filled box. The quantity of interest is the quasi-
static pressure at various locations in the box (gray dots in left image) after a finite elapsed time in the 
time-dependent simulation. The right image in this figure displays the predicted value of pressure as a 
function of grid resolution at various measurement locations predicted by the set of simulations. In this 
example, the magnitude of pressure has a smooth dependence on grid resolution. The basis for the grid 
resolution used is the number of zones across the diameter of the explosive charge.  
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Figure 6.23.3.1 Simulation of  Explosive Detonation in a Fluid-Filled Box.  
(From Figure 2.1 of V&V20.) 

 
 

Location of Variable Corner Wall Fluid 

Observed order p 1.7 1.5 1.02 

GCI value (%) 1.2 1.6 3.6 

Value  Unum 15.34  0.18 MPa 15.23  0.24 MPa 15.24  0.55 MPa 

Fine grid prediction 15.47 MPa 15.40 MPa 15.39 MPa 

  

 Table 6.23.3.1 Simulation of  Explosive Detonation in a Fluid-Filled Box.  
(Adapted from Table 2.2 of V&V20.) 
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 Table 6.23.3.1 summarizes the results of the application of the GCI to the explosive detonation 
problem. Pressures at three different locations are used, as indicated in Row 1: a node in the corner of the 
box, a node near the center of a box side wall, and a node in the fluid at mid-distance between the charge 
centerline and a box side. Row 2 presents the observed order of the method, calculated from the first four 
grid resolutions (with 4, 8, 16, and 20 zones across the diameter of the charge). Row 3 presents computed 
GCIs. Row 4 provides the range in (dimensional) pressure as predicted by the Unum = U95% = GCI. The 
interval [Value ± Unum] is intended to band the exact mathematical solution with a 95% certainty. Row 5 
presents the predicted value of pressure on the finest grid (32 zones across the diameter of the charge). The 
ranges displayed in Row 4 should bound the values in Row 5. They do, again demonstrating both the 
validity of this approach and the appropriateness of the magnitude of Fs in the GCI method. (V&V20) 

6.23.4 §  Other GCI Applications at SwRI 

 In addition to the above example of confined detonation, Dr. C. J. Freitas and his group at the 
Southwest Research Institute (U.S.A.) have applied the original GCI to many realistic problems with far 
from ideal convergence behaviors with good results. These include a range of problems including confined 
detonations (see above Section 6.23.3), vortex cavitation, blast-structure interactions, fluidized beds, shock 
propagation,  structural failure, and turbulent multiphase flows, using FVM, FDM, FEM, ALE, and 
Riemann solvers. The following is a partial list of GCI applications at SwRI described in company Final 
Reports (not publicly available). (Freitas, 2009) 
 

1. Simulation of hydrodynamic ram: a study of ballistic projectile impact of fuel filled containers 
using an Eulerian Hydrocode (CTH). 

2. Reactive flow through porous media: a study of dissolution fronts in support of the High-Level 
Waste Repository using an in-house code.  

3. Space Weather: code development and application to the Earth atmosphere from 50 km to 600 km 
altitude using an (enhanced) NCAR code.  

4. Simulation of HTI ordnance in hardened structures: simulated detonation of high-temperature 
incendiary ordnance in under-ground structures using CTH code. 

5. Rotating stall in centrifugal pump diffusers: simulated nonlinear development of rotating stall in 
vaneless diffusers using an in-house code . 

6. Spinning disk microencapsulation: simulation of liquid film breakup dynamics on a spinning disk 
using an in-house code  

7. Explosive hazard assessment for  2nd-generation Space Shuttle: simulation of cryogenic 
fuel/oxidizer releases and explosive potentials using FLOW-3D code (SwRI-version).  

8. Design analysis of Peripheral Vertical Launch System for DD(X): simulation of sympathetic 
detonation of ordnance in a magazine using CTH  . 

9. Explosive hazard assessment for Aires/Orion Launch Vehicle: simulation of cryogenic 
fuel/oxidizer releases and explosive potentials using FLOW-3D (SwRI-version) and solid rocket 
motor failures using CTH. 

10. Modeling of scalar transport: simulation of scalar transport from sources in the Planetary 
Boundary Layer using FLOW-3D (SwRI-version).  

11. Simulation of flight test data for aerial refueling: simulation of aerial refueling between KC-135 
and US fleet of receivers using Overflow 2 code. 

12. Riemann-based solvers for shock/blast propagation: developed and applied new in-house codes for 
simulating external and internal blast for inclusion in Navy’s ASAP code.  



Chapter 6. Applications of Systematic Grid Convergence Studies and ... GCI 
 

 

219 

13. Design analysis of MLS magazines: simulation of sympathetic detonation of ordnance in a 
magazine and structural response using CTH for loading, LS-DYNA for structural response (a 
Lagrangian FEA code)  

 
 Within this broad list of applications of the GCI, several different sub-applications occurred. “In all 
applications the GCI provided a very good estimate of uncertainty.” (Freitas, 2009) 

6.23.5 §  IIHR Compilation and LLNL Study 

 The compilation at the IIHR Institute at University of Iowa (Xing and Stern, 2009) examined data from 
a range of analytical solutions, previously published computational solutions, and new solutions for a high 
resolution problem (up to 8.1 million grid points). The compilation covered 17 studies, 96 variables and 
304 grid convergence studies. The claimed results for the GCI were not as good as other studies cited 
herein, resulting in an overall “confidence interval” of 86.2% vs the target 95%. Two factors are relevant. 
First, the “confidence interval” reported is a more technical term than other studies (in which cases of 
adequate conservatism were reported by “coverage”, i.e. simply counted), based on statistical analysis of 
reliability (Students t-test, etc.) that depend on assumptions of distributions. Second and more importantly, 
it appears that the GCI was not correctly applied, i.e. not in accordance with the Summary 
Recommendations of Section 5.9.2. In fact, when the maximum observed p is limited to the theoretical 
value78, consistent with Section 5.9.2, the reported confidence interval is 92.1% (which I consider a 
success, consistent with an uncertainty target of roughly 95% and other studies). If observed p was in poor 
agreement with the theoretical value, then Fs = 3 should have been used, which would further increase the 
conservatism. See other critiques of this study in Section 6.25.2. 
 The smaller scale but likewise very thorough grid convergence study at Lawrence Livermore National 
Laboratory (LLNL) by Logan and Nitta (2006) appears to be similarly flawed in its evaluation of the GCI 
and minor variants79 (see Section 6.25.1). Apparently the authors did not use the GCI method (as 
summarized in Section 5.9.2) but just the GCI formula with Fs = 1.25, which should be applied only to 
studies with a minimum of three grids to determine observed p (certainly met in this study, with seven grid 
levels) but only if the resulting observed p is reasonable. This is not the situation in this study, which 
involved a small set of problems80  with “intentional choice of grid studies with oscillations in both 
exponent p and output quantity”, i.e. (f g - fg+1) changes sign over the grid indices g. (In such cases, 
observed p is not meaningful or calculable without a least-squares approach.) It was on this basis that the 
authors concluded that “Method #1” [GCI with Fs = 1.25 rather than Fs = 3] produced closer to a 1-σ 
uncertainty than 2-σ, although they qualified this conclusion by stating “We realize that there is a large 
database of CFD solutions (perhaps mostly smooth and monotonic) that supports81 the use of method #1.” 
This final positive evaluation of GCI was further amplified in their summary recommendations quoted 
below, with which I concur. 

                                                
78 Termed the GCIc method in Xing and Stern (2009) following Logan and Nitta (2006). 
79 Some of these variants consist in just recommended practice of the GCI, e.g. using in the GCI formula p 
= theoretical p when observed p > theoretical p or is otherwise not trustworthy. 
80 One problem is composed only of synthetic convergence data with no specified PDE. The other consists 
of simple beam bending with a uniform applied load solved by FDM, FVM and FEM using both shell 
elements and brick elements. 
81 The misrepresentative evaluation of 1-σ uncertainty was quoted by Xing and Stern (2009) without this 
qualification. Logan and Nitta referred to the data sets in V&V1 and Cadafalch et al (2002). 
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 “If the analysis is assessed to be low risk, or if one is confident that the conditions for the use of the 
GCI are valid for the analysis, then the GCI (Method #1) with Ng = 3 or even Ng = 2 offers a fast 
assessment of [Unum] that may indicate whether more advanced methods [Least-Square] are needed.” 
(Logan and Nitta, 2006) 

6.23.6 §  Lisbon V&V Workshops 

 Three Workshops on V&V were held in Lisbon in October 2004, 2006 and 2008. Organized by L. Eça 
and M. Hoekstra, the first workshop focused on Solution Verification for a realistic turbulent flow over a 
backstep using several RANS models, with most of the participants (six different international groups) 
using the GCI or the Least Squares GCI. The organizers provided the grids, including several grids that 
were of deliberately poor quality, chosen to stress the ability of the GCI uncertainty estimations. The 
second workshop expanded to include Code Verification using MMS, on both well behaved problems (in 
the asymptotic regime) and those with erratic convergence, as well as further Solution Verification. Seven 
different international groups participated. The third workshop expanded to include Validation, using the 
total Validation Uncertainty approach of V&V20 (Chapter 11) for the well known turbulent backstep flow 
experiments of Driver and Seegmiller (1985). Seven different international groups participated. 
Contributors to all three Workshops used a variety of discretization methods, including FDM, FVM and 
FEM.  
 The full workshop proceedings can be found in Eça and Hoekstra (2004, 2006b, 2008), with 
corresponding summary AIAA papers in Eça et al (2005, 2007a, 2009). Briefly, the results from these GCI 
users confirm again that, in the asymptotic regime, the GCI prediction is compatible with the targeted 
roughly 95% uncertainty using Fs = 1.25, even for deliberately poor grids. For more erratic convergence 
behavior, the value Fs = 1.25 performs fairly well with the Least Squares GCI, and for non-monotonic 
convergence the recommended value Fs = 3 is dependably conservative. 

6.23.6 §  Common Sense and the GCI Factor of Safety 

 As Eça and Hoekstra (2002, p.80) observed of the GCI, “Its main difficulty is the choice of the value 
of the safety factor, which has to be essentially based on common sense.” This is also its main advantage, 
in my view. The authors’ evaluation in 2002, that the GCI “seems to be viable and robust,” has been 
confirmed further by the studies in this Section 6.23 and others. Their invocation to common sense is also 
applicable to performance measures, i.e. targeting roughly 95% coverage. 

6.24 TRANSPORT CODE VERIFICATIONS USING THE GCI: 
PARTITIONING THE OPTION MATRIX 

 The SECO_TRANSPORT code developed by K. Salari (Salari et al, 1992, Roache 1993; Salari and 
Blaine, 1996) has been previously described in Section 6.12.1. The complexity of the options of the code 
create the difficulty described in Chapter 2, Section 2.18, which for simplicity is repeated here, with 
emphasis added. 
 Another concern in Code Verification is the number of user options in a code, especially general-
purpose commercial CFD codes. This is a genuine practical problem, but does not nullify claims of 
Verification; it just limits those claims. The exponentially expanding complexity of the option tree does not 
nullify the definition of Verification of Code; it simply qualifies the definition. “Code Verification” is 
restricted to that combination of options claimed to be Verified. There is a gray area here, as one might 
expect, in the judgment of the independence of options. Some knowledge of algorithm and code structure 
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may be necessary to infer the reasonableness of simplifications of option interactions (essentially, 
partitioning of the full matrix of option interactions). The easy answer is the rigid one of categorical no. 
This would usually appeal to the rigid SJ personality type (see Chapter 12) that gives Quality Assurance a 
bad name. A more intelligent and economical approach is possible, bearing in mind that subtle and 
unanticipated option interactions have occurred, especially before the acceptance of structured coding and 
modularity. 
 Here we address the “simplifications of option interactions” which essentially constitutes a partitioning 
of the full matrix of option interactions. We will rely on a knowledge of algorithm and code structure to 
guide the partitioning, but then “cover our bets” after the Verification by further Confirmation exercises to 
further build confidence that the partitioning is correct. 
 The partitioning is applied to the following aspects of the code. 
 
 Verification of the Geologic Matrix Equations for Diffusion, Single Species 
 Verification of the Fracture Equations for Advection, Dispersion, Diffusion at low Peclet Numbers, 

single Species 
 Verification of the Coupling between Matrix and Fracture Equations 
 Verification of the Radioactive Decay Equations (which are the same in matrix and fracture systems) 

for Multiple Species 
 Verification of the TVD Algorithms (6 options) for Fracture Equations at high Peclet Numbers, Single 

Species 
 Confirmation Exercises on a Commonly Used Analytic Solution, single Species 
 
 Code features to be Verified must include 
 
 Time-Dependent and Spatially-Variable Velocity and Dispersivity Field 
 Both Constant and Time-Dependent Boundary Conditions 
 Time and Space Order of Convergence 
 Discharge calculations on pre-defined closed boundaries, involving quadratures. 
 
 For many PDE codes, time and space convergence can be partitioned (e.g., the SECO_FLOW codes as 
discussed in Section 6.2). With the Approximate Factorization algorithm used, spatial convergence for 
steady state solutions can be established without considering the time differencing options (in theory), but 
the time accuracy is coupled through the mathematics of the Approximate Factorization, so this major 
option partitioning is not available for this code. The Verification was made possible by the development by 
P. M. Knupp of two benchmark analytical solutions for the fracture equations (see Appendix in Salari and 
Blaine, 1996). The first is a solution for a spatially variable dispersivity field with a time-dependent and 
spatially variable velocity field, but with time-constant boundary conditions. The second is a solution for 
time-dependent boundary conditions, a test necessitated again by the subtlety of the AF algorithm. A 
separate analytical solution was used for the geologic matrix equations, with spatial property variation and 
time-dependent boundary conditions. The time-dependent solutions were Verified separately for two 2nd-
order time differencing options: 3-point backward and trapezoidal time differencing. 
 With the fracture and matrix equations separately Verified, the implicit coupling of the two was 
Verified with the previously developed solution by Tang et al (1981) for constant properties. The 
justification of this partitioning (i.e., not testing the coupling with spatially variable properties) depends on 
knowledge of the algorithm and code structure. Then the multiple species transport was Verified against the 
analytical solution of Lester et al (1981). No spatial variability enters into these equations. The solution is 
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for 3 species in a chain. The partitioning assumption here involves knowledge that the code is written for N 
species, and has been exercised for N = 9; it hardly seems necessary to test all possible numbers of species. 
 The only aspect of discharge calculations on pre-defined closed boundaries to be Verified involves 
quadratures. Knowing that these do not depend on other options of the code allows partitioning of this 
feature. However, since time-and space-dependent velocity fields are involved, the Verification uses the 
first benchmark problem. We believe this to be a high standard. 
 The Verification is performed with both uniform and smoothly stretched grids. As is well known, 
extreme grid stretching will affect accuracy of an individual calculation, but the code is Verified with 
moderate stretching, knowing that there is nothing special about the stretching function. (One cannot Verify 
a code for an infinity of stretching functions, nor an infinity of velocity fields, property variations, etc.)  
 Likewise, the 6 different TVD flux limited options (for eliminating oscillations in shock-like high Peclet 
number solutions) are partitioned from the rest of the code, since the coding does not interact with 
dispersion, matrix equations, radioactive decay, etc. 
 Needless to say, only a sampling of the Verification exercises can be presented here, in Table 6.24.1 
and Figure 6.24.1. As noted in Chapter 3, such exercises require that the scientist-engineer “think like an 
accountant” for a while. 
 A later version of the SECO_TRANSPORT code included the 3-D moving free surface boundary 
conditions (developed for the single porosity case only). It was difficult to achieve 2nd-order accuracy in 
space and time with a moving free surface and a general non-orthogonal moving coordinate system, but it 
was convincingly Verified using two Manufactured Solutions in Roache et al (1996). 
 After these and many other Verifications of the partitioned features of the SECO_TRANSPORT code, 
the authors justifiably claimed Code Verification. This Verification was followed by further Confirmation 
exercises.  
 Although not logically necessary (if one really believes the Verification) Confirmation exercises can be 
useful for further confidence building in the user/customer. However, it is highly recommended that the 
code builder (or whoever may be Verifying the code) stand firm on distinguishing between Verification, 
which at least in principle is accomplished once and for all (like a theorem), and Confirmation, which can 
go on forever, depending on the whims of users who may be mathematically semi-literate. 
 In the case of the SECO_TRANSPORT code, the users wanted comparison with the Sudicky-Frind 
(1982) analytical solution. The problems with this solution were discussed previously (in Section 3.10.1), 
where it was noted that the infinite series solution has more mathematical uncertainty associated with it 
than does the Code being Verified. It is interesting (and from our experience, widespread) that users (and 
regulators, journal referees, managers, etc.) are more impressed with such agreements with widely 
accepted benchmarks in their particular discipline than they are with manufactured analytical solutions. 
The only real virtues seem to be familiarity and the illusion of confidence. For example, the widely 
accepted Sudicky-Frind solution, even when corrected and carefully evaluated, does not exercise most of 
the features of the code! It is based on a constant property medium and steady-state spatially-constant 
velocity field, yet many prefer it as a benchmark to a manufactured solution with spatially variable 
properties and time-and-space varying velocity field. It is often prudent to humor such irrational behavior, 
but only by allowing for Confirmation exercises, not by corrupting the concept of rigorous Verification. 
Also, managers must be warned that never-ending processes require never-ending budgets and deadline 
extensions. 
 Likewise, it is a good idea to include in Confirmation exercises some calculations on a realistic-looking 
problem of interest to the user. Again, this is an open-ended process. For the SECO_TRANSPORT code, 
this involved calculation of sample cases from the WIPP project (WIPP PA Dept., 1992; Helton et al, 
1995, 1996.). Also, additional exercises of the TVD algorithm on high Peclet number cases were given 
(Salari and Blaine, 1996). 
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Grid t L2 error Max. error GCI GCI ratio 
10  10 0.04 3.3742E3 6.8663E3   
20  20 0.02 8.2240E4 1.7046E3 205.360%  
40  40 0.01 2.0385E4 4.2610E4 49.779% 4.13 
80  80 0.005 5.0512E5 1.0590E4 12.340% 4.03 

160  160 0.0025 1.2426E5 2.6112E5 3.065% 4.03 
a. Single porosity fracture equations, time-dependent flow, trapezoidal time differencing, Van Leer’s 

MUSCL limiter, uniform grid. The solutions are 2nd-order accurate, as shown by the GCI ratio  
4. (From Salari and Blaine, 1996, Table 11.) 

 
Grid x t L2 error GCI GCI ratio 

20  20 0.05 0.25 7.697E3     
40  40 0.025 0.125 1.954E4 46.540%  
80  80 0.0125 0.0625 4.921E4 11.847% 3.92 

160  160 0.00625 0.03125 1.234E4 2.988% 3.96 
b. Single porosity fracture equations, time-dependent flow, 3-point backward time differencing, 

central differences in space (no limiter), uniform grid. The solutions are 2nd-order accurate, as 
shown by the GCI ratio  4. (From Salari and Blaine, 1996, Table 14.) 

 
Grid s L2 error Max. error GCI GCI ratio 

20  20 0.04 4.7240E3 1.1464E2   
40  40 0.02 1.0251E3 2.3426E3 244.200%  
80  80 0.01 2.4657E4 5.6313E4 51.398% 4.75 

160  160 0.005 6.0886E5 1.3810E4 12.259% 4.19 
320  320 0.0025 1.5147E5 3.4211E5 3.020% 4.06 

c. Matrix equations only, steady-state calculations, non-uniform grid (s is the spatial increment in 
logical space). The solutions are 2nd-order accurate, as shown by the GCI ratio  4. (From Salari 
and Blaine, 1996, Table 16.) 

 
Grid s L2 error Max. error GCI GCI ratio 

20  20 0.04 4.7240E3 1.1464E2   
40  40 0.02 1.0251E4 2.3426E3 244.200%  
80  80 0.01 2.4657E4 5.6313E4 51.398% 4.75 

160  160 0.005 6.0886E5 1.3810E4 12.259% 4.19 
320  320 0.0025 1.5147E5 3.4211E5 3.020% 4.06 

d. Discharge calculations. Single porosity fracture equations, steady- state flow, central space 
differencing (no limiter), non- uniform grid. The solutions are 2nd-order accurate, as shown by the 
GCI ratio  4. From Salari and Blaine (1996), Table 16. 

 
Tables 6.24.1. Sampled Verification tests of the SECO_TRANSPORT 2D code using Manufactured 

Solutions. See Salari and Blaine (1996) for parameters and details.) 
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Figure 6.24.1. Sampled Verification test of the SECO_TRANSPORT 2D code using Manufactured 
Solutions: Multiple Species Verification. Computed concentration C in the fracture system, for species 2 
and 3 of a 3-species chain, compared with an analytical solution. From Salari and Blaine (1996), Figure 6. 
See Salari and Blaine (1996) for parameters and details. 
 
 
 
 
 In closing, this Section, it is best to bear in mind that even with a rigorously Verified code, user errors 
will occur, and that the code will be blamed! This appears to be a fixed feature of human nature, and 
requires the code builder (or Sponsor, in the QA terminology of Chapter 12) to continually provide 
education and training to the users. 
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6.25   OTHER  UNCERTAINTY ESTIMATORS BASED ON RICHARDSON 
EXTRAPOLATION 

 Other approaches to estimating numerical uncertainty beginning with Richardson Extrapolation have 
been suggested. 

6.25.1   Celik and Karatekin Method for Turbulent Separated Flow 

 Celik and Karatekin (1995) applied a generalized Richardson Extrapolation to the calculation of 
turbulent flow past a backward facing step. The commercial code used (Phoenics), like many, utilizes 
“hybrid” first-order/second-order differencing for advection terms. This method is robust, but not very 
accurate, as noted in Chapter 1. See also Leonard and Drummond (1995) for warnings on the use of hybrid 
differencing. Celik and Karatekin used the standard k- two-equation turbulence model with wall functions 
for the turbulent inner layer, and non-uniform (power law) grid distributions. The hybrid method ultimately 
should be second order, but over practical ranges of grid sizes, it will appear to have some intermediate 
non-integer convergence rate with 1 < p < 2. In spite of this ambiguity, by careful work Celik and 
Karatekin were able to convincingly demonstrate grid convergence, even with the grid refinement extending 
into the viscous sublayer, by using 5 grid refinements (with equal grid refinement factors in each coordinate 
direction), i.e. a total of 6 grids.  
 They used both the GCI and their alternative error estimator (discussed below). As anticipated ( 
Roache, 1994) the GCI was excessively conservative with the safety factor Fs = 3 for this 6-grid sequence. 
(The same applies to other carefully performed grid convergence studies presented in Johnson and Hughes 
(1995); see Section 6.23 above.) Recall that (as acknowledged by Celik and Karatekin) the GCI was not 
proposed as an error estimator at all, but as an error band, equal to Fs times the error estimator, with Fs > 
1 used to provide conservatism. 
 Celik and Karatekin (1995) also proposed an alternate error estimator with a built-in conservatism. 
Although similar to the GCI, and similarly based on a generalized Richardson Extrapolation, there are 
several differences. First, a relatively minor point which has caused confusion: whereas the  in the GCI 
approach (absolute or relative) is based on the difference between the fine and coarse grid solutions (and is 
normalized by the fine grid solution for the relative GCI), Celik and Karatekin defined their relative error 
eext by reference to the extrapolated solution fext.  
 

e f f
fext

ext h

ext

 =   
          (6.25.1) 

 
This would be equivalent to the  defined in Eq. (5.4.3a) (Chapter 5) but with f1 (the fine grid solution) 
replaced by fext. Clearly, these two will be ordered approximations of one another; however, any noisy 
convergence behavior will make fext undependable and this normalization is not recommended. (It is not an 
essential feature of the presently considered method.) Also, the authors use the equivalent of the safety 
factor Fs = 1, which by itself would not be conservative. 
 A somewhat confusing point is that the paper involves two distinct Richardson-type Extrapolations: 
one used above to define the error estimate eext, and another used to obtain the best estimate of the 
converged solution. (Note the distinctions made in Chapter 5, that we may not want to actually use 
Richardson Extrapolation to obtain a final solution, for various reasons, but we can still estimate or band 
the error of the fine grid solution using the theory of Richardson Extrapolation.) In the above error 
estimator, eext is obtained using the value p = 1, which is (generally) conservative for the hybrid algorithm. 
However, the final solution (or best estimate of the converged solution) was obtained by using a value of p 
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suggested by numerical experiments, but limited. Their observed rate (for various quantities, over many 
grid combinations) was higher than p = 1, as expected; a representative value was observed p = 1.3. 
However, the point-by-point values of velocity components sometimes (locally) demonstrated non-
monotone convergence behavior (incorporated into the Richardson Extrapolation by judicious use of the 
absolute value function); sometimes the observed p was < 1, and sometimes observed p was > 2. These 
excursions in observed p, if used in the Richardson Extrapolation, produced clearly erroneous values. The 
cure proposed was to limit the allowable p used  in the extrapolation to the theoretical range of the hybrid 
method, which is 1  p  2.  
 While this would seem to be a reasonable engineering-type approach, its limitations are clear. First of 
all, it is clearly non-conservative, since the actual convergence rate could be less (and was). If the same 
rationale were applied to anything but a hybrid or other mixed-order method, the range 1  p  2 would 
collapse to a single number, e.g. p = 2 for a uniformly 2nd-order method. The limit then would simply 
ignore the experimental determination of observed p and substitute for it the value obtained from formal 
analysis, as one would need to do if only two grid solutions were calculated. Thus, the limit would replace 
experimental determination or Verification of p with a presumption of p for a uniformly p = 2 method and 
would defeat the purpose of using more than two grid solutions in a high quality convergence study. 
 Another possible confusion exists in the definition of the grid refinement factor. Celik and Karatekin 
use the ratio a(i) which is defined relative to (usually) the finest grid in the sequence. For a simple two-grid 
sequence, this gives a = r, as used in the GCI definitions in Chapter 5. For more grids in the sequence of a 
grid convergence test, we have 

r a
ai
i

i

 1            (6.25.2) 

 
Although not incorrect, this definition of a grid refinement factor is inconsistent with previous and common 
usage. Clearly, if a grid is refined from 100 to 200 grids points or elements, the refinement factor “r” 
between these two grids should be 2, regardless of any other grids in the sequence of the grid refinement 
study. But in their definition, the grid refinement factor a, besides being an inverse (i.e., a coarsening 
factor), is normalized at the finest grid in the study sequence. If the finest grid were (say) 100 in the 
sequence 25–50–100, then their refinement factor a for the 25 point grid would be 4, not 2. If they added 
another fine grid of 200 points to the study sequence, then their grid refinement factor a for the same 25 
point grid would change to 8. This is an inappropriate terminology, even if it did not disagree with previous 
common usage. A less confusing term would be “grid index” for a. 
 The Celik and Keratekin error estimator eext can be expressed in terms of the closely related fine-grid 
GCI for p = 1 and Fs = 1, which we can denote by GCI1,1. That is, using Eq. (5.6.1) with p = 1 and Fs = 1, 
we have 

GCI1 1 1,  


r
           (6.25.3) 

 
Then (from Appendix A of Celik and Keratekin, 1995), 
 

1,1
12 /

1 GCI
ffr

reext 











  

           (6.25.4) 

 
In the limit of a converged solution, f2  f1 and eext  GCI1,1 as expected.  
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 For the example shown in Figure 7 of Celik and Keratekin (1995) their error estimator eext is less 
conservative (or less overly conservative) than the GCI calculated with either p = 2 or p = 1. However, as 
seen above, the correct comparison should be to GCI1,1, to which eext is an ordered approximation. 
Unfortunately, eext will not be reliably less overly conservative than GCI1,1 as evident from Eq. (6.25.4) 
above. If the convergence for the quantity f is approached from above in the grid convergence sequence, i.e. 
if f2 / f1 < 1, then eext < GCI1,1 but if f2 / f1 > 1, then eext > GCI1,1. Thus, in Figure 4 of Celik and Keratekin 
(1995) for velocity components above the base, eext is less conservative, but for velocity components below 
the base, eext is more conservative. 
 Although limited in the application in Celik and Keratekin (1995) to the hybrid method, the basic 
concept of their approach could be generalized to higher order methods. That is, instead of obtaining 
conservatism in the GCI (or closely related eext) by using Fs > 1, we could use Fs = 1 but p < observed p. 
For example, one could use Fs = 1 and p = 3 in Eq. (5.6.1) for a verified 4th-order accurate method. 
Whether this conservatism is any easier to interpret than using Fs > 1 is problematical, but could be worth 
investigation. However, the neat interpretation of the error band in relation to the  obtained for a grid 
doubling with a 2nd-order method would be lost. Also, there is no empirical correlation available to 
indicate what degree of conservatism is achieved, i.e. the uncertainty level is not quantified. Yet is a true 
ordered error estimator asymptotically, and is conservative for well behaved problems. 
 Related minor variants of the GCI were considered by Logan an Nitta (2006), such as using p = 1 in 
the GCI formula even though the method is expected to be 2nd order, and averaging the results of p = 1 and 
p = 2 formulas. Other candidate are obvious, e.g. using p = 1.5, p = 2, etc. with or without Fs. The need is 
not for alternative old-fashioned engineering tweaks, but large scale studies. 

6.25.2 §  ITTC Correction Factor Method 

 The International Towing Tank Conference (ITTC) is an association of worldwide organizations, with 
history beginning in 1932, that have responsibility for the prediction of hydrodynamic performance of ships 
and marine installations based on the results of physical and numerical modeling. The ITTC Quality 
Manual (ITTC, 2002) for CFD Uncertainty treats both Calculation Verification and Validation. The ITTC 
Validation approach is based on the early seminal work of Coleman and Stern (1997). This valuable work 
has now been superseded by the V&V20 approach described in Chapter 11. 
 The Calculation Verification described in the ITTC Manual covers several methods and variants. 
Possibilities include the GCI method itself, but most of the description is given to the Correction Factor 
methods in multiple variants, developed and tested by F. Stern and associates over years82, most recently in 
Xing and Stern (2009). 
 All variants use generalized Richardson Extrapolation and are algebraically equivalent to the GCI 
method with a variable factor of safety Fs. (This equivalence is somewhat obscured in earlier publications.) 
The assumptions are that (a) Fs should be larger for grids farther from the asymptotic region, and (b) Fs 
should  1 as   0. Assumption (a) is certainly true in a general sense, as reflected in the recommended 
Fs = 3 of the GCI when it is not known if the grids are in the asymptotic range (see Section 5.9.2), but it is 
not clearly necessary to have a continuous variation in Fs. Assumption (b) may appear reasonable but is not 
conclusively demonstrated to remain conservative enough, i.e. to always provide 95% coverage, although 
this is probably not of practical importance for highly accurate solutions. 

                                                
82 F. Stern was the principal architect of the 2002 ITTC Manual. Other variants and studies that precede or 
follow ITTC (2002) are Stern et al (1999, 2004), Wilson et al (2001, 2004), Wilson and Stern (2002), 
Carrica et al (2007), Xing et al (2008), Xing and Stern (2008, 2009). For related discussion see Roache 
(2003a,c) and Wilson et al (2003). 
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 The variants involve ways to adjust Fs based on how “far” a grid set for a problem is from the 
asymptotic region, as measured in some metric. The most obvious and fundamental metric would be the 
comparison of observed pobs with theoretical pth. This immediately suggests the first weakness of the 
approach, since pth is not always obvious nor trustworthy (see Section 8.1.4). The metric used is not pobs / 
pth or (pobs - pth ) but rather the correction factor CF,  

1
1





th

obs

p

p

r
rCF            (6.25.2.1) 

(or another based on a power series expansion solved for two leading terms). As noted in the ITTC 
Manual, this formulation fails for the best behaved asymptotic solutions, giving CF = 0 so Unum = 0; the 
ITTC recommendation is then to use the standard GCI.83 Use of this CF as the metric for distance from the 
asymptotic range is not quite consistent with using pobs / pth or (pobs - pth ) because Eq. (6.25.2.1) depends 
also on r. Two grid triplets with different r’s but ~ same pobs / pth will have different distances from the 
asymptotic range. 
 In later versions, allowance is made for CF > 1 (apparently superconverging grid triplets with pobs > pth 
) by evaluating CF by an algebraic reflection of either CF (about CF = 1) or the calculated uncertainty 
itself, in their “Factor of Safety” method (not the GCI but a later terminology in Xing and Stern, 2009). 
This reflection may be intuitively appealing in some qualitative sense but is generally an unjustified 
assumption. Other ad hoc parameters have been introduced to smoothly blend the various formulas, which 
become tortuous; e.g. see Eqs. (9-19) of Xing and Stern (2009). 
 In my opinion, the basic concept of variable Fs was worth pursuing. Early publications in the series 
were admirable in providing candid presentation of many numerical details for real and difficult engineering 
problems, including issues of maintaining a near-constant r with non-orthogonal boundary fitted grids and 
consideration of interaction of iteration convergence error with grid convergence errors. The methods were 
difficult to evaluate because results were based on small sample studies (see comments in Section 5.15) and 
the CF method failed even in some of these cases (Roache, 2003a,c). Also, the authors had the unfortunate 
pattern of evaluating competitor methods by comparison to their latest CF method as a benchmark rather 
than using true performance, e.g. the misleading statement that they found the GCI to be “over-
conservative” [with respect to a CF method] rather than examining the data. In the latest variant (Xing and 
Stern, 2009) a good, statistically significant data set was considered (17 studies encompassing 304 grid 
triplets). The performance of the latest variant, now unfortunately termed “Factor of Safety method,” was 

                                                
83 Regrettable confusion exists in terminology and symbols in the ITTC Manual and later related 
publications. Although the manual cites V&V1 and even recommends use of the GCI for cases close to the 
asymptotic range, it never uses the term Grid Convergence Index nor the symbol GCI but refers to the 
standard GCI method as a “factor of safety approach.” This unnecessary change in terminology served no 
purpose but at least was descriptive enough, until Xing and Stern (2009) again switched the meaning to 
indicate the latest variant of their correction factor method, now unfortunately referred to as the “Factor of 
Safety method” and given the symbol “FS method,” which is easily confused with the original Factor of 
Safety Fs of the GCI method. (For this reason, I herein avoid denoting their latest variant by their symbol 
FS.) They also used pRE for pobs. The symbol used for the correction factor was Ck in the ITTC Manual, 
with k referring to the k-th “input parameter,” an unfortunate term since these are not continuum 
parameters but rather space and time discretization ’s plus artificial dissipation terms (presumably 
explicit). In Xing and Stern (2009) the symbol is just CF, which is adopted herein. In their Eq. (15), the 
uncertainty estimate is described as an error definition. Etc. 
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good, reaching or exceeding the target 95% level of “confidence84.” The cost is some additional complexity 
compared to the GCI method (two parameters and the calculations of CF) and the dependency on pth as 
discussed above. Whether or not the performance is worth the additional complications is a matter of some 
judgment. However, the reader is advised to take the authors’ comparisons to the GCI (and the variant 
GCIc, see next Section) and to simpler, earlier versions of their own CF method with some suspicion. It 
does not appear that the GCI was correctly applied, i.e. in accordance with the Summary Recommendations 
of Section 5.9.2, so their evaluation is tainted.  
 Other questionable aspects of the study are the statistical discarding of outliers, which is questionable 
for such numerical uncertainty studies as discussed in Section 5.16, and the assumption, required for the 
statistical interpretation of confidence intervals, that there are no correlated biased errors between different 
studies. 
 Furthermore, the latest variant fails for the best case reported in Xing and Stern (2008), a realistic 
study of flow over a ship hull performed by the authors using systematic grid convergence testing up to the 
finest grid “1” containing 8.1 million points. The most reliable grid sets to consider are the four finest grid 
triplets (1,2,3), (2,3,4), (3,4,5), (4,5,6) all obtained with r ~ 20.25 ~ 1.2. Considering the solution functional 
of resistance coefficient CTX , the authors dismiss the numerical uncertainty Unum calculated by three other 
methods as "unreasonable [sic] small." There is no justification given for this evaluation. In fact, all three 
appear reasonable and well behaved in their convergence (Unum => 0) for the finest four grid triplets (GCI = 
52.7, 4.98, 1.07, 0.58) even though the most coarse grid of the triplet (4,5,6) is out of the asymptotic range. 
Apparently their negative evaluation of the other three methods is not based on a comparison with the true 
error, which was not estimated, nor on grid convergence of Unum  => 0, but on comparison with the authors’ 
latest variant. For example, for the second-finest triplet (2,3,4) the other three methods (GCI, GCIc, and 
CF) give Unum = 1.07, 1.75, and 1.95 whereas the new variant gives Unum = 6.64. Alas, the new variant 
fails, is "unfortunately invalid," for CTX on the finest grid triplet (1,2,3). The authors claimed this is 
"caused by the contamination of the iterative error on the fine grid." This is certainly possible, but consider 
the following points. (a) We do not know how the iterative error was estimated.85 (b) More importantly, 
Why was this not a problem for the other three methods? These all used the same data (i.e. results from the 
same computations). At least we must conclude that the new variant is more sensitive to noise than the 
other three methods. (c) Worse than that, the new variant is already misbehaving for the previous two grid 
triplets. The uncertainty estimate Unum is supposed to get sharper as the grid is refined. For example, 
between the grid triplets (3,4,5) and (2,3,4) the GCI estimate drops from 4.98 to 1.07, then further to 0.58 
for the finest grid triplet (1,2,3). Similarly for the other two methods. But Unum for the new variant 
increases from 6.20 to 6.64, followed by complete failure for triplet (1,2,3). For ship motions rather than 
resistance, the new variant fails on the two finest grid triplets. 
                                                
84 This “confidence” is a statistical term, dependent on assumptions and techniques of statistical analysis, 
rather than just a straightforward “coverage” of counting of cases for which Unum was conservative or not, 
compared to the actual error. The claim of “confidence interval” is based on a conceptual model in which 
the examined data set of an individual study is taken to represent the entire population, which is 
inaccessible. If this data set is small, “small sample correction” techniques (like Students t-tests) are 
applicable. The simpler approach just claims (say) “89.2% coverage” for an individual study (perhaps 
small) with the idea that the results of these small studies will eventually be aggregated (probably 
informally). If small sample corrections for “confidence interval” are made to each study, later aggregation 
is confused (because the small sample corrections are nonlinear and non-distributive). 
85 Eça and Hoekstra (2006a, 2009b) have shown that common methods of estimating iterative error are 
grossly under predictive. See Section 5.10.10.2. 
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6.26 LEVEL OF ACCURACY ESTIMATES FROM GRID CONVERGENCE STUDIES 

 An important and somewhat unsettling observation about the practice of accuracy estimation or 
banding by grid convergence studies was made by Oberkampf et al (1995); see also Blottner (1990). In 
their experience using Richardson Extrapolation on aerodynamics problems, both for local values (surface 
pressures) and for solution functionals (force and moment coefficients), they found that one must compute 
solutions with accuracy in the range of 1% to 0.1% in order to demonstrate that level of accuracy, i.e. to 
Verify the asymptotic convergence rate upon which the Richardson Extrapolation is based. This is not a 
problem if one’s objective is 1% to 0.1% accuracy, but often engineering analysts would be satisfied with 
something like 5–10% accuracy, and they understandably are reluctant to pay for the increased resolution 
necessary to achieve higher accuracy. Haworth (personal communication) had the same experience in 
modeling of internal combustion engines (Haworth et al, 1990, 1993), and Zingg (personal communication) 
in transonic airfoils (Zingg, 1991, 1992). The rule of thumb (1% to 0.1% accuracy) is probably problem 
dependent, but is probably reasonable for all but the easiest problems (e.g., Laplace equations).  
 So attaining the asymptotic range is necessary to give confidence to the error estimation, but this may 
already provide more accuracy than one would like to pay for. If error estimation is done outside the 
asymptotic range, the resulting lack of dependability motivates the large factor of safety (Fs = 3) in the 
original GCI error banding (Eq. 5.6.1). In our opinion, reliable error estimation outside the asymptotic 
range is not likely for difficult problems (those with significant scale ranges, unlike Laplace solutions).  
 To put the dilemma succinctly, you may only want to pay for 10% accuracy, but 10% accuracy is 
difficult to Verify reliably! 
 This harsh fact of life is softened by the realization that attaining an accuracy level an order of 
magnitude more than required will not require an order of magnitude greater grid refinement, provided that 
higher than 1st-order methods are used. Unfortunately, it could possibly require an order of magnitude 
more cost for multi-dimensional time-dependent problems. This is where the use of error estimation for 
“nearby” problems is highly recommended, bringing the cost of reliability of error estimation into the same 
range as the accuracy requirements. 

6.27 OTHER EXAMPLES OF CAREFUL USE OF RICHARDSON EXTRAPOLATION 

6.27.1 Fluid Dynamics Examples 

 Following Oberkampf et al (1995), we recommend four papers as examples of “careful use and 
estimation of error using Richardson’s method” in Calculation Verification. These are Roache (1982), 
Shirazi and Truman (1989), Blottner (1990), and Walker and Oberkampf (1992). Also recommended is 
Nguyen and Maclaine-Cross (1988) for application to heat exchanger pressure drop coefficients and 
Caruso et al (1985). 
 The papers by Roy and Blottner (2000, 2001, 2003) presented exemplary application of Richardson 
Extrapolation to difficult problems, solving 1 - and 2 - equation turbulence models in 2-D at hypersonic 
speeds for a flat place and a sphere-cone. Flat plate calculations at Mach= 8 used a parabolic mesh 
topology to mitigate the effect of the leading edge singularity. Most results were obtained with 80x160 
cells, with error estimation for nearby problems using additional grids of 40x80 and 160x320 cells. 
Second-order convergence was assumed, based on experience with other related [nearby] problems. Sphere-
cone calculations at Mach = 20 used various grids, depending on the turbulence model, including 100x40, 
200x80 and 400x160. These papers are among the few to include convincing estimates of incomplete 
iteration error (see Section 5.10.10.4 for a description of the method). The free flight data included virtually 



Chapter 6. Applications of Systematic Grid Convergence Studies and ... GCI 
 

 

231 

no experimental uncertainty and the authors considered only error estimates rather than numerical 
uncertainties, yet all the error estimates (both iteration errors and grid convergence errors) were 
convincingly shown to be much smaller than the turbulence modeling errors. 

6.27.2 §  Quantum Chromodynamics Calculation in 4-D Lattice 

 Durr et al (2008) accomplished a fundamental quantitative confirmation of an aspect of the Standard 
Model of particle physics with a 4-D lattice computation of quantum chromodynamics. They extrapolated 
using three finest discretizations, as in Richardson Extrapolation, and the “lattice-spacing dependence of 
the results is barely significant statistically.” The Validation was also successful, predicting from first 
principles (ab initio) the masses of quarks and gluons (ratios to other particles) to within 4%. (See also 
Cohen, 2008.) 

6.28 PARAMETER CONVERGENCES OF A COMPRESSIBLE FLOW CODE NEAR THE 
INCOMPRESSIBLE LIMIT 

 Exercising a PDE code over a range of parameters is an activity that does not fit into the semantic 
categories of Chapter 2 very well, but it is nevertheless a worthwhile exercise in “confidence building”, and 
uses similar techniques. In Roache and Salari (1990), we presented a cursory exercise of a CFD code built 
for compressible flow near the incompressible limit. There is no question of “Justification” here (see 
Chapter 2, Section 2.10.3) since the accuracy of the incompressible limit equations is well accepted. 
However, it is not at all obvious how well a compressible flow code will perform at low Mach numbers. 
With special care in the formulation of the equations, it is possible to build a code that handles very low 
Mach numbers, or even M = 0. But most compressible flow codes, given input parameters that give M = 0 
(with non-zero velocities) will fail dramatically, e.g. a divide by zero. Many will fail at M = 0.1 or 0.2. 
Also, it is of interest to reveal the effects of low M and other parameters on the convergence rate, and to 
“justify” not the limit of M  0 in general, but to quantify the boundary of the incompressible 
approximation, which is problem dependent. 
 The code used in the study was based on the Approximate Factorization (AF) algorithms of Briley and 
MacDonald (1977,1980) and Beam and Warming (1976) using the “delta formulation.” It uses boundary 
fitted non-orthogonal coordinates, ideal gas relations, constant specific heats, and the Sutherland viscosity-
temperature relation. Significantly, the code treats cross-derivative terms without unnecessary 
approximations; however, it does use the common non-ordered approximation of p / n = 0 at walls. 
Although code versions included 3-D and turbulence models, and 2nd-order time and space accuracy had 
been Verified, the presently reported study considered only 2-D, laminar, steady flow. 
 Three steady-state problems were considered: 
 a NACA 0012 airfoil at  = 0 
 a 2-D model of a submarine torpedo shuttleway 
 the driven cavity problem. 
 Sample airfoil results are shown in Figures 6.28.1–2. The grid convergence results are given in the 
original study as well as Salari and Roache (1990). (In Roache and Salari, 1990, the observed spatial rate 
of convergence was p > 2, apparently an artifact of the artificial dissipation at low M.) The grid used in 
Figures 6.28.1–2 was 185  71. The easily attained value M = 0.1 gives effectively “incompressible” 
results. The code “works” at M = 0.01, but evidence of the incipient breakdown due to the singularity at M 
= 0 is beginning to show itself by the small scale pressure oscillations near the trailing edge in Figure 
6.28.1. 
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 Figure 6.28.2 presents a comparison between the compressible AF code at M = 0.1 and the true 
incompressible code of Mehta (1977) based on an entirely different mathematical formulation using the 
stream function-vorticity equations. The excellent agreement between the two codes was, of course, to be 
expected from the mathematics, but nevertheless constituted a gratifying Confirmation exercise. In fact, the 
original agreement was not so good, with a 15% discrepancy in pressure near the pressure minimum. The 
PDE solutions were good, but the incompressible code had to be modified (by I. P. Itty) in the post-
processing quadrature for pressure, by using one-sided 2nd-order (3-point) differences for surface normal 
derivatives, in order to achieve the agreement shown in Figure 6.28.2. 
 Table 6.28.1 shows the behavior of the aerodynamic coefficients and the maximum dilatation V as 
M is reduced, compared to the results from the incompressible stream function-vorticity (- ) code. The 
incipient breakdown at M = 0.01 (in pressure oscillations near the trailing edge) is evident here; although 
the total drag looks good, in fact this is due to a lucky cancellation, as the pressure drag has undershot the 
incompressible value and the friction drag has overshot it. The dilatation V = 0 holds identically for 
incompressible flow. It decreases rapidly with M, and plots of dilatation (see Figure 4 of Roache and 
Salari, 1990) bear a striking resemblance to experimental interferograms. 
 The airfoil solution at M = 0.01 was obtained with a time step that produced a maximum advective 
Courant Number = 15, and full (advective + acoustic) Courant Number = O(1500), an impressive stability 
performance for the AF algorithm. (Note that the breakdown is beginning, but the results are still somewhat 
usable at this Mach number.) 
 The fairly complex flow in the torpedo shuttleway (see Figures 5–11 of Roache and Salari, 1990) was 
obtained again using M = 0.1 in a 250  150 grid; no evidence of oscillations occurred, even though one 
region of the flow had velocities 4–5 orders of magnitude less than the free stream value at M = 0.1. 
 For the driven cavity problem, the parameter value M = 0.1 also proved to be adequate for achieving 
effectively incompressible steady solutions. Comparisons were made with the benchmark solutions of Ghia 
et al (1982) obtained with (a different) incompressible code based on - variables. That study established 
that a uniform grid of 129  129 points was adequate, which we confirmed by also running a 65  65 grid 
case. A more accurate 129  129 stretched (rather than uniform) grid was used to produce Figure 6.28.3, 
which shows the u-velocity profile through the center of the cavity for Re = 100. The agreement of the M = 
0.1 and 0.05 solutions with the incompressible benchmark solutions is excellent. The disagreement at M = 
0.01 is pronounced, due to deterioration as the M = 0 singularity is approached. Unfortunately, the 
inaccuracy is only revealed by this convergence study (in this case, convergence as M  0) and not by any 
obvious qualitative breakdown in the solution. We would prefer a more precipitous breakdown, such as the 
beginning pressure oscillations near the airfoil trailing edge as in Figure 6.28.1. (There is in fact some 
evidence in a noisy quadrature for stream function near the bottom of the cavity, and poor resolution of the 
corner eddies.)  
 A more practical consideration is the effect of the artificial 4th-order explicit damping coefficient DC. 
All the previously described solutions were obtained with the code default value of DC = 0.01. We 
increased DC by a factor of 2, and decreased it by a factor of 50, with no significant effect on the solutions. 
Only when DC was further increased to 1.4 (140 times the nominal value) and the grid spacing near the 
boundary was doubled did a noticeable effect show up. (See Figure 16 of Roache and Salari, 1990.)  
 The agreement with the downward v-velocity component from the incompressible benchmark solution 
is not as good, differing by < 2.5%. (See Figure 14 of Roache and Salari, 1990.) The speculation (in 
Roache and Salari) that the most likely reason is the inherent error at low M in the Approximate 
Factorization (AF) procedure itself (see Beam and Warming, 1976) is incorrect; as pointed out by a 
reviewer, this error is negligible for good steady-state iteration convergence with the delta-form of AF. 
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Figure 6.28.1. Pressure coefficients on NACA 0012 airfoil at three Mach numbers.  

Laminar flow, Re = 5000,  = 0. (From Roache and Salari, 1990, Figure 2.) 
 

Re = 5000
   = 0

X/C
–0.1 0.1 0.3 0.5 0.7 0.9 1.1

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
 

Figure 6.28.2. Pressure coefficients on NACA 0012 airfoil calculated by a compressible flow code at 
Mach number = 0.1 and by an incompressible code based on stream function-vorticity 
variables. Laminar flow, Re = 5000,  = 0. (From Roache and Salari, 1990, Figure 3.) 
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Mach Total Pressure  Friction Stagnation  Maximum 
Number Drag CD Drag CDP Drag CDF Pressure CP V 

0.34*     0.89* 
0.20 0.05282 0.01850 0.03432 1.0448 0.145 
0.10 0.05268 0.01778 0.03491 1.0384 0.041 
0.01 0.05331 0.01589 0.03742 1.0302 0.004 

Incompressible 0.05341 0.01864 0.03477 1.0282 – 
 
Table 6.28.1. Aerodynamic coefficients and the maximum dilatation as M is reduced. NACA 0012 
airfoil, laminar flow, Re = 5000,  = 0. The “Incompressible” results were obtained with a separate code 
based on a - formulation. (*The value of dilatation at M = 0.34 was obtained for a high Re turbulent 
flow case.) (From Roache and Salari, 1990, Table 1.) 
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Figure 6.28.3 u-velocity profile through the center of the cavity for Re = 100.  
(From Roache and Salari, 1990.) 
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 Additional quantitative results are shown in Table 6.28.2, which displays convergence as  
M  0 of minimum density , minimum stream function  (or primary vortex strength), and maximum 
dilatation V. The minimum stream function is also given from the incompressible - benchmark 
solution of Ghia et al (1982). Note that the  evaluation for the compressible code involves additional 
numerical error in quadratures, as well as compounded errors in velocities and densities. 
 The study also investigated the effects of ratio of specific heats  and the 4th-order explicit damping 
coefficient DC. The previously cited results were obtained with  = 1.4 (air). At M = 0, the continuum 
results will not depend on the thermodynamic parameter . Consideration of the gas dynamic relationships 
suggested that a low  solution would be a better incompressible approximation. Indeed, results for  = 1.1 
and 1.005 at M = 0.1 showed a somewhat decreased range of the dilatation, as shown in Table 6.28.2. (The 
use of  = 1 causes indeterminacies in the code, as M = 0 does.) 
 This cursory study considered the effects of Mach Number, ratio of specific heats, and artificial 4th-
order damping on the behavior of an Approximate Factorization code for compressible flow in the low 
Mach number range for steady flows. The parameter study was far from complete, but might suggest an 
interesting and more complete study. Highly transient solutions are expected to be more difficult. 

6.29 JUSTIFICATION OF THE DUPUIT APPROXIMATION 

 The previous Section 6.28 presented an example of a numerical study of parameter convergence, an 
activity that does not fit the definition of Verification but uses similar techniques. Herein, we consider an 
example of another such activity, that of “Justification” of modeling equations. As discussed in Chapter 2, 
Section 2.10.3, the distinction between Verification and Validation may not be obvious when one considers 
a code based on some sort of simplified equation set.  
 Agreement between results of the simplified and complete equations is not strictly included in the term 
Verification, since the Verification of the simplified equation code has already been completed prior to the 
full equation comparison. One could say that the agreement has demonstrated that the simplified code is 
“solving the right equations” in one sense, i.e., it justifies the use of simplified equations. Yet to claim 
Validation would be over-reaching, since we have not demonstrated the adequacy of the more complete 
model by comparison with experiment. We have “solved the right equations” only in an intermediate sense 
of demonstrating that the simplified equations adequately represent the more complete equations, but not in 
the ultimate sense of “solving the right physical equations.” Appealing to the other distinction between 

Mach Number  minimum  minimum  max V 
0.10 1.4 0.89028 0.10208 0.226 
0.05 1.4 0.97244 0.10296 0.028 
0.01 1.4 0.99885 0.08531 0.00099 

Incompressible   0.10342  
0.05 1.1 0.97977 0.10306 0.0222 
0.05 1.005 0.98218 0.10309 0.0203 

 
Table 6.28.2. Driven cavity solutions for minimum density , primary vortex strength (minimum ), 
and maximum dilatation V. The “Incompressible” results were obtained with a separate code based on 
a - formulations.  is the ratio of specific heats. (From Roache and Salari, 1990, Table 3.) 
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Verification and Validation based on mathematics vs. science, it is clear that such a comparison exercise 
should be categorized with Verification rather than Validation, but that the categorization is somewhat 
inadequate because the simplified code can (should) have been fully Verified in the more usual sense before 
the comparison exercise was started. If the only choice is Verification or Validation, this gray area is best 
categorized as Verification, with the term Validation reserved for experimental comparisons. Even better is 
to introduce another term, Justification. 
 As an example of Justification, consider the Dupuit approximation, a small-angle approximation for 
groundwater flows that neglects any effects associated with vertical velocity. This approximation is 
virtually ubiquitous in groundwater flow codes, e.g. MODFLOW (McDonald and Harbaugh, 1988). The 
Dupuit approximation is so commonly used that a modeler can assume it with little chance of criticism in 
review, yet very early Bear (1972) gave the following requirements for its use (from Knupp et al, 1996). 
 
 (Khor / Kver)s << 1 (K = conductivity, s = slope of the water table) 
 no recharge (so that the phreatic surface is a streamline) 
 no seepage faces 
 absence of no-flow boundaries on sides of domain 
 steady state 
 no local “pits or mounds” in the water table 
 no well terms that would deform the water table 

 
 Knupp et al (1996) compared the results from MODFLOW, which uses the Dupuit approximation, 
with the results from SECO_FLOW_3D, which has an option to use the full nonlinear phreatic boundary 
conditions (Knupp, 1996). Each code was Verified to produce consistent (ordered) solutions to its own 
equation set. Interestingly, the development of an exact Benchmark analytical solution was easier for the 
full equations, and use of this full solution confused Verification of a simplified code. This  provided 
additional motivation for development of a full equation code (Roache et al 1996) . 
 An example from the Verification exercises of the complete equation code is shown in Figure 6.29.1. 
The largest error, at the right boundary, was 0.005%. In Figure 6.29.2, the comparison of the full equation 
analytical solution with the result from the MODFLOW code shows (primarily) the effect of the Dupuit 
approximation. At worst, it is 8% in error. (See Knupp et al, 1996, for details of the test case parameters, 
resolutions, and fine modeling points required for the MODFLOW simulation.) 
 The Justification of the Dupuit approximation will obviously be problem dependent (see also Serrano, 
1995). Knupp et al (1996) found that it was important to use the full phreatic condition when  
 
 heterogeneity increased, 
 recharge was higher, and  
 well pumping occurred. 

 
 For some parameter combinations, the error in head was 24%. Furthermore, the true phreatic boundary 
condition eliminated some instances of non-unique solutions obtained with the steady-state option in 
MODFLOW. On the other hand, the phreatic condition code is more demanding of accurate recharge 
estimates (Roache et al, 1996). Errors in fluxes are more severe than errors in head. For a suite of test 
cases using SECO_FLOW_3D with and without the Dupuit approximation, it caused 5–10% errors in 
heads and water table elevations, but up to 50% error in fluxes (Roache et al, 1996), which would 
correspondingly affect contaminant transport calculations. 
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Figure 6.29.1. Water table solutions from an analytical solution of the full equations and the 
SECO_FLOW_3D code using the full nonlinear phreatic boundary condition. (From 
Figure 3-1 of Knupp et al, 1996.) 
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Figure 6.29.2. Water table solutions from an analytical solution of the full equations and the 

MODFLOW code using the Dupuit approximation. (From Figure 3-3 of Knupp et al, 
1996.) 
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6.30 PARAMETER UNCERTAINTY AND NUMERICAL UNCERTAINTY 

 I offer a comment on the philosophy expressed by many flow modelers. In the field of groundwater 
modeling, there is a tremendous uncertainty in the physical parameters involved. This uncertainty has often 
been used to excuse sloppy numerical work. For example, in one of the contributions to the international 
HYDROCOIN project (OECD, 1988), a grid doubling in the horizontal plane caused a 40% reduction in 
peak value of hydraulic head; yet most of the contributors used only a single grid and a single time step; 
also, the various calculations produced “a very wide spread in travel times.” The same excuses have been 
used by aerodynamicists using turbulence models, or other approximations. The basic concept is to excuse 
laziness in the numerical work by noting the uncertainty in the conceptual model. Often, one hears that “we 
only want the answer to 10% accuracy” in the case of aerodynamics, or “order of magnitude” for 
groundwater flow modelers. 
 The first and obvious response is that there should be no preference for doing inaccurate numerical 
work, and methods are available to assess the numerical accuracy. Of course, the cost trade-offs must be 
decided by engineering judgment, especially in a design environment, and I would not second-guess those 
with deadlines to meet.  
 The second response, especially to the groundwater flow modelers, is to note that poor (1st-order or 
hybrid) numerical methods for advection terms (not so much in groundwater flow itself, but in the 
subsequent contaminant transport calculation) can in fact introduce an order of magnitude error. In the 
1950’s, the late Senator Dirksen of Illinois commented on military budget resolution discussions by noting 
“a billion dollars here, a billion dollars there, and pretty soon you are into some real money.” To 
paraphrase the Senator for the groundwater flow and transport modelers, “an order of magnitude here, an 
order of magnitude there, and pretty soon you are into some real errors.” 
 Third and finally, if a groundwater transport modeler will be satisfied with order-of-magnitude 
numerical accuracy, I would argue that difficult computer simulations may not be necessary. Rather than 
go through the charade of obtaining solutions to variable coefficient partial differential equations, the 
modeler can obtain the needed estimates from closed form solutions (or very simple numerical solutions of 
Laplace equations) by assuming constant properties, using averaged value of parameters and engineering 
intuition. This has the virtue of exposing the level of uncertainty, rather than concealing the uncertainty 
with the of gloss of mathematics. 
 
 If we are going to use partial differential equations in our conceptual model, then we should solve 
them honestly. 

6.31 §  PARAMETER UNCERTAINTY AND MODEL FORM UNCERTAINTY86 

 A thorough validation study must consider input parameter uncertainty. The estimation of parametric 
(standard) uncertainty uinput is meaningful only after a set-point (nominal-valued) simulation has been 
completed. But note that some, or even all, of the parameters in the model formulation may be considered 
hard-wired values inherent to the model, and therefore not contributors to uinput. If all parameter values are 
considered fixed in the model, this is the limit of what has been termed a strong-model approach. (See 
Section 9.18.) 

                                                
86 Adapted from Appendix C, Subsection 6 of V&V20. 
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 In addition to parametric uncertainty, model form uncertainty (and more fundamentally, model form 
error) arises when incomplete physics are incorporated into the model. The distinction between parametric 
uncertainty and model form uncertainty can be gray. For example, a hypersonics code can contain a 
chemistry package. The rate constants may be hard-wired or may be accessible to the user. Two different 
codes can contain exactly the same chemistry model, one with hard-wired constants, the other with user-
input values.87 In the first case, those rate constants would need to be treated as an essential part of the 
hypersonics model, therefore leading to model form error and uncertainty. In the second case, the analyst 
has the freedom to study the associated parametric uncertainty but is not required to do so. (Surely the 
decision to consider the values of the rate constants as part of model form or model parameters should not 
be dictated by code structure.) With the same model and code, the same lack of knowledge of the chemistry 
rate parameter could be categorized as either model form uncertainty or input parameter uncertainty. Either 
choice is acceptable, but the documentation for any study must be clear. 
 Both parametric uncertainty and model form uncertainty are generally present, and both contribute to 
the validation uncertainty. With or without estimation of uinput, neither uncertainty is ignored; their effects 
simply result in an overall validation uncertainty. When parametric uncertainty is completely analyzed, the 
validation uncertainty resulting from the comparison of experimental results with simulation results is the 
model form uncertainty. 

6.32 §  PARAMETER UNCERTAINTY IN VALIDATION VS PREDICTIVE ANALYSIS 

 It is important to distinguish between parametric uncertainty in a validation exercise vs. parametric 
uncertainty in a predictive analysis (e.g. Helton et al, 1995). When parametric uncertainty is quantified in 
a validation exercise, the remaining model form uncertainty is not ignored; rather, it is manifest in the 
validation uncertainty. That is, the model form uncertainty will be evaluated by the validation uncertainty 
(see Eq. 11.5.1 and 11.9.1). However, in a predictive analysis (in which the physical answer is not known), 
full coverage of parametric uncertainty cannot be assumed to cover all possible results because model form 
uncertainty is not represented. For example, in the problem of a fin tube heat exchanger in V&V20, 
unlimited variation of the other parameters will not reach agreement for a physical problem dominated by 
contact resistance if that phenomenon is not part of the model form. Thus, even a full study of parametric 
uncertainty in a predictive analysis does not account for all sources of modeling error. 
 Parameter Uncertainty is a fundamentally different concept for Validation experiments than it is for 
predictive analysis like design. Consider first Validation for a backstep flow, with a CFD simulation done 
cooperatively with design of the experiment, as recommended in V&V10. The backstep height b is a 
parameter, and the design decision is b = 1 cm. The experiment contains both errors and uncertainties in b, 
but the simulation does not. There is no uncertainty in the b used in the simulation; the input value is b = 1 
cm. (Except for machine round-off error, which is negligible.) Likewise for other parameters. There is no 
uncertainty about what value of viscosity coefficient is used in the simulation. The experimental error and 
uncertainty will be accounted for in the Validation approach of V&V20 (see Chapter 11) and should not be 
counted twice. Now consider a design analysis involving flow over a backstep. The actual physical 
dimension b is uncertain (as is viscosity, etc.) and the model must be exercised to cover this uncertainty. 

                                                
87 User access to model parameters leads to serious Quality Assurance (QA) issues, and confuses the 
meaning of claims of a “Validated code.” See further discussion in Section 12.13. 
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6.33 §  PARAMETER UNCERTAINTY AND 
  THE ECONOMICS OF GRID CONVERGENCE STUDIES 

 It is often heard that one cannot afford to do error estimation by grid convergence studies because of 
the high cost of multidimensional calculations (addressed in Section 5.15). Likewise, statements are often 
heard like “We cannot afford to do grid convergence studies because we are not academics, we are in an 
industrial environment, we have hundreds or thousands of parametric studies to run.” First, the cost of grid 
convergence studies ought to be normalized by the base cost of the problem set, including parametric 
studies. If (as in Section 5.15) the incremental cost of doing a 4 grid convergence study using grid 
coarsening with r ~ 1.3 on a 3-D time accurate problem is ~52%, then that % penalty would apply no 
matter how many parameter values were used. But in fact, the % penalties can be radically improved if we 
can justify sampling the parameter space for grid convergence studies. If the parameter values chosen are 
close enough that the variation in solution variables of interest is fairly well resolved, then it is likely that 
some of these problems are “nearby” in the sense that numerical error and uncertainty estimates are close.88 
 Suppose we judge (from numerical experimentation or just good engineering judgment) that grid 
convergence testing is required for only every other parameter value; we will include end points to avoid 
extrapolation. For example, 7 parameter values to be run in simulations might require only 4 grid 
convergence tests (underlined). 
 
 Parameter Values = A B C D E F G  
 
 For a single parametric variable (i.e. a one-dimensional parameter space) this obviously reduces the 
required grid convergence test sequences by the factor 3/7 or 43%. (The 52% penalty for performing a 4-
grid convergence study would be reduced to 0.43 × 52% = 22.4%.) But, as in the case of spatial 
dimensions for PDEs (Section 5.17), parameter space higher dimensionality is a blessing. Two parameters 
similarly sampled give a factor of (3/7)2 = 0.184. In a 5-dimensional parameter space89 with 7 values in 
each parameter and only 4 of the 7 used for grid convergence studies, the factor is a trivial (3/7)5 = 0.0145. 
 In conclusion, the common industrial situation of high dimensional (space and time) problems and high 
dimensional parameter space (extensive parameter lists) make systematic grid convergence testing 
relatively inexpensive, when the cost is properly normalized, and enables reliable and defensible estimates 
of errors and uncertainties. 
 
                                                
88 See Sections 5.6, 5.8, 5.9.1, 5.10.5 for some discussion. One should also consider interpolation of 
uncertainty estimates in the parameter space; see Section 11.12. 
89 For example, for a study of parameterized wing shapes, one might consider the 5-dimensional parameter 
space = {thickness/chord, camber, wing aspect ratio, angle of attack, Reynolds number}. 
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CHAPTER  7 
 

  SINGLE GRID ERROR ESTIMATORS 
 
 
 
 This Chapter90 covers methods of error estimation and error banding that do not involve systematic grid 
convergence testing. These methods are in Categories B, C, and D of the following taxonomy (previously 
given in Chapter 4) for sources of additional information for error estimation. 
 
B. Additional Solution(s) of the Governing Equations on the Same Grid 

B.1 Higher Order Accuracy Solutions 
B.2 Lower Order Accuracy Solutions 

C. Auxiliary PDE Solutions on the Same Grid 
D. Auxiliary Algebraic Evaluations on the Same Grid; Surrogate Estimators 

D.1 Non-Conservation of Conservation Variables  
D.2 Non-Conservation of Higher Moments  
D.3 Zhu-Zienkiewicz and Wiberg-Type Estimators 
D.4 Convergence of Higher Order Quadratures 

 
 Grid generation can be problematical and multiple grid generation required for grid convergence studies 
is always troublesome. Thus, single-grid error estimators are very much of interest. As noted in Chapter 4, 
these methods (unlike Category A methods, grid convergence studies) cannot be used for Verification of 
Codes, but can be used with Verified Codes for the Verification of individual Calculations. Although they 
require no additional grid generation if it is assumed that the order of convergence is known, they involve 
significant additional algorithm and code development, beyond that required for the basic solution code. 

                                                
90 Taken primarily from Roache (1997), “Quantification of Uncertainty in CFD” and from Pelletier and 
Roache (2002). 
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 Unlike the methods described in Chapter 5 and 6, the single grid error estimators are not described 
herein in sufficient detail to implement them.91 It would not be appropriate to go into such detail herein (nor 
am I qualified to do so). The reason is that these methods are closely related to, and in some cases an 
intrinsic part of, the solution algorithms. Whereas the methods of Chapter 5 and 6 are applied externally to 
the code that produces solutions to the PDEs, the single grid methods are either part of that code (the usual 
situation), or could be post-processing codes whose structure resembles the PDE code. To use a common 
description, the single grid error estimators are “code intrusive.” For example, a user of a commercial code 
might request the vendor to include a single grid error estimator (at considerable cost) but could not apply it 
on his own a posteriori, as he could the GCI, for example. By contrast, the methods of Chapter 5 and 6 do 
not require access to the inner working of the PDE code but are applied externally, often with a simple 
spreadsheet or even hand calculation. 

7.1 ERROR ESTIMATION FROM HIGHER OR LOWER ORDER ACCURACY SOLUTIONS 
ON THE SAME GRID (CATEGORY B) 

7.1.1 Higher Order Accuracy Solutions (Category B.1) 

 Category B1 methods estimate the accuracy of a base solution by comparison with “higher order 
accuracy solution(s).” (Again, note the somewhat abusive but common terminology.) Richardson (1910) 
again scooped modern error estimation papers by inventing Category B.1, error estimation from higher 
order solutions on the same grid, noting that the difference between a 2nd-order accurate solution and a 
4th-order accurate solution is itself an ordered error estimator. 
 The higher order accuracy solution might be obtained via a new solution of higher-order discretizations 
(FDM, FVM, FEM, etc.) or by deferred corrections, compact differences (again by direct or deferred 
corrections), etc. 
 For the technique of error estimation from higher order solutions on the same grid, much the same 
advantages and limitations apply as with the grid convergence technique, i.e., it applies to all point values 
and functionals (lift, drag, etc.); x and t errors may be estimated independently or coupled; the error 
estimate includes nonlinear coupling. These methods are not commonly used because they require 
additional code capability, unlike grid convergence tests (Category A). On the other hand, these Category B 
methods do not require additional grid generation. 
 The development costs of the additional code capability may be reduced by noting several points. If we 
were intending to use the higher order solution itself, many restrictions and requirements could apply, such 
as full iteration convergence, strict conservation, etc. However, if our only use of the higher order solution 
is to estimate the error of the base solution, these considerations are not so important. The point is that 
error estimation of (say) a 2nd-order solution using 4th-order methods is less demanding numerically than 
obtaining a 4th-order solution for direct use. Also, though not generally recognized, directional splitting 
works (Roache, 1997). (The following development has not been completed for cross derivative terms, 
which in any case may require some careful formulation for higher order stencils and should be rigorously 
verified.) 
 We use a notation similar to that above for multiple grid solutions, with f denoting the exact solution, f2 
the 2nd-order accurate solution, and f4 the 4th-order accurate solution. C2x are the coefficients of the 
Taylor’s theorem expansion for the 2nd-order solution in the x-direction, etc., and R2x are the remaining 
terms in the complete 2nd-order expansion in x, etc. Then, in 2-D, 
                                                
91 The time error estimators are described in sufficient detail. 



Chapter 7. Single Grid Error Estimators 
 

 

243 

 
f f C x R C y Rx x y y    2 2

2
2 2

2
2        (7.1.1.1) 

 
f f C x R C y Rx x y y    4 4

4
4 4

4
4        (7.1.1.2) 

 
Defining the error of the 2nd-order solution E2 to be  
 

E f f2 2            (7.1.1.3) 
 
and substituting for f from Eq. (7.1.1.2) we obtain 
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This is the basic (Richardson, 1910) result that the difference between the 2nd- and 4th-order solutions on 
the same grid is itself a 4th-order error estimate for the 2nd-order solution, a somewhat obvious result. 
Likewise obvious, if we define the error of the 4th-order solution E4 to be  
 

E f f4 4                (7.1.1.5) 
 
and substitute for f from Eq. (7.1.1.2) we obtain 
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424  OffE              (7.1.1.6) 

 
for a 2nd-order error estimator for the 4th-order solution. 
 The somewhat less obvious result is for the directional splitting of the higher order solutions, which can 
be much easier to implement than a fully directional higher-order solution. Let f4x denote the solution 
obtained with 4th-order discretization in x and 2nd-order in y, and, f4y denote the solution obtained with 4th-
order discretization in y and 2nd-order in x. The C2x, etc., coefficients are unchanged from the previous 
definitions. Then 
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We now estimate the difference between f4x and f2, using Eqs. (7.1.1.7) and (7.1.1.1) respectively. (If we 
dropped the higher order remainder terms at this point, we would show the resulting estimator to be 2nd-
order accurate, but by retaining these terms presently, we will show that the estimator is 4th-order 
accurate.) 
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Similarly, we estimate the difference between f4y and f2 using Eqs. (7.1.1.8) and (7.1.1.1) respectively. 
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Adding (7.1.1.9) and (7.1.1.10) gives 
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Comparing to Eq. (7.1.1.1), the first 4 terms on the RHS of (7.1.1.11) are identically equal to (f - f2) 
without approximation. (That is, the remainder terms R2x and R2y are included.) The last 4 terms on the 
RHS of (7.1.1.11) are O(4). With the definition (7.1.1.3), we have the error of the 2nd-order solution E2 
estimated as 

)(2 4
2442  OfffE yx        (7.1.1.12) 

 
Thus the estimate for the 2nd-order solution can be obtained to 4th-order by directionally split 4th-order 
solutions. 

7.1.2 Lower  Order Accuracy Solutions (Category B.2) 

 Certainly a lower-order solution on the same grid could be used to estimate the error of the higher order 
solution (Category B.2), in the same way that grid coarsening can be used rather than grid refinement, but 
We know of no such applications. 

7.2   AUXILIARY PDE SOLUTIONS ON THE SAME GRID (CATEGORY C) 

 The methodology of Category C (Auxiliary PDE Solutions on the Same Grid) does not simply involve 
a local evaluation of something. The key aspect here is that errors are transported - advected, diffused, etc. 
[Babuska et al (1994,1997) refer to this phenomenon as “error pollution.”] 

7.2.1   Error Transport Equations 

 Most of the papers using the approach of error transport equations have appeared in the FEM 
literature, but the concepts are equally applicable to FDM and FVM. An early development for FDM 
limited to cartesian grids was presented by Schonauer et al (1981). Here, we follow Van Straalen et al 
(1995) and introduce the concepts with the simple non-conservation form of the steady-state 2-D linear 
advection-diffusion equation with a source term,  
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where V is the advection velocity,  is the concentration of the transported scalar,  is the diffusivity, and 
q is a source of  (per unit mass). We write a simplified form of (7.1.13) using Ψ to represent the entire 
partial differential equation operator. 
 

q )(             (7.2.2) 
 
Let approx be some continuum approximate solution of Eq. (7.2.1) obtained numerically. It will not be 
sufficient to consider only point-wise (or node-wise) numerical solutions; rather, approx must be defined in 
the operator domain of Ψ, i.e., for this example problem, it must be a 2-D continuous function with a least 
second degree derivatives. (How this continuum approximate solution will be generated from nodal FDM 
or FVM solutions, which we denote by nodal for the sake of emphasis, will be discussed momentarily.) 
Then the error function is defined as    – approx and from the properties of linear operators we can 
define the so-called “Exact Operator Residual” as  
 

qR approxapprox  )()(          (7.2.3) 
 
The terminology of “Exact Operator Residual,” though common, is somewhat misleading, in my opinion, 
because it is “exact” only for a given continuum approx but is not uniquely defined for any nodal. That is, if 
the nodal we obtain from a code is all we have, we cannot define an operator residual until we extend nodal 
to approx and this procedure is somewhat arbitrary. For example, generation of approx by piecewise linear 
interpolation (i.e., basis functions) will not be adequate for the method as described so far, because 
derivatives of this approx will generally not exist at cell interfaces, and such approx will not be in the 
operator domain of Ψ. 
 Once we have defined a approx from nodal and defined R(approx), we note that the error  is given 
exactly by the solution of the error equation, 
 

)()( approxR            (7.2.4) 
 
The numerical solution of this equation provides the “Auxiliary PDE Solutions on the Same Grid” that 
constitutes Category C of error estimators. 
 The auxiliary error equation (7.2.4) utilizes the exact operator residual R as a source term just as the 
original PDE (7.2.2) contains the source term q. This provides an instructive conceptual model for the error 
propagation process; the exact operator residual R is a “source” for the global error distribution, which is 
transported by advection and diffusion. Clearly, the solution of the error equation is non-local. 
 Following Van Straalen et al (1995), we also distinguish the Exact Operator Residual (7.2.3) from the 
Approximate Operator Residual rL which also appears in the numerical analysis literature, defined as  
 
 

qLrL  )(             (7.2.5) 
 
where L is the discretized operator that one has solved, i.e. that approximates Ψ. Study of the residual rL 
leads to a discussion of order, since rL is typically expressed as a Taylor-series expansion about the exact 
solution. For example, see Ferziger (1988). 
 The numerical solution of Eq. (7.2.4) provides the approximate global solution for the exact error . 
There are two decisions to be made on the approximations: extending nodal to approx and then a 
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discretization of Ψ (), which is (virtually) the same decision one had to make for the original problem. 
(The differences are that boundary conditions for the error equation will be homogeneous, and any 
algorithmic aspect affected by the magnitude of the solution, e.g. nonlinear flux limiters, will be triggered 
differently.) Thus, many variations on this methodology are possible. By considering an integral form of the 
error equation (7.2.4), Van Straalen et al (1995) eliminate the requirement for smoothness in approx and use 
piecewise linear functions. This is a methodology from FEM theory, including the ubiquitous integration by 
parts, adapted to FVM. Note, however, the following universal point in all these methods. It is essential 
that the discretizations used to define approx and the operator in the error equation be distinct from those 
used on the original PDE, otherwise the method becomes a meaningless circular definition. In Van Straalen 
et al (1995), the error estimation works only because the original PDE is discretized using 1st-order FVM 
for advection, and advection is the dominant error source, and the error equation is solved using 2nd-order 
methods. 
 The procedure for error estimation in Category C (Auxiliary PDE Solutions on the Same Grid) then 
involves selection of an alternate functional form for the inter-cell (inter-element) solution and evaluation of 
the (differential) residual. It is possible that the derivatives may not exist at element boundaries. Whether 
one selects a C2 smooth function to begin with, or one blends (interpolates) the differentials obtained at 
element (or cell) centers to produce smooth functions over the entire regions, or puts off such questions to 
the quadrature rules, etc. is not really very significant. The residuals are then transported in an error 
equation for Category C methods; alternately, they could be used as local error estimators (as in Category 
D methods discussed below) which is indeed a significant distinction. The major point (for both Category C 
and D methods) is that the residual evaluation must involve a discretization rule different from that used in 
obtaining the solution. In this aspect, these methods are, after all, not so distinct from category B methods, 
which use higher (or lower) order stencils to evaluate the error. In category C, a higher order stencil is used 
to obtain a higher-order solution, but if the stencil were used only locally to obtain a local residual, it would 
be like Category D. The approach in which a rigorously iterated solution is replaced with a less completely 
converged solution is intermediate, the “globalness” of the error estimate now being dependent on the 
amount and type of iteration. 
 For earlier examples of the error transport equation approach in FDM and FVM, see Schonauer et al 
(1981), Ferziger (1993), Van Straalen et al (1995). The FEM literature is extensive, e.g. see Mills (1987), 
Babuska et al (1994,1997), Strouboulis and Oden (1990), Ewing (1990), Padra and Larreteguy (1995). 
More recently, Celik and Hu (2003) have re-visited the idea of a single grid error estimator based on 
numerical integration of a transport equation for truncation error. In all cases, the error transport equation 
will be some linearized version of the governing equations. It will be somewhat cheaper to solve than the 
original fluid dynamics equations (e.g., full Navier-Stokes) but, as expected, will be a less accurate error 
estimator near boundary layer separations, etc. This approach is truly global, but not as reliable as 
Category A or B methods. Among other attributes, this approach holds out the possibility of ordered error 
estimation for Lagrangian methods, which are in a primitive condition. 

7.2.2 §  Adjoint Equations 

 Another approach to single-grid error estimation that fits into Category C is that in which the auxiliary 
PDEs are the adjoint of the governing time-dependent PDEs. (The governing time-dependent PDEs solve 
the effects of a local point value, e.g. a perturbation, on all other locations, while the adjoint equations 
solve the effect of values at all other locations on the local point value.) This concept can be adapted to 
both error estimation and sensitivity analysis. Pernice (2007) and colleagues have developed several codes 
that provide error estimation for multiphysics simulations. Ragusa (2008) has developed single grid error 
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estimation and grid adaptation methods for higher-order multiphysics computations that can be applied as 
external subprograms to legacy codes, a remarkable and practical accomplishment.  

7.3   AUXILIARY ALGEBRAIC EVALUATIONS ON THE SAME GRID: SURROGATE 
ESTIMATORS (CATEGORY D) 

 Category D methods are described generically as Auxiliary Algebraic Evaluations or in shorthand, 
AAE. What they have in common is their modus of application; they all involve local algebraic processing 
of a single grid solution. A recommended overview of the theoretical development of AAE is given by 
Ainsworth and Oden (2000) who refer to this category simply as “A Posteriori Estimators.” AAE methods 
require only one grid generation if the order of convergence is assumed to be known, are relatively cheap, 
and (sometimes) use no significant dynamic memory. If the order of convergence is not known (or if the 
theoretical order is not trusted) these “single grid” methods are better described as “one-less grid methods”, 
i.e. they require one less grid than classical gird convergence testing. The two broad categories within AAE 
are residual-based methods and recovery methods, the most widely known of which are the Zhu-
Zienkiewicz family (ZZ). 
 AAE can also be described as “error indicators” or “surrogate estimators” rather than error estimators, 
because the energy norm metric on which they are based is not usually of any direct engineering or 
scientific interest. (This metric is of interest in meteorological and ocean calculations.) These indirect AAE 
are useful for engineering use only if correlated by experience with quantities of direct engineering interest. 
But remarkably, Ainsworth and Oden [41] have shown how the AAE may be extended from merely the 
energy norm (which has fundamental theoretical significance) to functionals like Nusselt number, drag 
coefficient, etc., which they refer to generically as “quantities of interest.” The major part of the book 
involves linear strongly elliptic problems, with the last six pages covering quantities of interest for 
nonlinear systems and Navier-Stokes equations. No demonstration calculations are given. The limitation of 
the theory to “small data” probably is similar to existence requirements; it may restrict the theory to 
Galerkin methods without stabilization (low Re) and avoidance of some pathological cases, but may not 
signal practical inapplicability. As usual, a strong theoretical foundation may be expected to lag methods 
which may nevertheless work. See also Babuska and Strouboulis (2001). Hay and Pelletier (2007, 2008) 
have had success with AAE using Wiberg error estimation (see Section 7.3.3 below). 

7.3.1 Non-Conservation of Conservation Variables (Category D.1) 

 Category D.1, non-conservation of conservation variables, applies only to codes which do not use fully 
conservative algorithms for “conservation variables.” For example, mass is not identically conserved in 
most old boundary layer codes, in many FEM codes, in codes based on collocation methods (including the 
very accurate wavelet methods, e.g. Vasilyev et al, 1995; Vasilyev and Paolucci, 1996) as well as other 
codes. The error estimate then involves numerical evaluation by quadrature for the erroneous loss or gain 
of mass in the computational domain. If the coded algorithm is consistent, this error will  0 but only in 
the limit of   0 for a non-trivial problem. (Even for a nominally mass-conserving full Navier-Stokes 
code, the satisfaction of mass conservation will usually depend on the degree of strict iteration convergence 
achieved, but this gives no indication of the discretization error of the solution, which is our interest here.) 
Momentum, vorticity, or internal energy are other possibilities. Note that the evaluation of this error 
depends on the accuracy of the quadrature, which probably should be consistent with the algorithm for 
solving the PDEs (see also discussion of D.4 below) but this does not appear to be a strict requirement. 
Conservative codes and algorithms are generally preferred, but non-conservative codes are seen to offer a 
readily evaluated and understood (although still surrogate) error measure. 
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 In earlier Sections (e.g. 5.9.2) we noted that, if there is any suspicion that the grid resolution is not in 
the asymptotic range, three grid solutions are necessary to verify (or determine) the rate of convergence and 
thereby estimate the error, when the exact solution is not known. The qualifier used, “when the exact 
solution is not known,” may seem redundant when the context is a realistic problem, but there is an 
important and useful distinction to be made in regard to Category D.1 and D.2 methods that are based on 
conservation errors. Although the conservation imbalance may not be of direct engineering or scientific 
relevance, it has the advantage that the exact solution of this quantity is known, namely zero. Thus, in these 
surrogate error measures based on conservation errors, one requires only a single grid solution to calculate 
the surrogate error, and only two grid solutions to extract the observed convergence rate p. The same is true 
if other functionals have known values, e.g. the drag coefficient = 0 for symmetric airfoils in inviscid flow, 
and can be used as an exact solution value to monitor convergence (Jameson and Martinelli, 1996). 

7.3.2 Non-Conservation of Higher Moments (Category D.2) 

 Category D.2 involves evaluation of conservation errors for higher-order moments. In a typical 
turbulent (Reynolds-Averaged) Navier-Stokes code, fully conservative discretization may be used for the 
“primitive” variables of mass, momentum, and internal energy. However, turbulent kinetic energy is 
typically not identically conserved. An evaluation of its global and local conservation by quadrature, 
including carefully evaluated boundary inflow terms and dissipation (Haworth et al, 1993; Chang and 
Haworth, 1995, 1997), then gives a surrogate indication of general discretization errors. In Chang and 
Haworth (1995, 1997) it is also used to reliably guide local grid refinement for solution adaptive grid 
generation. 
 The fully detailed balance equations for linear momentum, angular momentum, mean flow kinetic 
energy, and turbulence kinetic energy have been presented by Haworth et al (1990, 1993). For clarity, 
following Chang and Haworth (1995, 1997), we restrict attention in this example to steady, laminar, 
incompressible flows, but this is not a limitation of the methodology. In laminar flow, the turbulence kinetic 
energy is of course zero, and we drop the distinction between mean and instantaneous quantities. The total 
kinetic energy in an arbitrary volume V is K. 

 dUUK jjV 2
1

           (7.3.2.1) 

 
The kinetic energy budget for an arbitrary volume V with bounding surface S can be written symbolically 
as 

K FLUX PRES SHEAR DISS            (7.3.2.2) 
 
The terms on the right-hand-side represent the rate at which kinetic energy is advected out of V through S, 
(FLUX), the rate at which pressure forces on S extract kinetic energy from V, (PRES), the rate at which 
viscous stresses over S extract kinetic energy from V, (SHEAR), and the rate at which viscous stresses 
convert kinetic energy to sensible energy (heat) over the interior of the volume V, or viscous dissipation, 
(DISS). 
 In the FVM methods used by Haworth et al, mass and momentum are conserved at the cell level, but 
kinetic energy is not conserved. The left-hand-side K  represents imbalance in kinetic energy resulting from 
discretization of the momentum equation. For any convergent discretization, K  approaches zero in the 
limit as the grid spacing approaches zero, and departures from zero are suitable surrogate error measures.  
 The full evaluation of K  for turbulent flow requires a fairly complex code development in itself, and 
the correlation with useful engineering measures of accuracy must be established by suites of computations 
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for any new class of problems. However, this approach has some significant advantages. As noted above in 
Section 7.3.1, in these surrogate error measure based on conservation errors, one requires only a single grid 
solution to calculate the error, and only two grid solutions to extract the observed convergence rate p. Also, 
Haworth (1993) has noted that, in his experience with turbulent combustion problems, when the grid 
refinement is sufficient to clearly exhibit asymptotic behavior, the numerical accuracy is already higher 
than he would like to pay for. Other CFD practitioners have noted the same experience in other turbulent 
flow problems; see previous discussion in Section 6.26, especially Blottner (1990) and Oberkampf et al 
(1995). While systematic grid convergence tests are reliable and self-contained (i.e., they do not depend on 
establishing correlations with some other accuracy study) they often do not become reliable (i.e., exhibit 
clear asymptotic performance) until the accuracy is somewhat excessive for engineering purposes. In 
Haworth’s experience, the kinetic energy imbalance provides a more economical indicator. 

7.3.3   Zhu-Zienkiewicz and Wiberg Type Estimators (Category D.3) 

 Category D.3, the Zhu-Zienkiewicz type Estimators, were developed and intended primarily to for 
solution adaptive grid generation and arguably (Hay and Pelletier, 2007, 2008) are ideally suited for 
driving mesh adaptation. Zhu-Zienkiewicz (ZZ) estimators are not a single method, but a rather extensive 
family of methods.92 Conceptually, they are post-processing or a posteriori methods, but practically they 
are built into the computational PDEs solver, so are not applied in a “black box” methodology as are the 
grid convergence methods. ZZ are in the category of recovery methods and involve post-processing of 
solution gradients. 
 Hugger (1997) gave the following general description of the “equilibrium” or “equilibration” method. 
“First postulate an error estimator (possibly justified by physical arguments); then prove that the estimated 
error is close (upper and/or lower bound in an a priori given norm, generally the energy norm) to the exact 
error under certain regularity assumptions.” These methods allow the global energy norm to be well 
estimated (asymptotically exact for elliptic problems) and often give good evaluation of local errors (and 
provide the local estimate of stress accuracy, certainly important for structures problems). More relevant in 
the present context of the Quantification of Uncertainty, these estimators can be used as surrogate error 
estimators, and are often cheap compared to direct solution of FEM equations using inefficient solvers. 
However, when extended to FDM and FVM (or to efficient FEM solvers) their cost, when amortized only 
over the more efficient solver, is not insignificant (Pelletier, 1996). They still have the significant advantage 
compared to grid convergence studies of not requiring additional grid generation and multiple grid runs. 
 The ZZ family of estimators can be described in broad terms (Pelletier, 1996) by reference to the 
following 4 steps described for the simple non-conservation form of the steady-state linear advection-
diffusion equation with a source term, this time written simply in 1-D for constant diffusivity. 

 

V d
dx

d
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2 ( )          (7.3.3.1) 

 

                                                
92 See Zhu and Zienkiewicz (1990), Zienkiewicz and Zhu (1987, 1992), Wu et al (1990), Hetu and Pelletier 
(1992), Pelletier and Ilinca (1994,1997), Ilinca et al (1995), Pelletier et al (1995), Pelletier and Ignat 
(1995), and other FEM methods that have a similar flavor such as those of Strouboulis and Oden (1990), 
Oden et al (1993), Babuska et al (1994,1997), Ewing et al (1990), and Hugger (1997).  
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where V is the advection velocity,  is the concentration of the transported scalar,  is the diffusivity, and 
q is a source of  (per unit mass). Assume that the solution is obtained using linear elements, so that the 
continuum approximate solution  is obtained with linear interpolation between nodes. 
 
Step 1. Perform a least-squares local projection of derivatives in the form d*/dx = ax + b. 
 
Step 2. Evaluate the projected derivatives at the nodes. 
 
Step 3. Evaluate the error estimate on the elements. 
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Step 4. Evaluate the global error estimate by summing over the NEL elements. 
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             (7.3.3.3) 

 
Each of these 4 steps allows a variety of implementations, leading to the extensive family of ZZ estimators. 
 Although developed for FEM, the Zhu-Zienkiewicz approach is adaptable to FDM and FVM (Pelletier, 
1996) using the concepts discussed above in Section 7.2 on residual evaluation. Pelletier and Ignat (1995) 
have shown a good correlation of their ZZ estimator with the GCI (Chapter 4) for unstructured grid 
turbulent flow problems. ZZ methods naturally provide error estimates for the derivative of the solution, 
but sometimes can be structured to provide error estimates for flux or for the dependent variable itself 
(Pelletier, 1996). 
 The Zhu-Zienkiewicz type methods share the shortcoming of all surrogate indicators for fluid 
dynamics; other than guidance for grid adaptation, there is little inherent engineering or scientific interest in 
the error measure as defined. Therefore, unless the only interest is mathematics for its own sake, it is 
necessary to establish a correlation of the Zhu-Zienkiewicz indicators with an error measure of interest.93 
This can only be accomplished by expensive numerical experimentation for a given class of problems. For 
example, it would be unlikely that a correlation based on numerical experiments for internal combustion 
engine modeling would provide any guidance for external aerodynamics, nor even for a large range of flow 
parameters for geometrically similar problems. However, when one is involved in extensive suites of 
calculations, one may build up such correlations by experience, and arrive at a practical and relatively 
inexpensive single-grid error estimator. The ZZ family does not account for transport of errors; although 
Step 4 above gives a “global” error estimate, this evaluation is simply a summing of local error terms, and 
does not account for advection, diffusion, etc. 
 One can just as well use the various weight functions designed to guide solution adaptivity for single-
grid estimators, e.g. Lee and Yeh (1994a,b). These are loosely related to Zhu-Zienkiewicz methods and 

                                                
93 This need for establishing a correlation in error measures is also true if one direct error measure (say, 
obtained by a grid convergence study) is to be used as a surrogate for another. For example, in an airfoil 
calculation, does a 1% error estimate on CL insure a 1% (or 5%, etc.) error estimate for CM? The 
correlation providing the (fuzzy) answer will only be accurate for a restricted range of parameters such as 
angle of attack, Reynolds number, Mach Number, and airfoil class. 
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carry the same caveats. But, as noted previously, this task of grid adaptation as typically practiced has little 
connection to the Quantification of Uncertainty for a final calculation with a useful error measure, and the 
success of these local “error” estimators in guiding grid adaptation must not be taken as demonstrations of 
their efficacy for the Quantification of Uncertainty. See discussion in Section 4.2. 
 The inherent limitation of the energy norm itself, the basis of Zhu-Zienkiewicz and similar error 
indicators, is demonstrated by the following counter-example (MacKinnon, 1996). Consider the following 
simple 1-D constant coefficient advection-diffusion-source equation, contrived to produce a quadratic 
solution. 

    f cf g xxx x , 0 1          (7.3.3.4) 
 

f f( ) , ( )0 0 1 1           (7.3.3.5) 
 

g cx  2 2           (7.3.3.6) 
These produce the quadratic solution 

f x 2            (7.3.3.7) 
 
so that use of a 2nd-order discretization (say, centered differences with Dirichlet boundary conditions and 
the usual node-on-boundary configuration) produces the exact answer. In spite of the answer being exact, 
the commonly used energy norms are not zero. (They do, however, converge toward zero as the grid is 
refined.) By contrast, an error estimate based on grid convergence like Richardson Extrapolation will 
produce the correct zero error estimate. However, there is a disputed aspect of interpretation involved. 
Pelletier (1999) has pointed out that in the FEM interpretation (or philosophy) the discrete “solution” does 
not consist merely of the point values but of the continuous solution obtained by evaluating the basis 
functions everywhere. In this view, the piecewise linear FEM solution between the exact node values is not 
exact, so the non-zero energy norm is appropriate. We take the viewpoint that the discrete solution provided 
exists only at discrete points, a viewpoint supported by the common practice of presenting FEM results 
with interpolation based not on the FEM basis functions but on merely convenient interpolations, treating 
the solution discrete values as any other discrete data, e.g. experimental values. So when all node values are 
exact for all discretizations, yet the error measure shows non-zero values, something is amiss. The 
interpretation hinges on a long-standing difference of approach between FDM and FEM 
 Another AAE error estimator that has a unique property is the Wiberg estimator. Unlike ZZ estimators, 
the Wiberg estimator (Li and Wiberg, 1994) gives, with limited success, error estimates in quantities of 
direct engineering interest. Hay and Pelletier (2007, 2008) used it in an L2 least-squares reconstruction, i.e. 
projecting the solution itself rather than its derivatives. They approximated the exact field over an element 
by a polynomial of 2 degrees higher than the FEM basis functions. Then a pointwise error estimated was 
computed as the difference between this L2 reconstruction in each element and the FEM solution. They used 
ZZ to drive their very successful solution adaptive grids, but used Wiberg to estimate the solution error. 
For a 2-D RANS problem using wall functions, the Wiberg estimator appears to produce efficiency factors 
f very close to 1 as resolution increases (f => 1 indicates ordered or asymptotically exact error estimates). 
For a calculation without wall functions, the error estimate was accurate only to an order of magnitude 
(Hay and Pelletier, 2008) but in the context of the solution adaptive grid generation this has practical value 
because the computational PDE accuracy is so high. One could take the next higher decade for an error 
estimate that is not sharp but is conservative and often << experimental uncertainty.94 In fact, the 

                                                
94 With wall functions, the Wiberg estimator gives f ~ 1 and the solution adaptive remeshing produces Unum 
=  0.027%, three orders of magnitude < experimental uncertainty (Hay and Pelletier, 2008). 
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distinction between error estimation and uncertainty estimation is not even important in such cases of very 
high accuracy. 

7.3.4 Convergence of Higher Order Quadratures (Category D.4) 

 Category D.4 is the simplest, involving convergence of higher order quadratures. For example, 
quadrature (numerical integration of a known function) for pressure and shear force on the surface leads to 
evaluation of a drag coefficient CD. For non-trivial problems (i.e., problems with significant solution 
structure), 2nd-order quadrature will give a different answer than 4th-order accurate quadrature. As the 
discretization refines, these two quadratures will converge to each other. For coarse grids, the difference 
may be used as a surrogate error estimator. 
 The same philosophy has been used point-wise. The simplest approach ultimately reduces to comparing 
the calculated pointwise value of some variable of interest with the value interpolated between the 
neighbors of the point. Indeed, these will converge as the solution converges, and therefore can (and have) 
been used as surrogate error estimates. However, the poverty of the concept is shown by the fact that the 
“error estimate” is obtained without recourse to the governing PDEs or the order of convergence. These 
“error estimators” would be better named simply “resolution indicators.” 

7.4 TIME ACCURACY ESTIMATION 

 Estimation of the numerical error of the time discretization can be performed in the same manner as the 
spatial errors, but it is also possible to use simpler methods. In fact, it is relatively straightforward to 
estimate the temporal error as the calculation evolves, and to build a code with a solution adaptive time step 
to control the temporal error to a predetermined level, even when only 1st-order time differencing is used. 
 Consider the following in expensive temporal error estimator (Oden et al, 1993; Roache, 1993a,b) 
for a fully implicit (backward) time differencing method. We write the backward time method for a general 
equation system in terms of an operator L (not necessarily linear) as  
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           (7.4.1) 

 
Generally, the solution would appear to involve an expensive matrix solution for all f n+1. The inexpensive 
time error estimator uses the difference between backward and forward time integration, implemented as an 
extrapolation. The method is very cheap to implement because it does not require another implicit matrix 
solution, nor even another explicit stencil evaluation. It includes the effects of time-dependent boundary 
conditions and source terms.  
 In the current time step, Eq. (7.4.1) is advancing the solution for f from time level n to time level (n + 
1) with increment t using fully implicit (backward) time differencing, so that the operator L is being 
evaluated at (n + 1). In the previous time step, the solution was advanced from (n  1), relative to the 
current indexing, to n with increment tOLD and the L evaluated at n. We could explicitly evaluate Ln and 
make a separate, parallel estimate of the values f n+1 with an explicit step, as in  
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where F n+1 signifies the new value predicted by the explicit algorithm. (Since Ln involves values of f only at 
the location (i, j) but not at the neighboring locations (i  1, j) and (i, j  1) the equation is explicit, i.e., it 
does not involve a matrix solution of f at all values of i and j simultaneously.) The difference between the 
new value of f n+1 predicted by the implicit algorithm and F n+1 predicted by the explicit algorithm, both of 
which predictions are O(t) accurate, is itself an error estimator of accuracy O(t2) for the time 
discretization error for that time step.  
 Explicit evaluation of Ln would not be expensive compared to the computer time necessary for the 
implicit matrix solution, but it does involve coding storage penalties and complexities (storage of old values 
of boundary conditions, source terms, etc.) An even more economical and elegant approach is to recognize 
that the L from the previous implicit step is identical to the L for the present explicit step. Thus, the L for 
the present explicit step can be evaluated from the knowledge of the previous change in f, requiring only the 
temporary storage of previous solution arrays. The explicit solution for f at (n + 1), F n+1, is then obtained 
by simple linear extrapolation of previous solutions. For constant t,  
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For the more general case of variable t,  
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The pointwise difference F n+1 - f  n+1 is then a pointwise temporal error estimator of O(t2). 
 Usually, a user would be interested in the maximum over the spatial domain of the percentage error, so 
one would evaluate the error estimator EET for the single time step as 
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(7.4.5) 

 
EET is thus calculated as the % maximum deviation (or L norm) of the absolute value of the difference 
between the new f values f  n+1, predicted by the fully implicit algorithm, and F n+1, predicted by the explicit 
algorithm, normalized by fRANGE, which is the total range of f  n+1. In practice, ghost point evaluations with 
Dirichlet boundary conditions tend to exaggerate the error, so error estimates and fRANGE should be 
calculated only over interior points. 
 Note that the explicit calculation is used only as an error estimator within a time step of an implicit 
method, not as the solution algorithm, i.e., its effects do not accumulate. Thus, stability limitations and/or 
conservation issues of explicit time stepping as a solution algorithm are irrelevant. 
 Although the extrapolation procedure is equivalent to explicit time-stepping, the extrapolation cannot 
be started until there are two time levels. Also, in the event that the initial conditions are set arbitrarily by 
the analyst (without setting initial conditions as a steady-state solution), it is likely that the initial conditions 
are incompatible with the boundary conditions applied at the first time step. This means that the change in 
boundary values during the first time step is virtually fixed, i.e., does not depend on the time resolution. 
Consequently, the first time step would not provide a meaningful estimate of f / t and the error estimator 
would be inaccurate. Thus for this common situation, the time error estimation by extrapolation cannot be 
applied until the fourth time step. 
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 EET can readily be used (internal to the code) as the basis for a solution-adaptive time-stepping 
algorithm, adjusting t so that the error estimate EET is acceptable, either by re-calculating the previous 
time step (preferred) or by simply adjusting the next time. 

7.5 §  UNCERTAINTY ESTIMATES FROM SINGLE GRID ERROR ESTIMATORS  

 The computational community will follow all these developments on single grid error estimators with 
interest, but a general point is that they all basically provide error estimates, but ultimately for Validation 
exercises we want the Calculation Verification to include error bars or uncertainty estimates, i.e. 95% 
certainty rather than the 50% (at best) intrinsic to error estimates. If any two ordered error estimators 
provide estimates for the same quantity, the same Fs should apply, at least in the asymptotic limit. This is 
especially clear for the p-methods, since RE itself is a multiple-grid p-estimator. If Fs has been empirically 
determined by grid convergence studies for (say) point values, it will not necessarily be accurate for (say) 
the energy norm estimates using ZZ estimators, but in lieu of empirical evidence from corresponding 
studies, the same Fs could be used provisionally. There is some evidence from limited studies (Pelletier and 
Roache, 2006; Hay and Pelletier, 2008) that Fs = 1.25 is adequate, and even more conservative than 
targeted for the very high accuracy achieved by solution adaptive remeshing. Again, in lieu of empirical 
evidence, the same Fs could be used provisionally for results from spectral and pseudo-spectral methods. 
However, the very high numerical accuracy achieved by spectral methods and by well-implemented 
solution adaptive methods often make the value of Fs > 1, and indeed the distinction between error and 
uncertainty estimations, unimportant relative to non-numerical uncertainties (experimental and parametric). 

7.6 §  COMPARISON OF GCI AND SINGLE-GRID UNCERTAINTY ESTIMATORS95 

 We first repeat a minor point to avoid confusion of terminology. As noted previously, the GCI is not an 
error estimator but an uncertainty estimator, equal to Fs times an error estimate. Thus, to compare likes, we 
must compare the GCI not to single-grid a posteriori error estimators but to those multiplied by a similar 
Fs. Setting aside this fine point, what are the pros and cons of the two approaches? 
 GCI (or more generally, a grid convergence study) is applicable to FDM and FVM as well as FEM, 
and involves such simple mathematics that the description given in Eq. (5.6.1) may be regarded as 
complete. AAE have been developed within the theoretical framework of FEM. Pelletier (1996) has 
extended the theory for ZZ to FVM, and other extensions of AAE methods to FVM and/or FDM may be 
possible, but at present they are not ready for “off the shelf” application. The detailed description changes 
with each variation of FEM. Although the evaluation is local, the cost may not be insignificant when 
amortized over the most efficient solvers. 
 GCI is the most reliable approach. While requiring no additional code, it does necessarily use multiple 
grids. If one is taking a minimalist approach to Calculation Verification, by assuming that the base grid 
is in the asymptotic range, then single grid AAE methods are much more convenient to use (once the 
algorithms are incorporated into the code). We still heartily recommend their inclusion in all commercial 
codes. However, at present they have not been conclusively demonstrated for quantities of engineering 
interest (such as heat transfer) in nonlinear problems. Until such theoretical approaches are demonstrated, 
one must establish correlations between the energy norm tolerances and those quantities of interest for a 
class of problems. This is a highly worthwhile area of research, because of the great convenience of 

                                                
95 From Pelletier and Roache (2006). 
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working with a single grid, especially for unstructured grids. By contrast, GCI applies to all quantities of 
interest. 
 We emphasize that we do not recommend either minimalist approach, i.e. one grid for AAE methods 
like ZZ, or two grids for GCI, unless justified by studies of nearby problems. 
 Also note that application of AAE to time-dependent problems is more difficult and is an open issue 
(i.e. requires additional theoretical work) at this time, whereas the GCI is straightforward. The GCI is 
usually applied in an approximate partitioned way by separately calculating a GCI for the temporal error. 
If this is reduced, by reducing ∆t (perhaps using automatic adaptive time-step selection, to a level much 
smaller than the more difficult spatial errors) then the approximation is good. A more accurate way is to 
combine the temporal and spatial grid convergence. If both time and space discretization have the same 
order (e.g. p = 2), the formula for GCI is unchanged. If time is p = 1 and space is p = 2, the grid refinement 
ratios are changed accordingly, e.g. spatial grid doubling and time step quadrupling. 
 AAE lose accuracy near boundaries (Ainsworth and Oden, 2000; Pelletier and Trepanier, 1997) 
precisely where we often are most interested in the solution and the error bands. This is not a problem for 
GCI. 
 It is well recognized that singularities cause difficulties to AAE methods, through the mechanism of 
enhancing the non-localness of the errors, a phenomenon simply in keeping with behavior of continuum 
PDEs and referred to as “pollution errors” in the AAE literature (e.g., Ainsworth and Oden, 2000). (This 
behavior is clearly manifest in a grid convergence study, but only if more than 2 grids are used.) Strong 
nonlinearities are also blamed. It is perhaps less recognized that simple advection terms - not necessarily 
non-linear, nor even variable coefficient - are strong contributors to “pollution errors” simply because 
discretization errors themselves are advected and diffused.  
 Also, any stabilizing methods (e.g. flux limiters, SUPG FEM) destroy the theoretical basis for some 
AAE and degrade the actual performance as well (Ainsworth and Oden, 2000; Pelletier and Trepanier, 
1997). The ZZ are immune because they do not rely on the PDE to construct the estimator. 
 If one is not taking a minimalist approach, but instead requires verification that the asymptotic range 
has been achieved, the advantages of the AAE are reduced. It is not possible to determine whether the grid 
is adequate (e.g., if convergence really is p = 2) by doing a single grid calculation. Order of convergence is 
verifiable only by multiple grid calculations. AAE methods still retain some advantages, in that they require 
one less grid than conventional GCI, at all levels. To be specific: for a minimalist approach assuming a 
known convergence rate p, GCI requires two grids, AAE requires one. However, each of these is 
dangerous, unless one is working on a suite of nearby problems so that one has confidence that one is 
working in the asymptotic range. To actually calculate an observed p, GCI requires 3 grids, AAE requires 
2. To verify that p is constant, GCI requires at least 4, AAE at least 3. While it is simpler to generate 3 
grids than 4, the same issues arise, i.e. the importance of strict grid similarity, noisy p, etc. (As noted in 
Sections 7.3.1-2, the exact answer for conservation checks - namely, zero - and observed p for the mass 
balance may be calculated from just two grids.) 
 The restrictions of the GCI (and all extrapolation-based estimators for uncertainties or errors) to 
calculations in which the grids are in (or close to) the asymptotic range, where the lowest order truncation 
terms dominate and observed p ~ theoretical p, are well established, well known and often cited. What is 
seldom acknowledged is that all the single grid error estimators have the same restrictions. AAE methods 
will not be accurate far outside the asymptotic range, and this condition is not detectable without 
multiple grid solutions. 
 Finally, as noted in the introduction of this Chapter, the single grid error estimators are “code 
intrusive” whereas the GCI is applied externally. 
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7.7 §  VERIFICATION WITHIN SOLUTION ADAPTATION 

 The powerful application of AAE occurs when they are used to drive solution adaptive grid generation. 
Here, the error estimate can arise without additional penalty. We are very much in favor of such methods. 
As a practical matter, the numerical error can be driven to small and surely acceptable levels. However, 
strictly speaking, the error estimate obtained by the adaptive AAE algorithm is not always an ordered error 
estimate of the final solution, as noted earlier. The ZZ methods in a solution adaptive grid sequence do 
provide such an ordered estimator. For non-ordered AAE methods, a quantitative error estimator can be 
obtained with systematic grid convergence (coarsening) of the final adapted grid, i.e. a separation of 
adaptivity and grid convergence. Using only the non-ordered AAE to guide solution adaptivity (and the 
truth is, almost anything intuitive works for guiding solution adaptivity) it is problematical to translate the 
adaptivity criterion into a reliable quantitative final error estimate, especially for functionals like Nusselt 
number and other “quantities of interest.” However, if a correlation between the ordered AAE criteria and 
the results of grid convergence tests are established for a class of problems, one can proceed with 
confidence without requiring grid convergence testing separate from the solution adaptation for every 
problem. 
 As noted previously, the difference between any two solutions is at least qualitatively indicative of an 
error estimator. However, most of these are not quantifiable (and in fact most are undependable and grossly 
optimistic.) For example, a “feature-based” adaptation (e.g. increasing resolution in boundary layers or 
near shocks) is effective for improving accuracy but does not provide quantifiable error estimation. A 
proven approach is based on ZZ estimators. 
 The power of ZZ (and similar) single-grid error estimators is in fact exhibited not in a single-grid 
calculation, since this minimal approach can give no indication of observed order of convergence. The 
power of ZZ is most evident when combined with solution adaptation, which indeed was its original 
motivation. This procedure can produce quantified error estimation and therefore Verification, at least for 
global energy error norms. This approach uses ZZ but does not depend on the accuracy of ZZ for a single 
grid. These error estimates can be extended to uncertainty estimates via a factor of safety. 
 Significantly, numerical experiments consistently show that ZZ is ordered, or “asymptotically exact” 
(Turgeon et al, 2000). However, experience (Pelletier and Roache, 2006) demonstrates that the ZZ error 
estimator is not dependably conservative, as expected. E.g., Ilinca et al (1997) showed consistently 
unconservative estimates for a turbulent shear layer, Ignat et al (1998) showed consistently conservative 
estimates for turbulent flow over a heated backstep, and for a turbulent shear layer, consistently (except for 
the coarsest grid) unconservative for velocities but consistently conservative for turbulent diffusivities and 
temperatures. This lack of dependable conservatism is not a criticism, only an observation; the same is true 
for Richardson Extrapolation. But it does suggest the need for a factor of safety Fs applied to ZZ, whether 
used alone (in a single grid calculation) or within an adaptive grid simulation, to calculate an Uncertainty. 
In the solution adaptive work,  the efficiency index [or affectivity index (Ilinca et al, 1997a), defined as the 
error estimate / true error] tends to unity asymptotically. (This is likewise true for Richardson 
Extrapolation.) The Fs determined by empirical correlations is more conservative asymptotically. However, 
at any particular resolution, some Fs > 1 is still necessary, no matter how accurate is the calculation. This 
is especially obvious when the ZZ estimator is always non-conservative in a grid sequence. Clearly this 
corresponds to an uncertainty worse than 50%, regardless of the accuracy. Note again that uncertainty and 
accuracy are distinct concepts.  
 The ZZ approach also allows error estimates to be made directly for parameter uncertainty values 
(Turgeon, and Pelletier, 2002). As might be expected, these have larger % errors than the primary 
quantities. Also note that the ZZ estimators are not as reliable near boundaries. This does not, of course, 
imply that the FEM itself is necessarily less accurate near boundaries, only that the dependability of the 
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error estimator is diminished near boundaries. More seriously, the ZZ inaccuracy near boundaries might 
lead to inadequate mesh adaptation there, and thus to diminished accuracy. This also occurs in hyperbolic 
problems of interface tracking where the local upwinding or other smoothing algorithms can misdirect the 
ZZ estimator into inadequate resolution. However, this shortcoming would not appear to be unique to ZZ 
adaptation. 
 Evaluation of an adequate factor of safety Fs for a solution adaptive mesh sequence appears to be more 
fuzzy than the GCI experience. Examination of these cited solution-adaptive remeshing studies shows that 
the particular adaptive grid strategy employed is so effective that the finest grid resolutions always 
correspond to a required Fs < 1.25. (All dependent variables contribute to the error, and adaptivity is based 
on the minimum over all variables of the mesh size predicted; the examples cited here use primarily 7-node 
triangular elements.) At the other extreme, when the coarse grids are also considered, results using an 
earlier version of the adaptive algorithm showed that the required Fs is sometimes above 3. Considering all 
the results, even disregarding mesh resolutions √N < 20 (i.e. roughly equivalent to a 20 × 20 mesh) Fs = 
1.25 gives between 5 and 10% nonconservative estimates. The small sample and the restriction to one 
particularly effective solution adaptive method make determination of Fs, and perhaps the simple factor of 
safety approach, questionable. Until something better is developed, we still recommend Fs = 1.25 with the 
understanding that it is a rough value but that some Fs > 1 is generally required. 
 On the other hand, the solution adaptive ZZ approach offers another tempting simple error indicator: 
the difference ε between the last two meshes in the adaptive cycle. Although the work of Turgeon et al 
(2000) for a limited set of problems indicated that this was consistently conservative, it is certain that this ε 
would not be a reliably conservative estimator for just any adaptive scheme, e.g. feature adaptation such as 
available in many software packages. Even for this effective method, the conservativeness surely depends 
on the selection of the grid adaptivity level used, i.e. reducing the estimated error by a factor of ς = 2 in 
each cycle by Turgeon et al (2000), or by ς  between 0.4-0.8 in Hay and Pelletier (2008). This ε is 
definitely not an ordered error estimator in general, but behaves close to one for a combination of factors 
including selection of ς (Roache, 2008b). A smaller adaptivity factor would slow the convergence rate on 
successive grids, making the error estimator less conservative. Neither simple feature adaptation, nor 
redistribution refinement proportional to solution gradients or curvatures, would dependably give an 
ordered error estimator. But both theory and computational experiments indicate that the performance is 
not restricted to the 7-node triangular element formulation. 
 We strongly recommend such an adaptive verification approach, with the addition of a factor of safety, 
for steady state problems, provided that grid convergence is monitored to establish that the grids are in the 
asymptotic regime, at least for nearby problems. This approach certainly avoids the difficulties of multiple 
grid generation of systematically refined grids, especially when unstructured and/or multiblock grids are 
appropriate. Of course, this approach is applicable only to a specific class of algorithms, but once 
implemented, the process of (global) error estimation and Calculation Verification becomes relatively 
robust and painless. 

7.8 §  CONCLUDING REMARKS ON SINGLE-GRID ERROR ESTIMATORS 

 Although single-grid error estimators are not as reliable as classical grid convergence studies, they all 
have a significant advantage. Because they require only a single grid (if and only if it is assumed that the 
order of convergence is known), they can more easily be incorporated into codes for users other than the 
code developer, e.g. commercial codes. We strongly believe that some single-grid error estimator should be 
included in any commercial code, and that the error estimate output should not be an option, but an 
automatic hard-wired feature of all calculations (i.e. non-circumventable by the user). 
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 Also, although our own experience and preference has always been for systematic grid convergence 
studies (e.g., Chapters 4, 5, 6), they too have their difficulties. As Haworth (1993) has pointed out to me, 
“The difficulties of grid generation and of ensuring that one lies within the radius of convergence cannot be 
dismissed lightly. Unstructured hex-cell grid generation remains a manually intensive process.” For his 
work on internal combustion engines (Haworth et al, 1993; Chang and Haworth, 1995, 1997) the 
“minimum allowable mesh density is determined not only by accuracy considerations but also by the need 
to resolve geometric features” and by the “requirement that mesh integrity...be maintained as the grid 
deforms to accommodate valve and piston motion.” Although automatic unstructured grid generation has 
been claimed in the FEM literature for decades, the experience of Haworth (and many others) remains that 
unstructured grid generation for such moving boundary problems requires weeks, even months. “Until 
robust auto-hex generation for arbitrary configurations is a reality, these applications are unlikely 
candidates for multiple solutions on multiple grids.” [Of course, the time-step convergence test is cheap, 
and involves no problem of spatial grid generation.]  
 Mathur et al (2006) stated that for industrial CFD it is not unusual for geometry creation and mesh 
generation to take 50-80% of the overall solution time. This would not mean that this time is doubled if two 
grids are required, since the geometry creation and initial grid are the most difficult aspects. The ultimate 
solution may well be meshless methods, but these are in a relatively early stage of development and no 
systematic and reliable methods for Calculation Verification are available; see the review by Pepper 
(2006). 
 From an algorithmic viewpoint, automatic grid convergence testing is also possible. Some code 
developers would claim that this is already accomplished by solution-adaptive grid generation (of the h 
and/or p types) but, as already noted, the error upon which adaptive gridding is based is usually not a kind 
of measure of accuracy of interest to engineering or science code users. Automatic grid convergence testing 
is straightforward conceptually, but unfortunately the data structures of scientific programming languages 
make such codes difficult to develop and maintain. 
 Very impressive progress has been achieved in single-grid error estimators, and their use is highly 
recommended, especially in commercial codes. A non-fundamental but still real shortcoming is that most of 
the evaluations of single-grid error estimators have been small sample studies. (See Section 5.15.) The 
more fundamental limitations are (a) most single-grid error estimators are not applicable to quantities of 
direct scientific and engineering interest, although recent progress has been made here also, and (2) they 
require a single grid only if the order of convergence is assumed to be known. Experience with difficult 
problems such as RANS calculations shows that this assumption is not always justifiable. Multiple grid 
solutions are still required to determine the asymptotic range, which often involves considerable effort (e.g. 
Eça and Hoekstra, 2008). If the order of convergence is not known (or if the theoretical order is not trusted) 
these “single grid” methods are better described as “one-less grid methods”, i.e. they require one less grid 
than classical gird convergence testing. 
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CHAPTER  8 
 

  HARD STORIES 
 
 
 
 This Chapter covers more features of Verification which can be troublesome. Examples are given of 
difficult problems that require special care, and can involve ambiguities, judgment calls, and subtleties. 

8.1 FACTORS INFLUENCING CONVERGENCE RATES 

 The following discussion of a variety of factors that can influence the observed convergence rates in a 
discrete solution is taken from Westerink and Roache (1995) and Roache (1997). For the sake of continuity 
and completeness in this section, the following paragraph repeats the distinctions already given in Section 
6.3.1 between formal, actual and observed convergence rates. 
 Formal convergence rates are always (by definition) assumed to be indicated by the leading order space 
and/or time truncation error terms. However, even in the asymptotic range (where discrete space and time 
steps tend to zero), formal convergence rates may never be achieved, leading to the definition of the actual 
asymptotic convergence rate. Even neglecting the well-recognized problems with computer round-off error, 
this actual asymptotic convergence rate may be different for a particular problem from the formal 
convergence rate for reasons to be discussed shortly. Finally, the convergence rate actually observed in 
numerical experiments may be different from either the formal or actual asymptotic convergence rates, 
simply due to grid resolution not being adequate to achieve the asymptotic range. It is not unusual for the 
fine grid Richardson Error Estimator to be less than the coarse error estimator for the same grid, indicating 
that the observed convergence rate is less than the formal rate.  
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8.1.1 Higher Order Truncation Term Competition  

 In establishing the formal convergence rate, it is assumed that the leading order truncation error 
dominates all other terms in the truncation series and hence the exponent of the discrete space or time step 
is taken as the order of the method. However, subsequent terms in the truncation series may be competitive 
with the leading order truncation term for several reasons. For nonlinear flows that cascade energy to the 
highest resolvable wavenumber range, the derivatives of the response function continue to steepen as we 
refine the grid. This leads to competition of the leading and subsequent order truncation terms as the grid is 
refined. Even in the asymptotic limit, the actual convergence rate will not necessarily match the formal 
convergence rate given by the leading order truncation term.  
 Another common cause of higher truncation term interaction occurs with relatively coarse 
discretizations. The resulting interaction of these error terms leads to non-asymptotic convergence behavior 
and typically causes the observed convergence rate to be less than the formal and/or actual convergence 
rates. We note that this situation often arises in unstructured graded finite element meshes which attempt to 
provide high grid resolution in regions where response functions (i.e., the solutions) vary rapidly (with 
corresponding high derivatives) and low grid resolution in regions where the response varies slowly (with 
corresponding low derivatives). Although the overall local error in the low grid resolution regions is modest 
due to the low derivatives of the response functions, the leading order spatial truncation error may be of the 
same magnitude as the next spatial truncation error, leading to differences between the observed and formal 
convergence rates.  
 Also, note that in general 2-D and 3-D problems, spatial cross derivative truncation terms arise that 
can profoundly affect the character and magnitude of the solution. These terms have been studied in the 
context of upwinding schemes for convection dominated transport equations but are in general not well 
studied or understood for complicated flow scenarios (e.g. see Cantekin and Westerink, 1990). 
 A minor point on fluid dynamics terminology is appropriate here. The term “convection-dominated 
flow” is often a misnomer. Consider the 1-D steady convection-diffusion (or advection-diffusion) model 
equation, 

  u Re uxx x 0            (8.1.1) 
 
Such problems are usually described as “convection dominated” when the parameter range is such that Re, 
the Reynolds number (or more generally, the Peclet number) is large, Re >> 1, since this parameter 
multiplies the convection derivative. However, for this steady equation, convection never dominates 
diffusion. In fact, both convection and diffusion are everywhere in perfect balance, the convection term Re 
ux being exactly equal to the diffusion term uxx. (If we tried to define the convection term as being ux rather 
than Re ux we would find that the diffusion term uxx is dominant, by the factor Re.) The more appropriate 
term is simply “high Reynolds number flow.” 

8.1.2 The Effect of Space-Time Truncation Term Cancellation and Superconvergence  

 It is a common feature of discrete solutions to PDEs to encounter conditions in which various space-
time truncation error terms cancel. For example in the Forward-Time-Centered-Space solution (see e.g. 
Roache, 1998b) to the 1-D constant coefficient diffusion equation, if  
 


t x
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              (8.1.2.1) 
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where  is the diffusion coefficient, then the leading order time and space truncation terms cancel each 
other, and the method becomes 2nd-order accurate in time and 4th-order accurate in space. Also, in the 1st-
order upwind solution to a pure 1-D convection equation, the choice 
 

Courant Number c V t
x

 



1        (8.1.2.2) 

 
leads to the cancellation of all space and time truncation errors and yields an exact solution at all nodes. 
Also, generalized wave-continuity equation (GWCE) solutions to the shallow water equations are subject to 
space-time truncation error cancellation as c ranges between 0.5 and 1.5 (Luettich and Westerink, 1994). 
This latter case corresponds to the phase error distribution changing from a dominant phase lead error to a 
phase lag error, passing through the zero phase lag axis. 
 These three examples point to the fact that space and time truncation errors certainly interact, modify 
or even eliminate each other. This cancellation of truncation terms can decrease or increase the effective 
convergence rate p depending on the problem and how the space/time-step ratio is maintained in the 
convergence study. Finally we note that mixed space time truncation errors (e.g., the Lax-Wendroff family) 
even further complicate the convergence behavior (Roache, 1998b). This category includes characteristics-
based methods, e.g. Roache (1992). 

8.1.3 Effect of Physical Parameter Resolution on Grid Convergence  

 As the level of grid resolution is increased, the level of physical parameter resolution can also change. 
The most common instance is geometry definition. As an example, consider a convergence study of tidal 
computations within the Western North Atlantic ocean using a shallow water equation based model 
(Westerink et al, 1994; Luettich and Westerink, 1994). The scale of definition of the bathymetry (i.e., the 
ocean floor) depends on the grid resolution. As the grid is refined, we can either interpolate the coarsely 
resolved bathymetry onto the finer grid or increase the level of resolution of bathymetry by re-interpolating 
actual available bathymetry data onto the finer grid. The results are not identical, of course. These types of 
grid studies indicate that under-resolution in the grid leads to over-predictions in the response, while under-
resolution in the bathymetry leads to under-predictions in response. Thus, under-resolution in the grid and 
the inherent under-resolution in bathymetry lead to a partial cancellation of errors, which corresponds to a 
cancellation of truncation errors from the grid and bathymetric terms. Again, this type of truncation error 
cancellation can lead to observed convergence rates being higher than the formal convergence rates.  
 Similar questions will arise whenever geometry (or other parameter) resolution changes with grid 
refinement. For complex mechanical systems such as under-the-hood heat transfer in automobiles, coarse 
grid simulations will lump together some components into some idealized shape. As the grid is refined, the 
modeler must decide on whether to redefine the components with smaller scale features, or to simply 
increase the resolution of the idealized shape. This is a subtle modeling question. 
 A related and more fundamental question (repeated here from Section 5.10.9) arises when geostatistical 
methods are used to generate particular realizations of grid-block property variations with specified 
statistical parameters. Only the statistical results are of interest, not the solutions of the individual 
realizations. The question is then, should the grid refinement studies be performed separately from the 
geostatistical realizations? That is, should the solution of the partial differential equations be converged on 
finer grids with the assumed continuum property variation fixed at a geostatistically generated coarse-grid 
distribution, or should the geostatistical generation also change as the grid is refined? This is not a trivial 
question, and although definition of a fixed continuum problem for the grid refinement studies is 
conceptually easier, it is clear that substantial computer savings could accrue to the combined convergence 
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approach. In either case, the grid increments should be less than (be able to partially resolve) the correlation 
length of the property variation. 
 The question may arise as to where in the taxonomy should parameter uncertainty be included. 
Specifically, should parameter uncertainty be part of Verification or Validation? The answer is clear after a 
little thought, i.e. this is not a “gray area” at all. The answer is, in Validation. The determinant is the 
working definition of Validation, deciding whether or not one is “solving the right equations,” which 
equations obviously must include the parameters of the equations. The exercise may look “gray” in that the 
calculational burden required to add the error bar of parameter uncertainty to model calculations yields an 
“error bar” similar to that of a grid convergence test. But it really is a “model” test rather than a “code” or 
“calculation” test, and therefore must be part of Validation.  
 Purely mathematical studies on the sensitivity of solutions to parameters are neither Verification nor 
Validation, but just results. (As already noted, these studies do require Verification of both Code and 
Calculation in order to be trustworthy.) Indeed, this type of study is one of the most powerful uses of 
simulation, performing “virtual experiments” that would be difficult or impossible to accomplish 
physically. Of many possible examples, an excellent one is the study of Oldenburg and Pruess (1995) on 
groundwater-brine systems showing the surprising sensitivity of gross flow patterns to molecular 
diffusivity. Another purely mathematical modeling exercise showed the effect of ratio of specific heats on 
the numerical behavior of compressible flow simulations as the incompressible limit is approached (Roache 
and Salari, 1990; see also Section 6.28). 

8.1.4 Summary of Formal vs. Actual Asymptotic vs. Observed Convergence Rates  

 We have noted that observed convergence rates for complicated geophysical and other flow problems 
are often less and sometimes higher than the formal rates associated with a simple analysis of the leading 
truncation error terms, and have presented some of the possible origins of this problem. Some of these 
issues can be taken into account by carefully designing numerical experiments that define convergence. 
Whether grid size dependence is influencing the observed convergence rate for a problem can only be 
checked by going to a sufficiently fine level of resolution. This will produce the actual asymptotic 
convergence rate (i.e., the rate observed for asymptotically fine resolution without round-off errors) which 
may or may not equal the formal rate. Space-time truncation error dependence can be analyzed by 
performing a thorough study of the space-time error interaction found through Taylor and Fourier series 
analysis. It may be desirable to isolate the effects of the spatial errors by carefully keeping time steps small 
enough such that time errors do not interact with the space error, and by refining the time step with the 
space step in an appropriate fashion. (For some problems this would consist of linear variation of the time 
step with the spatial grid size, for others quadratic.)  
 However, it actually may be advantageous to work with time steps that incur space-time truncation 
error cancellation since they lead to overall lower errors for a given discretization even though convergence 
rates may not reach formal or actual asymptotic rates (depending how one sets up the convergence testing). 
For example, for solutions of the GWCE based shallow water equation, the best phase propagation 
properties are achieved with Courant numbers which lead to space-time truncation error cancellation 
(Luettich and Westerink, 1994). 
 Finally, parameter convergence can be separated out by freezing the parameter definition while refining 
the grid (Luettich and Westerink, 1994). We can then use the finest discretization and sequentially refine 
the level of resolution with which the parameters are defined.  
 Despite one’s care in separating out these issues, observed convergence rates may still be less than 
formal or actual asymptotic convergence rates. In fact, it may not even be beneficial to try to separate them 
out when making an assessment of the overall error in an operational model. Therefore we should account 
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for these uncertainties when applying Richardson-based error estimators (or others). It is certainly justified 
to account for this type of problem in the GCI by including the safety factor Fs > 1. 

8.1.5 Other Considerations in Defining Convergence Rates  

 Geophysical flows are very rich in their scale content and the temporal and spatial complexity of the 
associated flow features. Wave lengths in a geophysical flow range from the basin scale to the dissipation 
scale, which cannot be resolved except in the lowest Reynolds number computations. Furthermore, the 
features of a geophysical flow can be quite intricate. For example, a tidal flow includes local response 
minima for harmonic response constituents that include very high gradients in space in both amplitude and 
phase. (In fact, phase lines come together at the center of the amphidrome; Westerink et al, 1989.) The 
wavenumber range and complexity of the flow will make the task of assessing convergence and errors of 
such flow computations quite difficult. This observation also applies to DNS calculations of aerodynamic 
turbulence. 

8.1.6 Defining Wavenumber Dependent Convergence 

 Due to the scale richness of a geophysical flow, it appears very reasonable to look at convergence on a 
wavenumber- or frequency-selective basis. This is routinely done in tidal studies where tidal frequencies are 
separated out and examined individually. As grid refinement increases, more wavenumbers and therefore 
more frequencies appear. We note that the effect of new frequencies will be reflected in other constituents 
as the convergence study proceeds. This process works well, although we must keep in mind that the 
accuracy of a specific constituent does not necessarily reflect the accuracy of all wavenumbers in the 
spectrum. Note that, for Verification of a Code, rather than Verification of a realistic Calculation, it is 
advisable to develop a model problem which uses the same governing PDEs but does not exhibit the 
strongly resolution-dependent flow features, as in Dietrich et al (1990). See also Hoekstra et al (2000b) for 
convergence study in wavenumber space. 

8.1.7 Artificial Flow Features 

 As we examine any converging geophysical flow, we must carefully scrutinize the response functions 
as to their physical relevance. Specifically, not all flow features are converging functions which incur a 
certain relative percentage of error. In fact, artificial flow features can appear and disappear at a given 
wave number. Common artificial features are the 2x waves (see e.g. Roache, 1998b) which appear due to 
phase lag errors, folded dispersion relationships, and nonlinear cascading of energy into the higher wave 
number range where there may not be sufficient physical dissipation to eliminate this energy. The 2x 
waves are relatively simple to identify as non-physical flow features, since this energy moves to the highest 
resolvable wavenumbers as we refine the grid. However, there are other artificial flow features that can 
appear in the long-wave physically relevant portion of the response spectrum. 
 In particular, boundary placement and boundary condition implementation can influence the generation 
of artificial flow features. For example, in hurricane storm surge computations, placement of an “open 
ocean” boundary adjacent to a resonant basin such as the Gulf of Mexico can excite an artificial 18 hour 
period mode with significant amplitude (Blain et al, 1994). The generation of this artificial mode is very 
strongly dependent on where the open ocean boundary is placed and on how the boundary conditions are 
implemented. This again points to the importance of performing convergence studies on domain size (i.e. 
boundary placement), as well as boundary condition implementation and non-ordered approximations on 
the boundary in general. Analogous situations are common in aerodynamics and mechanical engineering 
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flows with outflow boundary conditions (Roache, 1994, 1998b). The key feature here is that these errors 
(perhaps better classified as modeling errors than numerical errors) are not ordered in grid increment and 
therefore will not be disclosed in grid convergence studies. However, as noted previously, these errors may 
prove in numerical experiments to be ordered in 1/l where l is the distance from the region of interest to the 
“open” boundary, and this error may be estimated (or banded, as in the GCI) by the same methods used for 
the grid convergence studies. (See Roache, 1994, and Section 6.10.) 

8.1.8 L2 and L Norms as Error Indicators; CAFE Curves 

 Different fields of endeavor have different requirements for the variables and functionals of interest. To 
generalize too much, engineering fields (mechanical, aerospace, chemical) often require functionals of the 
solution such as lift coefficient, heat transfer rates, mixing rate, etc. It is less common that practical interest 
is in accuracy of the entire field calculation; one example that comes to mind is aero-optical propagation 
(Truman and Lee, 1990). However, meteorological and ocean / river modelers are usually interested in 
accuracy of all the field variables. In these cases, it is meaningful to emphasize global accuracy of the 
entire computational field, and difficulty arises in attempting to characterize global accuracy with just one 
or a few numbers. 
 Typically, L2 or L error norms are used as error indicators. However, questions arise whether these 
error norms are always reliable, and more significantly how they can be interpreted. In aerodynamics flows, 
L is a demanding but often practical measure, but not so in ocean modeling. For example, in a tidal 
convergence study, L norms are poor indicators of error due to the fact that shifting amphidromes, 
associated with very high gradients in response amplitude and phase, could cause extremely high localized 
errors, which do not converge smoothly or at the same rate as an L2 norm. Furthermore, there is the general 
problem of interpreting how representative an L2 or L norm is to the response as a whole.  
 The concept of Cumulative Area Fraction Error (CAFE) curves introduced by Luettich and Westerink 
(1994) presents domain errors in a more complete and meaningful way. These curves plot the fraction of 
the total domain that exceeds a particular error level (y-axis) against that error level (x-axis). Under- and 
over-prediction are indicated separately. Assuming that under- and over-prediction are distributed 
approximately evenly throughout the domain, median under- and over-prediction errors correspond 
approximately to a cumulative area fraction of 0.25.  
 As an example of the cumulative area fraction error curves, consider some results of a grid 
intercomparison for tidal flow computations as reported by Westerink et al (1995). Three grids were 
examined: Grid SS4, a regular 24255 node grid; Grid T1, a graded 11712 node grid with increasing 
resolution in shallower waters; and Grid T2, a graded 28889 node grid that is based on grid T1 with added 
resolution over steep bathymetric gradients. Results from all three grids are compared to those from a 
95999 node regular grid. Figure 8.1.8.1 plots the three CAFE curves and clearly indicates that the grid T2 
outperforms the other two grids over the entire distribution of error levels. Note that the error curves are 
continuous and that every error level in the domain is incorporated. Furthermore, extreme L errors 
correspond to the end points of the error curves. For a perfect solution the under- and over-prediction 
curves would collapse to a line on the zero error level. Finally, note that these CAFE curves provide a 
direct relationship between any error level and the fraction of the domain which exceeds that error level. 
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8.1.9 Summary of Other Considerations in Defining Convergence Rates  

 We have noted that the flow spectrum must be carefully considered in any convergence study. 
Certainly looking at convergence behavior in a frequency or wavenumber specific way appears very 
reasonable. However, the overall spectrum should be considered as a whole and related to the level of 
convergence of a specific frequency. Furthermore, the response spectrum must be carefully scrutinized for 
artificial flow features such as 2x waves and resonant waves artificially set up through boundary 
placement or boundary condition implementation. The Cumulative Area Fraction Error (CAFE) 
distribution concept gives a complete and meaningful picture of the error distribution; the CAFE curves can 
be particularly useful in grid convergence studies and grid intercomparisons.  
 For other examples of grid convergence studies in geophysical ocean and lake modeling, see Johns et al 
(1983a,b), Le Provost and Vincent (1986), Bennett and Campbell (1987), Dietrich and Roache (1991), 
Dietrich et al (1990), Lardner and Song (1992), Piacsek and Allard (1993), Luettich and Westerink (1994), 
Westerink et al (1994, 1995). 
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Figure 8.1.8.1. Example of Cumulative Area Fraction Error (CAFE) curves of Westerink et al (1995). 
(From Figure 2 of Westerink and Roache, 1995.) 
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8.2 BEHAVIOR OF QUASI-HIGHER-ORDER METHODS 

 Leonard and MacVean (1995) performed a grid convergence study that is valuable for covering 
different algorithms in a consistent framework, allowing comparison of error estimation across methods. 
The benchmark chosen was a commonly used 2-D unsteady meteorological problem consisting of an initial 
elliptical blob of cold air aloft that descends under gravity towards a ground plane. As it spreads laterally, a 
strong (nonlinear) density current is formed, with a sharp leading-edge front and a number of internal fronts 
associated with Kelvin-Helmholtz rotors. Although there is no exact solution available, numerous fine-grid 
Benchmark calculations have been reported previously; see Straka et al (1993). Figure 8.2.1 shows the 
initial conditions and Benchmark (fine grid) solutions for perturbation potential temperature . 
 The authors considered 7 different methods, 3 of which are flux-limited schemes. Only data on the 4 
non-limited schemes were presented to allow evaluation of the error estimators. These 4 are as follows. 
 
i. LF, a 2nd-order leapfrog method (e.g., see Roache, 1998b) 
ii. UTOPIA, Leonard’s nominally third-order flux-integral method (Leonard 1991) 
iii. Q5, a quasi-5th-order scheme in which higher-order cross-differences are neglected and 2nd-order 

methods are used for diffusion (Leonard and MacVean, 1995) 
iv. U5, a higher-order reference method (Leonard and MacVean, 1995) 
 
 The authors performed a thorough grid convergence study over 5 grids with 4 doublings, with mesh 
increments (in meters) of  = 400, 200, 100, 50, 25. Sample results for the 200 m mesh are shown in 
Figure 8.2.2. 
 Importantly, the convergence rates p (in the present notation) were determined experimentally. The 
authors’ experience was that determining p values at every grid point was unworkable, leading to a wide 
range of different p values at different grid points “due in large part to slight phase shifts near strong 
gradient regions.” They then used the global L1 error norm,  
 

L
N computed reference1
1

               (8.2.1) 

 
which normalizes the error over all N cells, calculated for all but the coarsest grid. reference was calculated 
by Richardson Extrapolation using experimentally observed values of p (solved by graphical iteration). The 
L1 error norm vs. mesh size is shown in Figure 8.2.3. 
 The “rather less expensive” Q5 results are graphically indistinguishable from those of the U5 reference 
method in Figure 8.2.3, but the error estimates will be distinguishable.  
 The relative error RelErr for each numerical solution was calculated from the reference solution. The 
relative error on grid h1 was also estimated as E1 calculated by the (generalized) Richardson Extrapolation 
(Equation 5.4.2, Chapter 5) using the observed values of p for each method and grid pair. Also, the GCI 
value  using the original “factor of safety” = 3 was used, i.e.  
 

GCI  3 1E             (8.2.2) 
 
(Note the change in notation from Leonard and MacVean, 1995, whose “1” corresponds to E1 in the 
present notation.) The results are given in Table 8.2.1. 
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5 10 150  
 

 
Figure 8.2.1. Initial conditions and Benchmark solutions for perturbation potential temperature  for 

the descending blob of cold air. Solution times are 0, 300 s, 600 s, 900 s. (From Figure 1 
of Leonard and MacVean, 1995.) 
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Figure 8.2.2. Results after 900 s on the 200 m mesh for the leapfrog, UTOPIA, and Quasi-5th-order 

method. (From Figure 6 of Leonard and MacVean, 1995.) 
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Figure 8.2.3. Error norm (L1) vs. mesh size for leapfrog (LF), UTOPIA, Quasi-5th-order (Q5) and 

reference method (U5). (From Figure 4 of Leonard and MacVean, 1995.) 
 
 

 LF UTOPIA Q5 U5 
     
 = 25 m      
 RelErr 0.30 0.04 0.03 0.03 
 E1 6.33 0.05 0.03 0.03 
 GCI (Fs = 3) 19.00 0.15 0.10 0.10 
     
 = 50 m      
 RelErr 20.30 0.41 0.14 0.14 
 E1 12.15 +1.40 0.92 0.95 
 GCI (Fs = 3) 36.44 +4.21 2.76 2.85 
     
 = 100 m      
 RelErr 67.71 +6.58 3.10 3.17 
 E1 51.79 +2.66 4.90 4.83 
 GCI (Fs = 3) 155.36 +7.99 14.69 14.50 
     
 = 200 m      
 RelErr 101.07 +11.44 24.40 24.22 
 E1 17.38 13.20 7.48 3.87 
 GCI (Fs = 3) 52.15 39.60 22.43 11.62 

  
Table 8.2.1. Uncertainty diagnostics for max, in %. (From Table 1 of Leonard and MacVean, 1995.) 
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The following discussion of these results is taken verbatim (except for the change in notation noted above) 
from Leonard and MacVean (1995). “One sees immediately that simple uncertainty diagnostics are difficult 
to devise. In particular, Roache’s GCI appears to be (usually) much too conservative. Our E1 (= GCI / 3) 
appears to be somewhat more useful as a relative error estimator but not particularly accurate in absolute 
terms.” 
 My own evaluation differs somewhat. First, I repeat that the GCI was not intended to provide an error 
estimate, but a conservative error band, equal to 3 the error estimate. Given that clarification, we still see 
that the results of Table 8.2.1 are still somewhat favorable to the philosophy of conservatism. There are 16 
cases considered (4 methods, 4 fine grids). For 10 of these 16 cases, the GCI is very conservative and E1 is 
either a good estimate or is itself very conservative, the incidences being strongly skewed to the finest grids, 
as expected. In 3 of the remaining 6 cases, the GCI is still conservative (less than the factor of 3) but E1 is 
not. As anticipated and as experienced for the simple 1-D Burgers equation (Section 5.9.1) the generalized 
Richardson Estimator is not conservative. More surprising, even the GCI itself, with the full (original) 
“factor of safety” = 3, is not conservative in the remaining 3 out of 16 cases. As expected, these failures 
occur on the coarsest grid of 200 m. (Note that this is the coarsest fine grid in the coarse-fine pairs; i.e., the 
results in Table 8.2.1 for the 200 m grid were obtained from the pair of grid solutions on a coarse grid of 
400m and a fine grid of 200 m.) Considering the noise evident in the top contour plot of Figure 8.2.2, one 
might argue that inspection would suggest that the LF method was not in the asymptotic range, so a CFD 
practitioner would know better than to expect the original GCI to be conservative. Based on folklore horror 
stories of the general competence level of commercial code users, I doubt this. With more certainty, I 
suggest that many sophisticated users would be fooled by the plausible results in Figure 8.2.2 for the Q5 
method, yet even for this method the GCI with Fs = 1 is not conservative in Table 8.2.1. Furthermore, note 
that the conservatism of the calculations has been enhanced (compared to standard minimal practice) 
because the authors have experimentally determined observed values of p. The nominally 3rd-order 
UTOPIA method shows a convergence rate of p = 2.83. This is good performance for the method, since the 
nominal value was determined by analysis of the constant velocity problem, whereas the present benchmark 
advection field is far from uniform. But the point is that, if only the nominal result of the formal analysis p 
= 3 had been used, the UTOPIA result would be less conservative. In summary, in my evaluation, the 
thorough study of Leonard and MacVean makes a rather strong case for maintaining conservatism in the 
GCI error band, unless as originally suggested (Roache, 1994) three or more grid solutions are calculated 
to establish p. 
 Further evidence of the importance of experimentally determining p comes from the results of Leonard 
and MacVean (1995) for 3 flux-limited schemes: 
 
i. the MUSCL scheme of Van Leer (1979 applied one-dimensionally, i.e. with the transverse gradient 

terms;  
ii. LQ5, the earlier Q5 scheme with the first multidimensional limiter of Leonard et al (1995); and  
iii. 1UP, a first-order upstream flux integral method for advection with second-order physical diffusion. 
 
 Nonlinear flux limiters present special difficulties for evaluation of observed orders of convergence. 
This wide class of algorithms was described in Roache (1998b), Chapter 5 (Section M) with an application 
in Chapter 17. Originally developed for shock flows, they are equally applicable to any solution that 
develops steep gradients or “fronts”, steep being measured relative to the grid spacing Δ. They all involve 
non-ordered approximations applied adaptively (i.e. by monitoring the character of the developing solution) 
and locally to avoid the over- and under-shoots typical of shocks and high gradient regions. In such 
regions, the concept of “truncation error” becomes meaningless. The methods are typically developed in 1-
D but applied in multi-dimensions, so the performance depends strongly on the angle between the velocity 
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vector and the grid lines, deteriorating as the angle → 45o. Thus observed order of convergence is (not 
surprisingly) strongly problem dependent. 
  The convergence behaviors from Leonard and MacVean (1995) are shown in Figure 8.2.4. One would 
expect LQ5 to have at best 2nd-order convergence, and less when the flux limiter is active (at the fronts), 
and the MUSCL scheme applied one-dimensionally to be somewhat less than 2nd-order. In fact, both 
exhibit a higher-than-theoretical value of p = 2.4, “rather intriguing but, as yet, unexplained.” If p = 2 had 
been used in a two-grid application of the GCI, the conservatism would have been increased even beyond 
the safety factor of Fs = 3. On the other hand, the 1UP method of nominally 1st-order convergence might be 
expected to differ from p = 1, if at all, with a slight improvement (in the non-rigorously asymptotic range) 
because of the 2nd-order accuracy in the diffusion terms. In fact, the observed value is a miserable p = 
0.35. (The well-known smearing of solution detail by 1st-order methods is shown in Figure 8.2.5.) The GCI 
denominator (r p  1) would have been calculated (with p = 2) as 1, whereas the value with observed p = 
0.35 would be 6.25. The conservative Fs = 3 is overwhelmed by this non-conservative factor 1/6.25, so that 
even the GCI is non-conservative by more than a factor of 2. The simple E1 estimator would be non-
conservative by the factor of 6.25. This behavior would be disastrous for reporting ; imagine publishing an 
“uncertainty diagnostic” for (say) a lift coefficient of 4%, then being shown that your calculation was 
actually in error by 25%. 
 To reiterate my position (Chapter 5), based upon careful multiple grid resolution studies like those of 
Leonard and MacVean (1995) and others (see papers in Johnson and Hughes, 1995), I recommend that the 
GCI be calculated with Fs = 1.25 only for grid convergence studies based on three or more grids resulting 
in reasonable observed p. Recall that two grid solutions are necessary to estimate the error if p is already 
known, three grid solutions are necessary to determine the observed p, and four grid solutions are necessary 
to determine that the observed p is constant, i.e. that the sequence of solutions is within the asymptotic 
range. (Of course, if three grids are used and the observed p ~ the theoretical value, e.g. observed p ~ 2 for 
a theoretically 2nd-order method, then one would have high confidence in using p ~ 2 without performing 
the fourth grid solution.) For the minimal two-grid solutions on a new problem (i.e., a problem for which p 
cannot be confidently inferred from a nearby problem), I recommend that the GCI should still be calculated 
with the usually (but not always) conservative value of Fs = 3. See also discussion in Chapter 5. 

12

10

8

6

64
ln ( )h

MUSCL
1UP

LQ5

 
 
Figure 8.2.4. Error norm (L1) vs. mesh size for first-order (1UP), MUSCL, and limited quasi-5th-

order (LQ5) methods. (From Figure 7 of Leonard and MacVean, 1995.) 
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8.3   SOME GOOD NEWS FOR TURBULENCE MODELING 

 As noted in Chapter 3, the error for mixed order methods should, strictly speaking, be banded using the 
lowest order of the method, i.e. 3rd-order differencing for advection terms used with 2nd-order differencing 
for other terms should be estimated using p = 2. Although this will be true in all cases strictly speaking, a 
practical and most advantageous exception sometimes exists for turbulence modeling. 
 In k- and k- turbulence models, it is a matter of common computational experience that the 
numerical accuracy of the transport equations for these variables does not have a major effect on flow 
average quantities of usual engineering interest, notably skin friction and pressure distribution. If 1st-order 
or hybrid differencing is used for the advection terms in the turbulence equations, the convergence rate for 
these equations will of course be p = 1, but the experimentally observed rate of convergence for flow 
average quantities, over realistic grid resolutions, is p = 2. (Salari, 1997; see e.g., Bergstrom and Gebart, 
1997.) Bergstrom and Gebart (1997) experimentally showed p ~ 2 (p = 2.08) for flow average quantities 
over the finest three grids in a four-grid calculation, demonstrating that a practical asymptotic range had 
been attained, and was converging at 2nd-order accuracy. This is a significant Verification and confidence 
builder for both the algorithm and the commercial code used, CFDS-Flow3D (AEA Technology, 1994). 
(The code is now known as CFX.) The use of 1st-order differencing in the turbulence equations greatly 
stabilizes them (Ekaterinaris and Menter, 1994, Ekaterinaris, 1995) and is recommended, provided only 
that the user Verifies the experimental observed p = 2 for each significantly new (rather than “nearby”) 
calculation. 

1UP

MUSCL

LQ5

5 10 150  
 
Figure 8.2.5. Results after 900 s on the 200 m mesh for first-order (1UP), MUSCL, and limited quasi-

5th-order (LQ5) methods. (From Figure 9 of Leonard and MacVean, 1995.) 
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 Unfortunately, more recent experience casts doubt on this good news. Rumsey and Thomas (2008), 
using the NASA code FUN3D, found that the accuracy of the mean flow quantities may be reduced to first 
order. Whether these disparate experiences are due to different turbulence models, different algorithms, 
coding details, or the physical problem is not known at this time. 
 Other aspects of turbulence modeling bring bad news for calculation verification; see Section 8.14. 

8.4 MYTH OF THE “CONVERGED SOLUTION” 

 Computational PDE practitioners, especially industrial engineers using general-purpose commercial 
codes, would like to be able to obtain, at least in principle, a “converged solution” (converged both 
iteratively and in time-space discretization) and then be able to confidently post-process that solution for 
any engineering measure of interest. Unfortunately, this cannot be possible in any general sense. The 
problem is again the a priori unknown correlation between possible error measures of engineering and 
scientific interest. Of course, expert judgment (based on experience with a nearby class of problems) can be 
valuable, but the problem is not soluble in any general sense.  
 For example, in our experience with dynamic stall and oscillating airfoil and wing calculations (Salari 
and Roache, 1990), lift was well converged at the finest discretization achieved (141  55  55 in 3-D, and 
461  71 in 2-D), drag was more problematical, and moment definitely was not converged. If one had 
performed the grid convergence study (or other error estimation exercise) examining only the lift, one could 
only infer from engineering judgment (experience on related problems) whether or not resolution was 
adequate for drag and moment. Viegas et al (1988) noted the same variance of convergence with this 
additional distinction. Their calculations of lift and pressure drag were perhaps adequately converged (with 
a ~1% persistent oscillation) but moment (as above) and friction drag were not. If some new error measure 
became of interest, say position of transition, or location of trailing edge separation, or second harmonic 
component of the unsteady pressure coefficient (of interest for helicopter dynamic stall analysis; 
McCroskey, 1981), the convergence study would have to be repeated for this error measure, strictly 
speaking. Other examples are plentiful.  
 Rosenfeld (1994) used grid resolution studies of bluff-body wakes with resolution up to 513  513 
points, and examined convergence in both the physical and Fourier domains. He showed that very fine 
meshes were required to obtain convergence in the physical domain, but that Fourier components converge 
on coarser grids faster than either the phase angle or the solution in the physical domain. A major factor in 
this behavior is the resolution required for the initial transients, which do effect the phase angle of the 
solutions, but are of no importance (physically or numerically) to the fully developed periodic solution. 
“These findings indicate that the mesh resolution has a more pronounced effect on the phase velocity of the 
vortices than on phenomena related to magnitude,” so that coarser grids may be acceptable for prediction of 
force coefficients.  
 Blottner (1990) noted that hypersonic sphere-cones calculations require much higher grid resolution for 
heat-flux calculations than for surface pressure calculations with the same level of uncertainty.  
 Sengupta et al (1995) showed that calculations of the branching between symmetric and non-symmetric 
flow patterns require special attention to grid resolution. 
 Rumsey et al (1996) calculated unsteady laminar flow over a circular cylinder, and unsteady turbulent 
flow over an 18% thick circular arc airfoil. They explored the sensitivity of grid convergence to many 
physical and numerical parameters, including turbulence model (algebraic vs. one-equation), implicit vs. 
explicit time differencing, and various time-step sub-iteration schemes. They noted that for some 
conditions, “even results on the finest 369  129 grid are not completely code converged,” yet [as is well 
known] the “oscillation frequency is relatively insensitive to grid density for both turbulence models.” 
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 Certainly, it is always possible to devise some error measure that is exquisitely sensitive to 
discretization error, e.g., some high-order statistical correlations in turbulent flow calculations, so that this 
measure is far from converged even when other, more benign measures are well converged. A practical 
example is a boundary layer stability calculation. For most engineering applications, skin friction and wall 
heat transfer are of principal interest, and these are sensitive to the first normal derivative of velocity at the 
wall. However, it is known from classical stability theory (e.g., Lin, 1967) that laminar boundary layer 
stability is dependent on the diffusion of vorticity across the critical layer (the y-position at which the mean 
flow speed equals the disturbance wave speed). The principal component of boundary layer vorticity 
magnitude is u / y, so this means that the appropriate measure of accuracy is of the term 3u / y3, which 
may be expected to be more difficult to “converge” than simply the velocity component u. Conversely, 
accurate convergence of pressure may be unnecessary.  
 Thus, the concept of a “converged solution,” ascertained to be so independent of the intended error 
measure, is a myth. 

8.5 ESOTERIC CODING MISTAKES 

 As noted in Chapter 3, general PDE codes (more general than the simple Poisson equation in 
nonorthogonal coordinates) would be difficult to include in a theorem on code Verification because of 
esoteric errors. The difficult aspects of the codes are not algebraic complexity; in Steinberg and Roache 
(1985) we convincingly verified 1800 lines of dense Fortran. The more difficult and vexing problems come 
from totally distinct types of complexity, arising from option combinations and switches like conditional 
differencing. Esoteric errors can arise because of nonlinear flux limiters like FCT, TVD, hybrid or type-
dependent differencing, etc. This does not invalidate the claim that the Method of Manufactured Solutions 
(Chapter 3) Verifies the Code. Obviously, the method cannot Verify a feature that is not turned on! This 
merely says the obvious, that in order to test a code with many features, one may require many test runs to 
turn on these features. 
 A type of error unlikely to be included in an accuracy Verification theorem arose in a code for 
calculating supersonic base pressure (Mueller et al, 1970; Mueller and Roache, 1973) using the Chapman-
Korst flow model. Several Fortran variables were defined for groups of terms involving Mach number M, 
such as MS = M**2, M1 = M  1.0, M2 = SQRT (MS  1.0), etc. One of these variables was not declared 
REAL. The original code was initially exercised and considered to be bug-free for Mach numbers of 1.5, 2, 
3, 4, 5, and 6, with excellent agreement with experiment. It was of course correct for integer M only, and 
quite good for M = 1.5, leading to a false conclusion on accuracy. For M = 1.3, it failed unambiguously, 
leading to a coding correction. 
 In the first example in Section 1.3 (from Roache, 1982), a factor of 2 error in cross derivatives in a 
grid generation code did not show up during extensive testing. The test suite was composed of 
homogeneous elliptic grid generating equations that produce almost conformal transformations (with 
discrepancies due only to boundary distributions) for which the cross derivative terms vanish in the limit of 
  0. Although revealed by the general code accuracy Verification procedure, as described in Chapter 3, 
one can easily envision being misled by particular problems. 

8.6 FALSE VERIFICATION TEST OF A PARTICLE TRACKER 

 The 2-D and 3-D SECO_TRACKER codes (Roache, 1993a,b) were built to provide temporal high-
order particle tracking. They use a modified version of a 5th-order Runge-Kutta-Fehlberg ODE integrator 
called RKF45 (Shampine et al, 1976) for integration in time combined with linear velocity interpolation in 
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space and time to produce particle tracking with Verified accuracy of O[(x)2, (t)5 ]. This may appear to 
be inconsistent with the typical 2nd-order flow field accuracy, but is in fact justifiable. The key concept is 
that the flow codes are Eulerian, whereas the particle tracking is intrinsically Lagrangian. For a steady 
Eulerian velocity field with linear variation in space, there is zero time truncation error in the velocity field, 
yet the (Lagrangian) solution for particle position involves exponential functions in time. The higher time 
variability of particle position, compared to Eulerian velocity fields, justifies the use of higher accuracy 
tracking algorithms. See also Baptista (1987). 
 In Roache et al (1990), we described the following “hard story” in the debugging experience with 
SECO_TRACKER. 

8.6.1 Spatial Convergence of Tracker Codes 

 The first benchmark test case for the Tracker codes was designed to verify spatial convergence. The 
benchmark solution is a 1-D trajectory. The 1-D velocity field varies in space and time as  
 

)cos(
)cos(5.0||

x
timeV              (8.6.1.1) 

The 1-D solution is 
 )sin(5.0sin_ timeapartx           (8.6.1.2) 

 
which solution has sufficient structure to exercise all terms in the Taylor series expansion of the 
discretization error. The solution is rotated with the direction cosine dcos1  1, and dcos2 = 1 12 dcos . 
Using dcos1 = 0.5 gives the trajectory angle 1 = 60, so the trajectory is not through the grid corners (to 
assure that interpolation is exercised). The test results are shown in Table 8.6.1.1. 
 The term relerr_p is the relative error in final position, and relerr_coef is calculated as relerr_p·(il  
1)2. For a method which is 2nd-order accurate in space, this coefficient should become asymptotically 
constant as il is increased. The time discretization error is O(t5) and is negligible compared to the spatial 
discretization error for this problem.  
 As seen in Table 8.6.1.1, this coefficient is indeed roughly constant. (The slight decrease in relerr_coef 
as the grid is refined would theoretically indicate faster than 2nd-order convergence, but this distinction is 
not significant, and is evidence of less than asymptotic behavior, round-off error, and time discretization 
error.)  
 The successive ratios of relative error in particle position are displayed in the last column of Table 
8.6.1.1. The ratio of successive errors as the spatial step is halved, from (il  1)  N = 4, 8, 16, is better 
than the theoretical value for the 2nd-order method, 22 = 4. This test of 2nd-order spatial discretization 
error is not as sensitive to computer round-off error as is the 5th-order time discretization test. The better-
than-theoretical performance will not generally hold for arbitrary velocity fields. The failure in Table 
8.6.1.1 at N = 32 is indicative of accumulated round-off error using the single precision version of the code 
on an old Vax computer with about 7–8 significant figures of accuracy for floating point calculations. (The 
single precision version was developed for later conversion to the Cray-XMP, for which any use of double 
precision variables prevented vectorizing.) 
 The above test results were obtained for collocated grids (MAC = 0); similar results were obtained for 
a staggered (Marker-and-Cell or Arakawa-C grid; MAC = 1) in Table 8.6.1.2, and for a stretched grid in 
Table 8.6.1.3.  
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8.6.2 Temporal Convergence of Tracker Codes: A False Negative Test 

 The second benchmark test case for the particle tracker codes was designed to verify temporal 
convergence. A solid-body rotation velocity field with rotational speed = 2 radians/unit time should return 
the particle to its original position at final time = 1.  

il  jl relerr_p (%) relerr_coef error ratio 
5  5 2.88 E+00  4.61 E01 – 
9  9 5.74 E01  3.68 E01 5.0 

17  17 6.97 E02  1.78 E01 8.2 
33  33 5.06 E02  5.18 E01 1.4 

 
TABLE 8.6.1.1  Two-D Tracker Results For Test #1, Uniform Grid, MAC = 0.  

(From Table 8 of Roache et al, 1990.) 

il  jl relerr_p (%) relerr_coef 
5  5 1.6238 E+00  2.5981 E01 
9  9 4.0202 E01  2.5729 E01 

17  17 5.3066 E02  1.3585 E01 
33  33 5.1116 E02  5.2343 E01 

 
Table 8.6.1.2. Two-D Tracker Results For Test #1, Uniform Grid, MAC = 1.  

(From Table 9 of Roache et al, 1990.) 
 
 
 
 

il  jl relerr_p (%) relerr_coef 
5  5 4.4230 E+00  7.0768 E01 
9  9 7.6609 E01  4.9030 E01 

17  17 8.4578 E02  2.1652 E01 
33  33 4.7120 E02  4.8250 E01 

 
Table 8.6.1.3. Two-D Tracker Results For Test #1, Stretched Grid, MAC = 0.  

(From Table 10 of Roache et al, 1990.) 



Chapter 8. Hard Stories 
 

 

276 

 
 For an initial position at x_part = (0.75, 0.0) the errors in the final x-position at N time steps were 
obtained, as shown in Table 8.6.2.1.  
 The ratio of successive errors as the time step is halved, from (il  1)  N = 10, 20, 40, very closely 
fits the theoretical value for the 5-th order method, 25 = 32. The failure from N = 40 to 80 is again 
indicative of accumulated round-off error using the single precision version of RKF45 on an old Vax 
computer with about 7–8 significant figures of accuracy for floating point calculations. 
 Although this benchmark test case #2 does verify the 5th-order time discretization error, there is no 
spatial interpolation error, since the velocity field for solid body rotation is linear in space. 
 This is an important distinction. In actual application, a serious coding mistake was not detected by 
this seemingly convincing benchmark test case, i.e. we obtained a “false negative” error test. The code logic 
which located the cell indexes containing the particle position was in error. However, since the solid body 
rotation gives u = cy and v = +cx, i.e. a linear variation in velocity components, the linear interpolation to 
find u(x, y, t) and v(x, y, t) is algebraically exact, no matter what cell is used as the basis for the 
interpolation. (The wrong cell merely results in linear extrapolation, which is still algebraically exact.) 
Only when the previous benchmark test case #1, involving the (non-trivial) rotated 1-D trajectory, was 
exercised was the coding error discovered. 
 Similar results were obtained from the 3-D tracker codes. The benchmark test case was the 3-D analog 
of the first 2-D problem above. The same 1-D solution was rotated with direction cosines dcos1, 2  1, and 
dcos3 = ( ) /1 1 22 2 1 2 dcos dcos . Using dcos1 = 0.5 and dcos2 = 0.6 gives 1 = 60 and 2 = 53.13, so 
the trajectory is not through the grid corners. Results are shown in Tables 8.6.2.2 and 8.6.2.3. 
 Particle trajectory calculations can be quirky. Some FEM codes provide discontinuous flow velocity 
solutions that can result in peculiar and totally erroneous qualitative behavior of particle tracking. If the 
discontinuous velocity solutions are used without smoothing, they can result in trajectory calculations with 
particle “trapping” at an element interface; with smoothing, they can result in “a peculiar ‘kick-back’ on 
the trajectory close to a fracture zone”. See Figure 3.23 of OECD (1988). 

8.7 INADEQUACY OF SINGLE GRID CALCULATIONS FOR PARAMETER TRENDS 

 Considerable effort has been invested in developing solution algorithms which always give smooth, 
reasonable looking solutions at coarse grid resolution, with the idea that even under-resolved solutions 
could provide some useful engineering information, e.g. trends of some flow functional with parameters. 
Even the hypercritical Oreskes et al (1994) and pessimistic Konikow (1992) (see discussion in Chapter 2), 
while claiming that Validation and Verification are impossible, stated that computational simulations can 
provide reliable information on trends.  

N error in x_part error ratio 
10 4.9E02 – 
20 1.7E03 28.8 
40 5.5E05 30.9 
80 4.0E05 1.4 

 
Table 8.6.2.1. Two-D Tracker Results For Test #2, Uniform Grid, MAC = 0.  

(From Table 11 of Roache et al, 1990.)   
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 In fact, nothing can be taken for granted in this respect. In a classic paper for the Finite Element 
community entitled “Don’t Suppress the Wiggles - They Are Trying to Tell You Something,” Gresho and 
Lee (1981) warned against the design of algorithms which provide smooth solutions at coarse resolutions. 
The most common such method is simple upstream differencing for advection, which tends to obliterate 
small scale flow features, but there are more subtle methods with more subtle qualitative errors. Brown and 
Minion (1995) gave examples of misleading behavior of a Godunov projection method for incompressible 
Navier-Stokes equations. The method always produced “smooth, apparently physical solutions” even when 
under-resolved. However, closer examination indicates the presence of “spurious nonphysical vortices that 
are artifacts of the under-resolution.” That is, rather than obliterate small-scale features as simple 
upstream differencing does, this method introduces false small-scale features. The authors noted that “these 
artifacts are not unique to Godunov methods” but “are observed with other difference approximations as 
well.” Their lesson is that “it is not sufficient that the computed solutions appear smooth and well-
resolved,” and they noted again the observation of Gresho and Lee (1981) and many others, that the 
obvious failure of simpler methods is less dangerous. “Since the centered methods fail rather badly in the 
under-resolved case, it is somewhat easier to know when one is properly resolving the computed solutions 
for those methods.” On the other hand, one prefers smooth solutions at all levels of grid resolution to guide 
solution adaptive grid generation, so we should not eliminate these methods entirely. 
 Even the use of 2nd-order accurate discretization does not guarantee correct parameter trends for 
under-resolved grids. In a very early pioneering paper, Burggraf (1966) computed the now-common 
Benchmark problem of steady incompressible Navier-Stokes flow in a driven cavity using 2nd-order 
centered differences. At the low Reynolds numbers, his solutions were smooth and realistic looking, clearly 
showing not only the principal vortex but also corner eddies, even for coarse resolutions of 20  20 and 40 
 40 cells. Burggraf noted the trend of movement of the position of these corner eddies with change in 
Reynolds number. This is surely a simple trend, and one that might be expected to be reliably predicted 
with grids so slightly under-resolved that the qualitatively correct flow features were present. In fact, 

il = jl = kl relerr_p (%) relerr_coef = 
5 2.8987 E+00  4.6379 E01 
9 5.2918 E01  3.3868 E01 

17 6.5718 E02  1.6824 E01 
33 5.0346 E02  5.1555 E01 

 
Table 8.6.2.2. Three-D Tracker Results For Test #1, Uniform Grid, MAC = 0.  

(From Table 12 of Roache et al, 1990.) 
 
 

N relerr_p N error ratio 
4 2.8786  
8 0.5292 5.4 

16 0.0667 7.9 
32 0.0503 1.3 

 
Table 8.6.2.3. Three-D Tracker Results For Test #2, Uniform Grid, MAC = 0.  

(From Table 13 of Roache et al, 1990.) 
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Burggraf was not misled, noting that the opposite trend of eddy position with Reynolds number was 
obtained with the 20  20 grid compared to the 40  40 grid. 
 Trends and sensitivity calculations (derivatives of flow solution variables or functionals with respect to 
parameters that determine the flow) are complicated by discontinuities such as shock waves and even the 
end points of (continuous) rarefaction waves. See Appel and Gunzburger (1997) for a taxonomy of 
sensitivity calculation approaches and a clear exposition of difficulties with discontinuous solutions, 
including numerical algorithmic issues and grid refinement. 
 These examples do not indicate a hopeless situation. They simply indicate the need for grid resolution 
studies, no matter what the numerical method used, and no matter if the first grid solution looks plausible. 
The danger is in the commonly expressed opinion that qualitative accuracy of parameter trends can be 
taken for granted, which is nothing more than wishful thinking. 
 Furthermore, for high-consequence applications (e.g. nuclear power industry) the code users cannot 
shirk their responsibility to verify the codes they are using if the code vendors have not done a convincing 
job (i.e. both thorough and thoroughly documented). The standards of accuracy may well be less than for a 
final design code, but V&V is still required. It is apparently true that the following statement must be made. 
 

An erroneous code can predict erroneous trends;  
an inaccurate computation can predict inaccurate trends. 

8.8 HARD-WIRED DATA VS. USER INPUT DATA 

 Data on physical properties is a source of error in simulations, and can cloud the distinctions between 
Verification of Codes vs. Verification of Calculations, between Verification and Validation, and between 
conceptual model errors and code errors. 
 For example, consider thermodynamic properties for individual chemical species, as discussed by 
Oberkampf et al (1995). Experimental errors in input values should be considered in Validation, clearly. 
However, the variation of properties with temperature will be accounted by table look-up and interpolation, 
which introduces additional error and could arguably be considered a numerical error of the simulation, or 
a numerical error of the experimental data reduction, depending on who supplies the interpolation 
algorithm. (Oberkampf et al noted that for “table look-up/interpolation or curve fits...surprisingly, for many 
cases in the past, the approaches resulted in large errors.”) Likewise, if the data and interpolation algorithm 
are hard-wired in the code, the issue is Verification and Validation of the code, but if it supplied by the 
user, it is a conceptual modeling issue of Validation. Code QA (Quality Assurance) issues (see Chapter 12) 
are also clouded if the code has options for both hard-wired data (which may have gone through 
Certification/QA) and for user over-ride with other input data. This code flexibility is obviously a desirable 
feature for the engineering analyst, yet it causes genuine problems for engineering management. The code 
Certification/QA process cannot cover undefined user input, and the very meaning of Certification/QA 
becomes questionable. For an analyst to claim use of a Certified or Quality Assured code may give  
misleading confidence if the user has over-ridden the hard-wired property data that was an inherent part of 
the Certification/QA process. 

8.9 DEGRADED RATE OF CONVERGENCE DUE TO USER MODELING ERRORS 

 Because of its importance, we again describe the example problem from Section 6.12, a groundwater 
contaminant transport calculation. The point in Chapter 3 was the remarkable sensitivity of systematic grid 
convergence testing; the point herein is that the code itself was proven to be 2nd-order accurate for this type 
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of problem, yet a subtle modeling error by the user (i.e. not a code error) during the grid convergence 
testing degraded the rate of convergence to 1st order. 
 In the groundwater contaminant transport calculations (advection-diffusion + decay, retardation, and 
matrix diffusion), use of a plausible single-grid-block representation for a point source as the grid is refined 
introduces error in a finite volume formulation. In this cell configuration, the cell faces align with the 
boundaries of the computational domain, and doubling the number of cells requires the location of the 
single cell representing the source to shift by /2. It is to be expected that the solution accuracy in the 
neighborhood of the source would be affected, but surprisingly, the accuracy of time-integrated discharge 
across boundaries far from the source was also degraded to 1st-order accuracy. See Section 6.12 for 
details. 

8.10   LESSONS FROM NONLINEAR DYNAMICS 

 H. Yee and colleagues (Yee et al, 1991; Lafon and Yee, 1992; Yee and Sweby, 1996) gave many 
examples of aerodynamics solutions involving “nonlinear dynamics” (see additional literature citations in 
Yee and Sweby, 1996). Spurious (grossly erroneous) numerical solutions for steady state problems with 
strongly nonlinear source terms can be obtained for stable implicit algorithms applied beyond the linear 
stability limit. The solutions, and the strange and chaotic convergence behavior, are interesting and 
valuable to explain iteration convergence behavior relative to initial conditions through representation of 
basins of attraction. These are maps of initial condition parameters which lead to iteration convergence; an 
example is shown in Figure 8.10.1. The system being solved is for a nonequilibrium flow field relaxation of 
the 1-D Euler equations for a (N2, N) mixture, representative of shock tube experiments or hypersonic wind 
tunnels. The model is expressed as the following single ODE (plus two algebraic equations for  and T). 

 
dz
dx

S T z ( , , )           (8.10.1) 

 
where z is the mass fraction of the N2 species,  is the density of the mixture, and T is the temperature.  
 Figure 8.10.1 shows the experimentally determined basins of attraction for this system using various 
numerical methods. In each of these plots, the shaded region denotes the basin of attraction, in which 
combinations of initial z values and step size x converge to the asymptotes, which are depicted by the 
solid black line. The unshaded region indicates combinations of initial z and x values that do not converge 
to a physical solution of the problem. “As can be seen, the basins of attraction narrow considerably for the 
larger values of x. (Note that the axis scale is 105!)” 
 These calculations are extremely computationally intensive, and cannot be expected to be performed as 
a matter of course. In Yee et al (1991), the authors warned against obtaining spurious solutions, especially 
with implicit methods applied well beyond the stability limit of explicit methods. The points of their work 
are the danger of being misled by such calculations, the elucidation of the convergence behavior through 
description of the basins of attractions, and the need for further research to guarantee a priori accuracy. 
Their studies on basins of attraction shed some light on the “phenomenon of near (but lack of) convergence 
in large stiff systems,” or what other authors have described as “stalling” of iteration convergence (e.g., see 
Roache, 1998b), by associating the behavior with the bifurcation of spirals to limit cycles. The authors 
claimed that “isolation of the sources of numerical uncertainties is of fundamental importance,” but we do 
not agree that it is a necessary prelude to Verification of Calculations. Results from further such research 
are of course inherently interesting, and perhaps “can be a viable complement to the standard guidelines for 
numerical analysis and CFD practices,” but we already have the tools necessary to Verify Calculations. 
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Figure 8.10.1. Basins of attraction for Equation 8.10.1 for various numerical methods.  

(From Figure 4.1 of Yee and Sweby, 1996.) 
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 The major goal motivating their work (Yee, 1992) was the development of numerical methods that 
guarantee a priori accuracy, without the need for grid convergence testing or other error estimators. We 
consider this goal to be unrealistic for any non-trivial problem (perhaps for anything but the Laplace 
equation), and that the real lesson of their examples is simply the need for a posteriori error estimation. We 
reject the claim (Yee and Sweby, 1996) that standard practices such as grid convergence tests may be “not 
possible (e.g., too CPU intensive),” as previously discussed (Chapter 4). 
 In all but one of the examples in Yee et al (1991), the most cursory time-step convergence study would 
have quickly revealed the inadequacy of the temporal resolution, with no reasonable chance of being misled 
into a non-physical solution. The one remaining example (involving a fourth-order Runge-Kutta 
integration) could have been misleading with a cursory study, but would have been revealed in a thorough 
systematic study. Many of the other extensive list of CFD topics discussed, especially in Yee and Sweby 
(1996), are overly broad and constitute non-issues to numerical uncertainties and Verification, e.g., solution 
strategies, or improving iteration convergence rates. (My remarks apply to computational simulations of 
physical processes, not to studies of numerical chaos for its own mathematical interest, which I do not 
share.) 
 In my opinion, the most important and surprising point to be gained from these examples is the 
following. With nonlinear iterative methods (not necessarily nonlinear problems, but simply nonlinear 
methods, such as classical 4th-order Runge-Kutta time integration, or nonlinear flux limiters such as FCT, 
TVD, ENO, etc.) it is necessary to check the effect of changing t (or equivalently, the relaxation 
parameter for non-time-accurate iterative methods) on the solution even for a steady-state problem.  
 As noted, the nonlinearity need not be part of the problem definition, but can arise simply from the 
numerical method itself. Nonlinear flux limiters introduce nonlinearity to linear problems whenever wave 
fronts in the solution are not well resolved. As noted by Yee et al (1991) such methods are especially likely 
to cause spurious steady-state solutions when they are implicit and when the time step used greatly exceeds 
the allowable stable time step for an explicit method. Note that some more straight-forward methods are 
also nonlinear, notably the common family of Lax-Wendroff methods. Applied to the constant coefficient 
scalar advection equation,  
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where the Courant number is  

c V t
x





               (8.10.4) 

 
 Thus, although the modeled equation is linear, the discrete equation is nonlinear not in the dependent 
variable f, but in the discretization parameters t and x (through the c2). That the steady state discrete 
solution is actually a function of t for a Lax-Wendroff Euler code was demonstrated by Roache (1972a). 
(See also Appendix B of Roache, 1998b.) The interpretation given was in terms of the artificial viscosity 
for steady state solutions, which is different from the transient artificial viscosity for some methods 
(notably Lax-Wendroff). Once forewarned, the practitioner can easily test for this effect by changing the t 
(or analogous steady state iteration parameter) after the solution has been obtained. Such Verification is 
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economical because the bulk of the computational cost will have been expended in obtaining the base 
solution. If there is no sensitivity to t, this fact is verified with the work equivalent of an additional single 
time step. Also, unlike automated spatial grid convergence testing, this feature would be trivial to include in 
a code as an automatic feature, along with a warning message to the user if the Verification fails. 
 Since most of the examples of spurious solutions are trivial to check with time-step convergence 
testing, the sometimes high costs of spatial grid convergence testing are not an issue here. However, it is 
very significant that single-gird convergence estimators (Chapter 7) by themselves (i.e., without time-step 
convergence tests) presumably would not reveal these spurious solutions. Of course, the time-step 
convergence test is cheap, and involves no problem of spatial grid generation. 
 Another example of “chaotic-like” solutions is found in Yee and Sjogreen (2006, 2007). Multiple grid 
solutions (as fine as 6401x801) using highly accurate algorithms (up to sixth-order filter methods) 
converge very convincingly for the eddies of Richtmyer-Meshkov instability when viscosity below Re ~ 104 
is included. For higher Re and for inviscid equations, the solutions are chaotic and continue to change with 
grid resolution. But the inviscid equations are being used to solve an essentially viscous phenomenon (and 
for 2-D structures like eddies, there is no equivalent of the Rankine-Hugoniot relations for the high-Re limit 
for shocks). The equations are ill-posed, as revealed faithfully by the grid convergence testing. The intended 
point was not “the failure of grid refinement” but rather the inapplicability of grid refinement to chaotic 
solutions (Yee, 2007). 

8.11 ADAPTIVE AND LOCAL TIME STEPPING, AND STEADY STATE 

 This phenomenon of spurious nonlinear dynamics solutions also suggests that the simplest adaptive 
time stepping approach will not be adequate for such nonlinear algorithms. That is, a simple adaptive time 
stepping algorithm of the forward type (not repeating the previous time step calculation, but only adjusting 
the next time step) could be tricked into accepting a spurious nonlinear solution. However, this can be 
adequately checked by storing the t sequence produced by the adaptive time stepping algorithm, and then 
repeating the calculation with the entire sequence reduced or increased by some factor, analogous to spatial 
grid refinement or coarsening. 
 In a related issue, Benek et al (1996) express concern about “unsteady acceleration schemes based 
upon local time stepping.” These schemes basically consist of choosing a local t close to the optimum 
value indicated by analysis applied locally, and usually amount to setting the local Courant number ~ 1. 
Obviously, physical transient behavior will not be faithfully represented, since the method is inconsistent 
with the original PDEs. Benek et al (1996) stated the following. “It is assumed that such a procedure will 
produce the same converged solution as an unaccelerated method for steady state flows. Is there an effect 
on the approximation of unsteady flow with this type of acceleration?” 
 The answer follows. In the limit of all t  0 but at different rates, i.e. maintaining some t’s larger 
than others, the PDE consistently simulated is one with a distorted time variable, so unsteady solutions will 
not be correct. Clearly, a continuum steady state solution for distorted time PDE will also be a continuum 
steady state for the undistorted time PDE, so the method is not dangerous. However, it is also conceivable 
that severely distorted local time stepping could confuse the non-uniqueness issue (see Chapter 2), possibly 
favoring a different steady state solution than a time-consistent method. Since uniqueness must be dealt 
with ad hoc in any case, we do not consider that local time stepping schemes are a significant problem. 
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8.12 OTHER QUESTIONS RELATED TO THE STEADY STATE 

 There are other questions regarding the attainment of a “steady state,” raised by Benek et al (1996) and 
others.  
 “How long should the simulation be run before the starting transients no longer affect the solution?”  
 “What are the optimal initial conditions from which to start the simulation [to quickly attain the steady 

state]?” 
 “If the steady state approximation is used [in the choice of the governing equations] will the same time 

averaged quantities be predicted [as would be obtained by time-averaging the solution of the time-
dependent equations]?” 

 
 The response to all these questions is that they do not involve computational issues per se. That is, the 
answers are not computational but physical. 
 For example, it is well known that pitot pressure probes, which give a single physically-averaged 
pressure reading, do not produce the average pressure in a fluctuating field, but a reading higher than the 
average; e.g., see Dolling (1996.) Computational simulations can provide answers, but not a priori, 
anymore than experiments can. Like the strictly computational question of what will constitute adequate 
grid resolution, it is simply asking too much of Computational Science to answer such questions a priori, 
but the questions are answerable a posteriori from the simulations. Certainly, it is not true generally that 
steady state equations will produce the same time-averaged quantities as would be obtained by time-
averaging the solution of the time-dependent equations. If they did, turbulence modelers would be out of 
business, since time-averaged turbulence would simply reduce to the laminar flow equations. 

8.13 §  LAGRANGIAN CALCULATIONS 

 Lagrangian calculations are not nearly as common as Eulerian, so it is expected that there would be 
fewer Verification exercises (code or calculation). But besides being less common, multi-dimensional 
Lagrangian calculations and error estimations are inherently more difficult conceptually. Time error 
estimation (isolated) is similar to the Eulerian approach, but the spatial aspects are complicated by the 
moving spatial grid. The “moving” of the grid is not merely an episodic re-gridding as occurs in solution-
adaptive Eulerian calculations (although that is also necessary in Lagrangian calculations when a mesh 
begins to tangle, and involves re-mapping and re-zoning). Rather, the mesh movement is tied to flow 
“particle” tracking (mass is identically conserved) and therefore requires temporal accuracy. Essentially, a 
Lagrangian calculation is the original (and perhaps ultimate) solution adaptive grid. A Los Alamos report 
by Hemez and Brock (2008) described Verification of a Lagrangian code. Most exercises were performed 
by refining or coarsening initial grids by r = 2, and examining convergence of field data, time histories and 
integrated simulation features over as many as eight levels of refinement. 
 Results show convergence and dependable error estimation, but with many subtleties. (Hemez and 
Brock, 2008; Hemez, 2008) Pure Lagrangian calculations can converge at observed p = 1 on the test 
problems, as expected. For ALE (Arbitrary Lagrangian-Eulerian) solutions, mesh convergence overall is 
slow, with observed p as low as 0.23. This performance is greatly improved by a “modal decomposition” in 
which the first three modes capture 98% of the overall information, and allow poor performance (perhaps 
even instability) of higher modes to be ignored. The first and second modes exhibit improved convergence 
but still less than first order, with p1 = 0.73 and p2 = 0.62. The most troublesome aspect is the negative 
effect of ALE re-mapping and re-zoning, which theoretically should not affect the convergence rate but in 
fact dominate the error if enacted every time step, to the point that “asymptotic order of convergence” 
becomes meaningless. In some tests with non-uniform initial meshes, results with ALE re-mapping every 
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100 time steps were four times more accurate than results with re-mapping every time step. The authors 
noted that more analysis is required. 
 For a bibliography of Verification in the ASC Project through 2005, including exemplary high quality 
studies, see Brock (2005). 

8.14 §  LEAST SQUARES GCI FOR NOISY CONVERGENCE (RANS) 

 The Least Squares GCI procedure has been described in Section 5.11. As previously discussed, noisy 
convergence has various causes, including just mixed order differencing (Section 5.9.4). But the notorious 
offender is RANS turbulence models which have switches for different flow regions, whose boundaries in 
physical space change as grid resolution changes. These are essential non-smooth behaviors. A test for 
convergence behavior over one grid triplet cannot be considered conclusive, especially for a single variable 
(point value or solution functional). Strictly speaking, even results from several grid triplets could be 
misleading. However, as the number of grid triplets and/or the number of variables examined increases, 
confidence increases, and the Least Squares GCI approach improves reliability. Experience shows that 
difficulty occurs mostly when the modeler is trying to get away with a minimum amount of work and is 
straining for claims of minimum uncertainty; when sufficient computational resources are dedicated and 
realistic expectations of numerical uncertainty are held, convincing grid convergence can be obtained, even 
for RANS models. See especially Eça and Hoekstra (2008b,c). 

8.14.1 §  Overcoming False Indication of Convergence due to Sampling 

 Although convergence is essentially impossible to strictly guarantee, confidence is increased with more 
grids and more observed variables. Once again, the additional sampling could be done on nearby problems, 
rather than for every case in a large parametric study. The additional grids do not necessarily need to be 
finer, but just fill in gaps in the grid sequence. The variety of grid refinement factors r from these grid fill-
in solutions would help, limited by noise from iteration convergence and those terrible RANS switches. 

8.14.2 §  Don’t Shoot the Messenger! 

 Systematic grid convergence testing for benign problems, e.g. simple heat conduction,, reveals that the 
performance of the solution algorithm is well behaved. Observed orders of convergence p can be obtained 
that are remarkably close to theoretical values, even for unstructured grid generation and unstructured 
refinement (e.g. see Section 6.4.2). For other problems, notably RANS turbulence models with step 
function switches and high local gradients and sloppy iteration convergence, observed convergence is often 
noisy and non-monotone. The point here is that such noise is a property of the physical problem, the 
computational model and the solution algorithms, not the grid convergence test per se. It is not a 
shortcoming of the V&V procedure. Rather it is a reflection of the difficulty of the physical problem, 
and/or the shortcoming of the computational model and the solution algorithms, which are revealed by the 
V&V procedure, not caused by it. Please, do not shoot the messenger. 
 On the other hand, note that noise in p does not necessarily imply that the numerics are inaccurate or 
non-convergent (Roache, 2003a). In fact, the size of the error might be acceptably small for Calculation 
Verification. However, the observed order can be degraded and noisy, meaning that error estimates, and 
therefore the use of the corrected solution and/or the Uncertainty calculation, are more problematical. 
Rather than attempt to extricate Uncertainty estimates from noisy data, the Least Squares GCI offers a 
more robust alternative: as Raven et al. (2002) stated, “The use of common sense may be unavoidable.” 
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PART III 
 

VALIDATION 
 

In formal logic, a contradiction is the signal of defeat. 
In the evolution of real knowledge, a contradiction 
marks the first step in progress towards a victory.  

 
Alfred North Whitehead. 

 
 Part II of this book covered “Verification”, the process of determining whether or not 
a code is “solving the equations right”, a purely mathematical question. Part III now 
covers “Validation”, the process of determining whether or not a code is “solving the 
right equations” for a particular physical problem. Verification is essentially and 
strictly an activity in mathematics, the mathematics of numerical analysis, whereas 
Validation is essentially and strictly an activity in science: physics, chemistry, fluid 
dynamics, even the “soft” sciences of economics, sociology, etc. Common sense and the 
testimony of experienced practitioners strongly indicates that rigorous Verification, first 
of the Code, then of the particular Calculation, should precede any Validation exercise. 
 In the first edition of this book (V&V1), I had somewhat less to say on Validation 
than Verification, because there was less methodology involved. Fortunately, this 
situation has vastly improved. Chapters 9 and 10 have new material added to the first 
edition, but follow the same Validation methodology, which can be described as an 
“error bar” approach. This is in contrast to the Validation Uncertainty approach, 
pioneered by H. Coleman and developed fully in V&V20. The new Chapter 11 of this 
book gives a brief description of this Validation Uncertainty approach, which we 
consider to be a major development in V&V. 
 It is worthwhile to repeat here the limitations of our attempts at semantic distinction, 
already discussed in the conclusion to Chapter 2. Although valuable, it is clear that we 
(the scientific - mathematical - engineering community) are not going to achieve 
uniform, non-overlapping terminology, even in the most nearly universally accepted 
terms, Verification and Validation. (See especially Appendix B.) Nevertheless, 
following the advice of Chuang Tzu (see Introduction to Chapter 2), it is worthwhile to 
keep in mind the ideas behind Verification and Validation. In reading journal papers 
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and reports, it is not a good idea to try to enforce terminology or taxonomies, but rather 
to try to detect the authors’ terminology or taxonomies (often implicit, rather than 
explicitly defined) and to learn from the authors’ experiences and perspectives. 
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CHAPTER  9 
 

  DIFFICULTIES WITH EXPERIMENTS AND 
VALIDATION 

 
 
 
 This Chapter 9 covers general concepts of experimentation and Validation exercises. The following 
Chapter 10 will present specific examples. The theme chosen for this Chapter is the difficulties with 
experiments, for good reason. Experimental data is not as sacrosanct as many computational practitioners 
believe.  

9.1 CREDULOUSNESS  

 There is a saying in the aerodynamics community. “No one believes the CFD results except the one 
who performed the calculation, and everyone believes the experimental results except the one who 
performed the experiment.” (On a personal note, my very early career experience was as an 
experimentalist, so I have never had a problem with excessive gullibility.)  
 Very significant progress has been made in “non-intrusive” experimental techniques (e.g., Marvin, 
1995) including 3-D laser velocimetry of mean and fluctuating velocities, laser fluorescence for mean and 
fluctuating densities and temperatures, laser interferometry for local skin friction, and pressure-sensitive 
and thermographic paints for surface pressure and heating. These are vast improvements over previous 
clearly intrusive techniques such as pitot-static tubes, hot wire anemometers, thermocouples, etc. (Even 
flow visualization can be intrusive for liquid free convection flows, as the illumination provides a heat 
source; Jankowski, 1985.) At the other extreme, removal of rock from its field location for laboratory 
testing can clearly have order of magnitude effects on permeability measurements. Alternately, the 
preferential selection of field samples which are intact can bias the sampling towards lower permeabilities 
(Brinster, 1995). But even for virtually non-intrusive measurement techniques, there are still experimental 
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errors involved. For example, wind tunnels suffer from flow angularity and blockage effects, which are 
further complicated because they vary with angle of attack of the models. Likewise, hypersonic facilities 
often are plagued with axial static pressure variation that has no counterpart in flight.  
 Briefly, it is naive to accept a single experiment as the final word. As Marvin (1995) noted, “Reliance 
on single experiments or measurement procedures during the code Validation process should be viewed 
with caution because of facility and instrumentation limitations. Therefore, redundant measurements and 
similar experiments performed in more than one facility are desirable.” Also, Aeschliman and Oberkampf 
(1997, p. 13) make an interesting observation based on their extensive experience. “The general point is 
that as one progresses down the list to more difficult quantities for CFD to predict, the experimental 
uncertainty generally increases also.” 
 Uncritical acceptance of experimental values can and has held up progress for years. Both false 
invalidation (i.e., a negative conclusion on Validation accuracy) and false Validation have occurred. 
Wilcox (1994) described one case where disagreement with ablating heat transfer data was originally 
attributed to inadequacy of a turbulence model. After several years, direct communication with the 
experimentalists clarified previously incomplete boundary conditions and produced excellent agreement. 
Conversely, a turbulent pipe flow computation (with a different turbulence model) that agreed well with 
experiment proved to be false Validation; later reviews showed both experiment and computation were 
seriously in error (Aeschliman and Oberkampf, 1997). 
 Barber (1996) provided a review of several code Validation/Certification studies in the aerodynamics 
literature, and cited examples wherein missing experimental details have lead to poor Benchmark 
calculation comparisons. The details he discussed are  
1. the geometrical definition,  
2. the data reduction procedures, and  
3. the dominant physics.  
 
 Similarly, Marvin (1995) noted that “Accuracy assessments for experimental data are essential; 
otherwise there is no quantitative means for determining the Validated range of a code.” Required are 
“error estimates for test geometry dimensions, test operating and freestream conditions, model and flowfield 
measured variables, and instrumentation.” In the very difficult experiments associated with hypersonic 
airbreathing engines, “geometrical definition” errors include the axial and vertical cowl positions. Other 
sources of error are model wall temperature and tunnel operating conditions (Van Wie and Rice, 1996). In 
these experiments on hypersonic inlet performance, the data reduction errors reach a new level. “Given that 
CFD techniques play a critical role in the measurement process (through estimating certain quantities and 
sensitivities), it becomes difficult to separate the Validation of the measurement procedure from the 
Validation of the [computational] analysis procedure. In this situation, the experimental and 
[computational] analytical techniques are intertwined in a single process.” (Van Wie and Rice, 1996). 
 Also, Marvin (1995) stated that “Uncertainty analysis is a well established method for determining 
experimental data accuracy, and it should be a prerequisite for all Validation databases,” for which he cited 
the well-known paper by Moffat (1981). For more recent systematic discussion of experimental 
uncertainty, see Coleman and Steele (1995), Coleman et al (1995), Coleman (1996), Steele et al (1996), 
and Aeschliman and Oberkampf (1997). 
 In the aerodynamics community, there is a consensus among those who have seriously considered 
Validation issues that results from older experiments not designed specifically for Validation are usually 
inadequate for the task. For example, Aeschliman and Oberkampf (1997, p. 10) stated the following. “No 
rational computational fluid dynamicist would suggest there is no need for Verification or Validation of 
CFD codes. A common view among CFDers, however, is that while code V&V is indeed necessary, the 
process - particularly the Validation step - can be accomplished through comparison to existing data, 
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documented in reports or archival journals, obtained for some purpose other than CFD code Validation. We 
most strongly disagree.” 
 Their reasons, based on wide experience, were as follows. “Almost invariably, critical details are 
missing from published data, particularly for archival journal publications where discussion is limited in 
the interest of reducing paper length. It is critically important that the boundary and/or initial conditions 
assumed by the code be accurately known from the experiment.” Some specific examples will be given in 
Chapter 10. We know that this situation in the aerodynamics community is representative of many other 
areas of computational science and engineering, perhaps most. My own database for this conclusion 
includes groundwater flow and transport, free surface flows, heat transfer, combustion, computational solid 
mechanics (CSM) or structures. The simplest conceivable CSM experiments, the bending of loaded 
cantilever beams, typically lack data on compliance at the supporting wall. 
 Porter (1996), reporting on several workshops in the aerodynamics community on 
Validation/Certification, included these consensus statements (as of 1996). 
 
 There is no focused effort to provide the understanding of fundamental physical phenomena so they can 

be modeled in CFD codes. 
 There is a dearth of archival quality, benchmark experimental data specifically designed for CFD code 

Validation and Calibration. 
 Experimental data that do exist have deficiencies, inadequate documentation, and are not readily 

accessible to the community at large. 

9.2   VALIDATION IN SCIENCE THEORY AND COMPUTATION 

9.2.1 Historical Methods of Validating Scientific Theories 

 The task of Validating a conceptual model and code has been likened to the general problem of 
Validating scientific theories96 (Mehta, 1996). “In the philosophy of science, the historical methods of 
validating theories are rationalism, empiricism, and positive economics. Rationalism involves the logical 
development of the model based on indisputable axioms...Empiricism requires that every axiom, deduction, 
assumption, or outcome be empirically confirmed...Positive economics is concerned with the model’s 
predictive capability and not its structure, assumptions, or derivation. An example is the calibration of a 
model to predict certain features and quantities.” (Mehta, 1996; Naylor and Finger, 1967). 
 Pure rationalism is perhaps appropriate for ethereal regimes of pure science, but most scientists and all 
engineers would not trust major projects to involved theories developed by difficult-to-follow derivations of 
“indisputable axioms.” On the other end of the spectrum, positive economics could be regarded as nothing 
more than thinly disguised blind extrapolation, e.g. stock market models. As a practical matter for code 
Validation in science and engineering projects, empiricism seems to be the operative philosophy. It is not so 
daunting a task when approached modularly, i.e. by building on past work.  
 Ultimately, code/model Validation will come down to comparison (directly or indirectly) of code 
predictions with physical experiments. (We do not agree with Mehta, 1996, Figure 6 and elsewhere, that 
Sensitivity-Uncertainty Analysis can be included with rationalism, empiricism, and positive economics as a 
method of Validation.) The comparison can be direct or indirect. Indirect comparison occurs when a 
previously Validated code/model is taken as a Benchmark. In this philosophy, the Benchmark code may be 
regarded as a repository of experimental information as well as a means of interpolating and smoothing 
                                                
96 An ostensibly reasonable position that will be challenged in the following paragraphs. 
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previous experimental results. The Validation exercise still compares numerical answers to experimental 
data, but it is second-hand experimental data, one level removed from the original experiment. As a 
practical matter, the error bars of the original experiments will be widened by additional computational and 
conceptual uncertainties of the Benchmark code. Thus, indirect Validation may be convenient and even 
appropriate for a project, but it does not solve any of the difficulties with experiments and Validation; 
rather, it compounds them. 

9.2.2 §  Objections to Validation based on the Philosophy of Karl Popper 

 The two most influential philosophers of science in the 20th century were Karl Popper and Thomas 
Kuhn (e.g., see Kasser, 2006). They used very different approaches. Kuhn (1962) was innovative for 
studying how scientists actually worked, his own studies being as much history of science as philosophy of 
science. Popper (1980) was very traditional, engaging in the kind of hair-splitting subtleties that can give 
academics a bad reputation. Popper was highly influential in philosophical circles for some time, although 
his work is of less current interest to philosophers of science (Kasser, 2006) 97. However, he has had a 
lasting influence on scientists and engineers, and on the question of Validation. He has been quoted as an 
authoritative witness to the fundamental impossibility of Validation of computer models98 by a Blue Ribbon 
Panel on Simulation-Based Engineering Science (NSF, 2006) and in widely cited papers by Oreskes et al 
(1994) and Konikow and Bredehoeft (1992), the latter entitled “Groundwater Models Cannot be 
Validated.” 99 
 This importance in the computational modeling community is remarkable, considering that the 
applicable philosophical arguments appear in the first edition of Popper’s most cited book, The Logic of 
Scientific Discovery (Popper, 1980), the first edition of which was published in 1934, well before the 
advent of modern computers and modern computational modeling. Whatever Popper’s contributions or 
claims were, they were not directed specifically towards Validation of computer models, but to scientific 
theories in general.  
 The most often cited contribution of Popper is his supposed invention of the concept that a scientific 
theory must be falsifiable in principle, otherwise it is not science. He used this as the basis for solution of 
Kant’s “Problem of Demarcation,” i.e. separation of science from metaphysics, or in terms of modern 
concern, separation of science from pseudo-science. Although this criterion is very popular among 
scientists, it does not hold up very well to close scrutiny, as described insightfully by Kasser (2006). 
According to later interpreters, Popper is said to have replaced the criterion of verifiability used by logical 
positivists with his concept of falsifiability. Popper himself seemed to claim this as a contribution (pg. 280) 
but in fact it was already used by his chosen adversaries, the logical positivists, as Popper himself had 
acknowledged earlier (page 17). In fact, the logical positivists allowed the possibility of proof (verifiability) 
as well as disproof (falsifiability) and required both, not merely either, to deserve their term of completely 
decidable. Popper’s contribution was thus not to invent a criterion, but to reject one. While insisting 
(rightly, we agree) that any statement aspiring to be categorized as science be testable and falsifiable in 
principle, Popper also insisted that no such candidate scientific statement can ever claim to have been 
validated (verified). 

                                                
97  Also corroborated by lack of mention in recent publications of the Philosophy of Science Association. 
98 Another claim of impossibility of Validation has been given by Hazelrigg (2003) based on Arrow’s 
Impossibility Theorem, but this has no perceptible relevance to the concept of Validation of computational 
models. 
99  See also discussion in Section 2.2. 
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 Actually, Popper did not use the term validate but rather used verify in the sense that we now used 
validate, which causes some confusion in attempting to quote him! In relation to his approach to scientific 
theory, verify may be preferable on etymological grounds, rooted in the Latin for truth. The truth of a 
scientific theory was Popper’s concern. But in the modern use of Validation in conjunction with 
computational PDE models, we are not concerned with some convoluted, vaguely defined concept of truth 
but rather with the simple, well-defined concept of accuracy. Many (not all) scientists would agree with 
Oreskes (1999, p. 314, 368) that Newton’s laws of motion and Einstein’s theory of relativity cannot both 
be true.100 Yet both can be demonstrated to be accurate within well-defined parameter ranges, i.e. a 
“domain of validation” in our computational PDE terms. In fact, the Newtonian laws are as accurate as 
Einstein’s for any human-scale problem and tolerance, and are much preferable because of their relative 
simplicity. Popper would have argued that neither could be claimed to be true or verified [validated] but he 
allowed the word corroborated.101 Even if one were inclined to grant Popper’s position for scientific 
theories, it is not applicable to Validation of computational PDE models. As Rykiel (1996) stated, “These 
terms are defined in a limited technical sense applicable to the evaluation of simulation models, and not as 
general philosophical concepts.” He also noted that “Single minded focus on falsification is a superficial 
treatment of a complex subject...” and noted, with examples, that “The impulse to falsify can result in 
‘naive falsification’.” 
 However one may judge the applicability of Popper’s philosophy to computational models, it is 
certainly not less applicable to scientific theory in general. His position is as clear as it is useless102 to 
practical engineering and science; “every scientific statement must remain tentative forever.” (Pg. 280.) To 
avoid disputation and agonizing over what he or we may mean by truth, we can grant his statement, in 
some rarefied and harmless sense, while noting that Validation of computational PDE models is thereby 
positioned in the same category as Newton’s laws of motion and gravity, Einstein’s theories, entropy, 
Darwinian evolution, conservation of mass, Fourier heat conduction, etc. We are in good, respectable 
company. 

                                                
100 Precisely, she wrote (p. 314) that “Classical mechanics can be partly rescued from the scrap heap of 
discarded knowledge by arguing that it remains approximately true at speeds far less than [that of] light...” 
and (p. 338) “Either space and time are absolute or they are not; these are not epistemologically 
reconcilable positions.” (We would use “accurate” rather than “approximately true,” a philosophically 
troublesome term which would seem to dilute any claim to epistemology.) Whatever the resolution of this 
philosophical point, this fascinating book should be required reading for any student of science. 
101 Oreskes et al (1994) prefer that Popper’s term corroboration should be applied to what everyone else 
calls Validation of computational models, on the basis that it is less misleading to the general public. But as 
noted in Appendix C of V&V1 and by Rykiel (1996) all three terms - verification, validation, corroboration 
- are synonyms in general non-technical use, so one is as misleading as another. See also the next Section 
9.2.3. 
102 If my evaluation of Popper sounds too harsh, consider his claim, p. 444; “... the statement ‘this 
container contains water’ is a testable but non-verifiable hypothesis, transcending experience.” And, I 
would add, transcending common sense. I can tolerate Popper’s position, given his perspective and 
intellectual tradition,  but I cannot understand how practical engineers could take this stuff seriously. They 
also ignore Popper’s distinction  between strict universality and numerical universality; the latter is 
falsifiable according to Popper himself, and it is the appropriate association for modern Validation. (It is 
appropriate not merely because of Popper’s use of  “numerical,” which today could be better termed 
“enumerable.” See discussion by Popper (1980), pg. 40.) 
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9.2.3 §  Validation in Ecological Modeling 

 The paper by Rykiel (1996) is entitled “Testing ecological models: the meaning of validation.” 
Although ecological models require special considerations, Rykiel’s penetrating discussion of Validation 
and related issues are relevant to all areas of computational PDEs. The paper is highly recommended 
reading, but the reader should recognize that Rykiel’s concept of Validation includes adequacy criteria or 
what we have referred to as “pass-fail” criteria.103 As noted earlier, this is a justifiable and not uncommon 
conception (as in V&V1), but our recommended approach is to consider Validation to be primarily an 
exercise in accuracy assessment rather than adequacy assessment, which we reserve for some term like 
Certification or Qualification. The reader may find some minor inconsistencies within the paper resulting 
from this conceptualization. Also, the author’s “Verification” refers only to Code Verification. 
 Rykiel gave a chronological review of Validation concepts in the ecological literature which shows a 
considerable range of opinion. In regard to Popper’s preoccupation with truth (see previous Section 9.2.2), 
Rykiel stated “Validation is not a procedure for testing scientific theory or for certifying the ‘truth’ of 
current scientific understanding ...” He also quoted Levins (1966) that “A mathematical model is neither an 
hypothesis nor a theory.” 
 Ecology is certainly a science, and a socially important one, but the data sets are and will remain fuzzy 
compared to more controlled disciplines.104 It is doubtful that many of the precepts espoused in this book 
are applicable to ecological modeling. More flexible standards seem appropriate. Whereas this book 
considers Validation to be applicable only to experimental data sets with some estimate of experimental 
error and uncertainty, Rykiel considered Validation tests to include both qualitative and quantitative 
measures of system performance. He listed 13 types of Validation procedures, including low-end qualitative 
ones like “face validity” [expert opinion] and visualization techniques, then through comparison to other 
models, internal validity [self-consistency], to quantitative data comparisons like sensitivity analysis [i.e. 
using sensitivity as the observable f] and predictive validation [in the strict temporal sense]. The softer of 
the procedures would be rejected for claims of Validation for disciplines like engineering105, being relegated 
to the category of preliminary evaluations, but this is probably not appropriate for ecological modeling.  
 Rykiel also argued that Validation is neither required for all ecological projects nor necessary for 
scientific value. [One could imagine a model built just to test sensitivity and “what if” scenarios, e.g. “what 
if” the coefficients of a predator-prey relation, which are not directly measurable, are radically changed. 
This could lead to insight about the underlying conceptual model, certainly part of scientific progress, and 
might suggest new and perhaps testable hypotheses without any claims of predictive ability for the model.] 
“Exploration of model behavior without Validation testing is a legitimate, reportable activity.” The 
standards espoused in the rest of this book are probably not applicable to ecological modeling,  

9.2.4 §  Validating Temporal “Predictions” vs Outcomes 

 When speaking of the “prediction” of a computational model for Validation with an experiment, the 
word should not be taken literally to indicate a time sequence. Usually, the terms “outcome” or “results” 
would better convey the process. Validation involves comparison of the outcome of a model with the 
outcome of an experiment. (The outcomes or results include not only the best value of variables but the 
associated estimates of errors and/or uncertainties.) 

                                                
103 See Section 2.3.1 or Appendix B. 
104 “The relative inaccuracy and imprecision of ecological data also places limits on model testability.” 
(Rykiel, 1996) 
105 See V&V10, V&V20, ASCE/EWRI (2009), and the rest of this book. 
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 This is true for any scientific theory, not just computational models. Philosophers of science agree, 
virtually without dissent, that the time sequence does not determine the worth of the theory. In some 
turbulence modeling workshops106 much has been made of the distinction between temporal “prediction” vs 
“postdiction”, i.e. running the code to obtain model outcome after scrutiny of the experimental data. 
Certainly such a postdiction is not as impressive as a temporal prediction or “blind” comparison as urged 
by Oberkampf and Trucano (2007, 2008) especially in a modeling area that allows for adjustment of 
questionable free parameters (which was more common practice in the 1980s than in the 21st century) and 
guidance by experimental data in local grid generation. As noted earlier, the most common form of 
“tweaking” a model arises not because of inadequacy of the general computational model but because of 
incompletely measured experiments that do not define the problem.107 Yet V&V10 prefers strongly (in 
earlier drafts, insisted) that simulations must predate experiments to qualify for Validation. This reflects a 
trial jury mentality rather than a scientific one. In 1915, in one of the greatest achievements in science, 
Einstein “predicted” the perihelion advance of Mercury with his General Theory of Relativity. But the 
experimental data and conclusion had been published by Newcomb eighteen years earlier. Was Einstein a 
fraud? Not compared to Newton, who “predicted” the motion of planets a century after Kepler’s data were 
known. Of course, Validation of theories or computational models is an ongoing process, but this is true 
whether or not the initial Validation resulted from a prediction or a postdiction. There is no logical case for 
insisting on temporal predictions for Validation, rather than agreement of outcomes.108 

9.3 THEORY-LADEN EXPERIMENT 

 As we noted in Chapter 2, “Validation” in a real sense applies to the Conceptual Model embodied in a 
code, rather than the code itself. (The code correctness is the subject of Verification, etc.) In regard to the 
present subject of experiments and Validation, we note the following.  
 

A Conceptual Model is needed prior to experimental data gathering. 
 
 For a broad definition of “Conceptual Model,” I adopt that of Johnson (1996, p. 172) described in a 
rather different context (historical-critical models or methods) but that still fits our needs. “I use the term 
model to mean an imaginative construal of the subject being studied, as well as a structured picture of both 
process and product: a model is a paradigm within which the data pertinent to a discipline makes sense.” 
                                                
106 E.g. Kline et al (1985a,b), Levy et al (2002) 
107 As Oberkampf and Trucano (2007, 2008) stated, “Without a doubt, the most common [calibration] 
parameters that are optimized are those that were not provided by the experimentalist in the documentation 
of the experiment.” 
108 If the fraud, deception and/or “tweaking” paradigms seem more worldly-wise and mine more naive, 
consider how naive it would be to trust claims of a temporal sequence in strict “prediction.” Publication 
dates certainly do not accurately reflect access to experimental results (especially preliminary results). Are 
experimentalists now to be further burdened with security measures? (See Section 10.19.) Has it not been 
long recognized that such secrecy is detrimental to democratic values and creativity and progress in 
science? Furthermore, the process of comparison and model updating (the polite term for tweaking) 
ultimately is iterative and evaluations are conditional, no matter who does what first. However, insistence 
on temporal prediction is more justifiable if the goal of a Workshop is not so much Validation of individual 
computational models but rather an assessment of “state of the art” as in Hemsch (2002a) and Levy (2002) 
and the ongoing AIAA Drag Prediction Workshops (http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/) 
where poor agreement would selectively discourage participation and thereby bias the assessment. 
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 For example, an experimental measurement of permeability for flow in porous media requires the 
conceptual model of Darcy Law, which defines “permeability”. Likewise, hot-wire anemometry requires 
the Newtonian law of heat transfer. Pressure measurement requires non-directionality of pressure 
(diagonalization of P tensor, which is not so obvious - see any fluid dynamics text). There are also assumed 
scales of unsteadiness and spatial variation involved in any experimental data taking. As a practical matter 
(vs. rarefied philosophizing) the “model” is so minimal for Aristotelian pure observation that it has no 
consequences, but for practical data gathering in science, engineering, and other disciplines, it is important 
to keep this fact in mind (Johnson, 1996). 
 

“Every observation is laden with theory.” 
 
 Likewise, most experiments involve computation, and many now involve simulations. Examples will be 
given in Chapter 10. 

9.4 RANDOM AND SYSTEMATIC ERRORS IN EXPERIMENTS 

 Certainly every experiment has some uncertainty associated with the results, and certainly it makes no 
sense to expect or even look for computational comparisons finer than this experimental uncertainty. As 
Coleman (1996) stated, “the [experimental] uncertainties should set the scale at which comparisons (or 
Validations) should be made or attempted. This holds for data-data, model-data, and model-model 
comparisons.” 
 “Total error can be considered to be composed of two components: a precision (random) component 
and a bias (systematic) component...”...“An error is classified as precision if it contributes to the scatter of 
the data [in repeat experiments in the same facility]; otherwise, it is a bias error. It is assumed that 
corrections have been made for all systematic errors whose values are known.” Unfortunately, all 
experimentalists know that random component errors are straightforward to evaluate (though tedious and 
often expensive), whereas systematic (bias) errors are difficult. It is only bias errors that can be removed by 
Calibration; e.g., see Van Wie and Rice (1996). 
 Coleman (1996) gave a partial classification of possible sources of bias errors in experiments:  
 calibration errors,  
 data acquisition errors,  
 data reduction errors,  
 test technique errors, etc.  
 
He also considered the propagation of random and bias errors through the data reduction process, and the 
important but difficult consideration of correlated precision uncertainties. 
 Aeschliman et al (1995) provided an excellent overview of ground-based experimental aerodynamics 
uncertainty analysis, including a very specific and complete case study of the Sandia National Laboratory’s 
long-term project called JCEAP, for Joint Computational/Experimental Aerodynamics Program, on 
hypersonic wind tunnels. Aeschliman and Oberkampf (1997) also highly recommend the AGARD (1994) 
compendium as “by far the most detailed prescription for dealing with systematic and random errors in 
wind tunnel data when the systematic errors have been previously identified and estimated,” and stated that 
this reference “identifies virtually every conceivable source of experimental error in wind tunnel testing and 
greatly improves the art of wind tunnel test data uncertainty analysis.” 
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9.5 EXPERIMENTAL ERRORS IN PHYSICAL PROPERTIES 

 Physical property values (e.g., viscosities, specific heats) can be a source of error in both computations 
and experiments. If a code is based on constant properties, and this causes a deviation of the predictions 
from the experimental values, the blame is clearly on the (conceptual) modeling. However, it may also be 
true that a better average value would move the predictions into acceptable agreement with experiment. 
Also, if the problem is not variability per se, but just uncertainty in the correct value, it is hard to blame the 
computation, especially since the uncertainty is an experimental uncertainty (although not the same 
experiment), and since the same uncertainty often leads to experimental error in the data reduction. 
Coleman (1996) gave an example of a (significant) 2% uncertainty in computed specific impulse of a 
rocket engine due to the range of available reaction rate data. The distinction between “uncertainty” in 
properties and “variability” over a parameter range can become murky. Coleman (1996) used the word 
“uncertainty” in the following sense. “The uncertainty U associated with a measured quantity or a predicted 
quantity defines the U interval within which we expect the true (but unknown) value of that quantity to lie 
95 times out of 100.” That is, this “uncertainty’ is defined to be approximately 20:1 odds or expectation. 
(For a Gaussian distribution, this corresponds to 2, but the definition and concept do not depend on any 
distribution.) 

9.6 BOUNDARY CONDITIONS, CONTINUUM AND NUMERICAL 

 When modelers speak of errors in boundary conditions, they usually are thinking of errors in the 
numerical modeling, i.e. errors that are ordered, either in a discretization measure  or in distance to some 
far-field boundary Lb. These are the subject of Verification, i.e. a purely mathematical problem. As 
Oberkampf et al (1995) pointed out, there are also plenty of physical modeling problems associated with 
even the apparently simplest of boundary conditions in CFD, that of a wall. These include velocity slip and 
temperature jump in rarefied flow, boundary conditions for chemical species, vibrational nonequilibrium 
effects, porous walls (continuous porosity or discrete jets?), fidelity of surface shape, surface roughness for 
some turbulence studies, etc. These are problems in the description of the continuum boundary conditions, 
and are therefore the proper subject of Validation rather than Verification. 

9.7 TRENDS, COMPUTATIONAL AND EXPERIMENTAL 

 In Chapter 8, we have already noted the false optimism often associated with predicting trends, rather 
than absolute values, from computations. Specifically, we may not be justified in assuming that correct 
trends (of solutions with parameter variations) will always be predicted with even qualitative accuracy in 
under-resolved grid simulations. (That is, counter-examples exist wherein under-resolved grid calculations 
have predicted the wrong directions for trends, let alone the wrong quantitative slopes.) If one attempts a 
Validation of a code for the prediction of trends rather than absolute values, one encounters the parallel 
situation for experimental errors, as discussed perceptively by Coleman (1996). 
 Consider an experiment (and corresponding computation) to predict the increment  in some flow 
functional CD (which might be a drag coefficient, a discharge coefficient, or some other functional) with a 
change in geometry (or some other parameter). The CD from two experimental tests would be compared to 
the CD determined by two simulations in order to Validate the Code. In treating the uncertainty of the 
physical experiment, Coleman stated that “consideration of correlated bias uncertainties is crucial,” and 
that “many misconceptions have appeared in the engineering literature regarding the effects of bias 
uncertainties” in such comparative tests, including two ANSI/ASME (1984, 1986) standards! These 
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publications claimed that the uncertainty in the (difference) increment measurement “will be composed only 
of precision (random) errors, because the bias (systematic) errors will cancel out.” Coleman shows that 
these statements are incorrect in general, both for difference tests (Coleman, 1996) and for ratio tests 
(Coleman et al, 1995). Fortunately, the systematic uncertainty in the increment can be significantly less 
than the systematic uncertainty in the absolute value uncertainty from either test, especially if the same test 
apparatus and instrumentation are used in the two tests. The minimum increment that can be distinguished 
in a comparative experimental test must certainly be larger than its (total) uncertainty. This also applies to 
computational simulations, and as a practical matter demands more stringent iteration convergence criteria 
for comparative computations of increments , more so when  is small; otherwise, the true increment  
will be lost in the noise of incomplete iteration convergence.  
 In a related article, Steele et al (1996) discussed subtleties of determining confidence intervals for 
experiments in which some measured variables have asymmetric systematic uncertainties. Again, the 
ANSI/ASME (1984, 1986) standard methods are found to be lacking. The method of Steele et al would 
also be applicable to numerical uncertainties. 
 Van Wie and Rice (1996) gave a good example (their Figure 14) of simulations predicting trends well, 
and absolute values not so well, for mass flows in hypersonic airbreathing engines. They also stated that 
“Even if perfect agreement between experiment and calculation is achieved at one point, the code is nearly 
useless if the experimental and computational results trend in opposite directions.” This is not an adequate 
condemnation, in my opinion. Rather than “nearly useless,” I would say that such agreement is either 
totally useless or pernicious, since it has such potential to mislead if the trend discrepancy goes unnoticed. 
 Benek et al (1996) described the experimental methodology associated with measuring the increment of 
total aircraft drag caused by engine inlets. They noted that experimental accuracy of this [physical] 
increment is frequently limited by the insufficient number of pressure measurements (i.e., experimental 
resolution) and that the advantage of a simulation is the higher resolution. Then, “the CFD inlet drag 
[physical] increment can be used as either a correction [numerical increment] to the measured [physical] 
increment or as a replacement for it.” This increment-of-an-increment process, i.e. a numerical increment of 
a physical increment, would seem to be a powerful capability for simulation, with uniquely tolerant 
requirements for experimental Validation. 

9.8 FALSE NEGATIVES AND FALSE POSITIVES 

 Aharoni (1995) discussed the pitfalls of using physics experiments to prove or disprove physical 
theories, but the experience appears to be applicable to simulations as well. He claimed that “sometimes 
theory and experiment are both correct but do not agree with each other; sometimes a wrong theory agrees 
with experiment. One must therefore be careful not to jump to conclusions.”  
 His examples are from magnetism, and the article is worth reading, although flawed, in my opinion. 
The practice recommended is good, but the semantics are inadequate and misleading. In a not uncommon 
pattern, the word “theory” is used ambiguously in the above summary. Essentially, the reader should 
separate his word “theory” into “theory A” and “theory B.” The author then says that theory B is 
responsible for the disagreement with experiment and we (the theoreticians) erroneously attribute the 
disagreement to theory A. This is somewhat of a shell game with words. Another example involves a 
(possibly) correct theory that disagrees with experiments, but the details show that it is simply a matter of 
(perhaps insurmountable) experimental control. Thus it is not fair to say that the (possibly correct) theory 
does not agree with the experiment, but only that all experiments to date are flawed, and are incapable of 
validating or invalidating the theory. This is an “un-measurable theory” at present (an increasingly familiar 
theme in modern cosmology). The fault is with the experiment, and so should not be described as a 
“disagreement with theory” but just as an experimental failure. 
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 However, Aharoni’s examples are significant to practical science, especially in view of the comments 
in the previous Section 9.3, e.g., “Every observation is laden with theory.” As Aharoni stated it, “a 
theoretical value is rarely compared with a directly measured value. More often than not, there are hidden 
assumptions in the analysis of the experimental data.” In Aharoni’s example, the assumption was one of 
one-dimensionality near a wall, which turned out to be incorrect.  
 The principal message is again the difficulty of comparisons with experiments, which should not lightly 
be taken as correct. 

9.9 “NEARBY” PROBLEMS 

 As noted in Chapter 2, in a meaningful though overly scrupulous sense, a “Code” cannot be Validated, 
but only a Calculation (or range or calculations with a code/model) can be Validated. However, it is clear 
that physical problems and their solutions present more-or-less continuum responses in their parameter 
spaces. Although parameter “transition” boundaries do occur, at which solution properties can change 
discontinuously or rapidly, these parameter transition boundaries are at least countable, and are usually 
few. The determination of the parameter transition boundaries is the task of the entire professional 
community (experimental, theoretical, computational) working in the subject area. A few examples of such 
parameter transition boundaries include the following. 
 
Examples Of Parameter Transition Boundaries 
 
 In aerodynamics: 

 the appearance of local supersonic flows 
 boundary layer transition from laminar to turbulent flow 
 appearance of separated flows 
 vortex shedding in the dynamic stall cycle, etc. 

 
 In ocean calculations: 

 the encounter of the continental shelf break 
 thermocline modeling 
 occurrence of salt fingers, etc. 

 
 In groundwater flow and transport calculations: 

 loss of Darcy flow conditions due to significant fracturing or high Reynolds number effects  
(“high” in this context meaning Re ~ 1) 

 appearance of vadose zone or two-phase flow effects, etc. 
 
 In any modeling: 

 the appearance of geometric singularities like sharp corners.  
 
 Away from such parameter transition boundaries, and for most of the allowable parameter range 
variation, solution response is more or less continuous, and Validation for one particular parameter 
combination can be used to impute confidence to the computation of a nearby problem. Thus, most 
Validation exercises are not viewed as being restricted scrupulously to a single parameter combination but 
as having some value for nearby problems.  
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 Nevertheless, the nearby condition is often harder to achieve than one might think. For example, a 
NACA 0012 airfoil is very close geometrically to a an NACA 0015 airfoil, yet their dynamic stall behavior 
can be significantly different. (For other testimony in aerodynamics, see Cosner, 1994.) The methodical 
determination of the class of nearby problems leads to flow taxonomies for Validation particular to each 
branch of science and engineering, examples of which will be given in Chapter 10. In this sense, we can 
meaningfully speak of Validation of a Code/Model, with the understanding that the Validation is restricted 
to the class of nearby problems, the parameter range for which ideally is demarcated as part of the 
Validation procedure. (An approach to extending the domain of validation by interpolation will be given in 
Section 11.12.) 

9.10 DIFFICULTY OF THE OPTION TREE 

 The difficulty of the “option tree” growth, discussed previously for Verification of Codes, applies also 
to Validations, which are often inconclusive. For example, the option trees can include choice of turbulence 
models, wind tunnel wall effects, wind tunnel flow angularity effects, etc. (Melnik et al, 1996). Tuning of 
parameters in such models may be good for one set of experiments but bad for another. This regrettable 
situation is easy to criticize as poor science, but it is a fact of life for many engineering endeavors. 

9.11 DATA SPARSITY AND LACK OF SYNCHRONICITY: GROUNDWATER, 
OCEAN/LAKE, AND METEOROLOGY MODELING 

 Westerink and Roache (1995) discussed some Validation issues in ocean modeling and other 
geophysical flows. A geophysical flow modeler typically encounters three major types of error to be 
accounted in comparing a numerical solution to the physical system. 
1. Formulation errors are the result of missing physics and/or more often due to inadequate constitutive 

relationships. 
2. Measured data errors due to inaccuracies in data acquisition and/or analysis techniques as well as data 

interpretation. 
3. Numerical solution errors are incurred due to time and space discretization steps, boundary placement, 

boundary condition implementation, etc. 
 
 Of course, any physical measurement involves some error, and all fields of science and engineering are 
affected, but areas of geophysical modeling routinely encounter special difficulties with regard to  
 data sparsity (groundwater, ocean/lake, and meteorological modeling), and 
 lack of synchronicity (ocean/lake and meteorological modeling) 
 
 The data sparsity difficulty for groundwater modeling includes data on properties of the medium, which 
is usually heterogeneous, with properties often varying over orders of magnitude in a region of interest. The 
more universal difficulty (common to groundwater, ocean/lake, and meteorological modeling) is sparseness 
in initial conditions. If time-dependent simulations were started with only measured data, the PDEs would 
be grossly under-determined. This sparseness means that initial condition data must be “made up” by 
interpolation of the experimental data, which is typically sparse and non-uniformly distributed in space. 
This interpolation problem is usually treated by the family of interpolation methods called kriging. Kriging 
is a geostatistical procedure that uses a weighted moving average interpolation to estimate values at a large 
number of nodes (the computational grid) from sparse and irregularly spaced data. In a least-squares sense, 
kriging is the best linear unbiased estimator and reproduces the measurements exactly. (E.g., see Bras and 
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Rodriguez-Iturbe, 1985; Englund and Sparcs, 1991.) On the other hand, if the data itself has significant 
uncertainty (both in regard to the value of the variable and to its location), it may be preferable to use 
techniques that do not identically reproduce all data point values, but effectively smooth out a spatial 
distribution to reduce the effect of outliers. 
 Besides the data sparsity difficulty, ocean/lake and meteorological modeling involve another thorny 
problem of lack of data synchronicity. Not only are initial condition values sparsely distributed in space, 
they also are not all available at the same time. To further complicate matters, there often is no hard and 
fast time = 0 for the simulation. As new meteorological data is continually received, it must be 
incorporated into the model as a kind of continually updated initial condition data set. Note that one cannot 
simply inject new (later time) data into a computational grid, since it will undoubtedly be incompatible with 
the solution of the discretized equations at that point in space and time. This continual incorporation of new 
data into the simulation is a most challenging problem. For a readable overview of geophysical 
(meteorological) modeling problems, see Somerville (1996). 
 These three types of errors (formulation errors, measured data errors, and numerical solution errors) all 
affect the Validation exercise. It is common practice in geophysical problems to lump together all three 
errors and to only consider how well the numerical solution compares to the measured data. Physically 
based parameters are subsequently adjusted in the model to obtain “improved results”. However, this 
approach can adversely affect the representation of the physical system. 
 Lumped error minimization can in fact give the modeler a false sense of model accuracy since it 
improves the comparison to the often limited measured data for a few variables, but can actually degrade 
the accuracy of all variables away from the data points or for variables which are not included in the error 
minimization. For example, in a tidal computation, tuning the model to fit free surface elevations can lead 
to a significant misrepresentation of the computed velocities. Furthermore, while tuning exercises can lead 
to satisfactory results for a select portion of the response spectrum, the lumped error/tuning process does 
not in general lead to good results over the entire spectrum. Again, this indicates that the basic physics of 
the process are not correctly represented. For example, in a depth averaged tidal model based on the 
shallow water equations, the bottom friction factor is often tuned to obtain a “best fit” for the dominant 
tidal constituent, yet secondary astronomical and nonlinear overtide and compound tidal constituents can 
fare relatively poorly (Westerink et al, 1989; Grenier et al, 1995). 
 Thus it is vital for the modeler to obtain separate estimates for numerical and data errors, allowing an 
estimate of the formulation error, assuming the total error is known. Only then can a reasonable assessment 
be made as to the appropriateness of the physics incorporated into the model. This will provide a basis for 
making adjustments in the physically based model parameters and/or the form of the constitutive 
relationships incorporated into the model. Making modifications in the formulation in this way will 
certainly lead to a much improved solution for all variables throughout the domain instead of only a few 
variables at select points within the domain. 
 Separately defining the numerical error also allows the modeler to define an improved spatial and/or 
temporal discretization, thus reducing the total model error. This can be especially useful in designing 
unstructured graded FEM grids. Finally, separate error assessments permit the modeler to compare the 
level of numerical and data errors and to judge what level of numerical accuracy and grid refinement is 
appropriate.  

9.12 EFFECT OF PARAMETER RESOLUTION ON GRID CONVERGENCE 

 As the level of grid resolution is increased, the level of parameter resolution can also change, which 
complicates the Validation. See previous discussion in Chapter 8, Section 8.1.3. 
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9.13 SCALE OF UNSTEADINESS 

 In the previous chapter, we addressed the question of Benek et al (1996). “Let us assume that CFD can 
accurately compute the unsteady flow. If the steady state approximation is then used, will the same time 
averaged quantities be predicted?” The answer is “no” in general, but it is a question of scale, and the error 
bar for the approximation can be determined by computational modeling. 
 We can hardly expect more of the simulation than of the physics. For example, it is well known that 
pitot pressure probes, which give a single physically-averaged pressure reading, do not produce the average 
pressure in a fluctuating field, but a reading higher than the average; e.g., see Dolling (1996).  
 Even if one never used the steady-state form of the governing equations, but always used the time-
dependent form, the question of scale of unsteadiness remains important, because of filtering effects of t 
and x. In principle, these ambiguities would be removed by grid refinement studies, but as a practical 
matter, small temporal or physical solution scales can be missed. It is probably not an overstatement to 
claim that virtually all practical flow problems are unsteady at some scale, even in the mean flow. (This 
even presumes a clear distinction between turbulence unsteadiness and mean flow unsteadiness.)  
 In regard to the present subject of experimental difficulties, the point is that these small scales are also 
missed in many experimental techniques. As Dolling (1996) stated: “A large fraction of the experimental 
database used for Validation of CFD predictions consists of time-averaged measurements. If meaningful 
conclusions are to be drawn from comparisons of these time-averaged data with computations, it is 
important to understand how the data are generated physically.” Dolling’s examples and his discussion are 
worth detailed consideration, as they bear significantly on very general questions of Validation. 
 As already noted, pitot pressure sensors effectively smooth a pressure in time, and the signal is not the 
same as the simple arithmetic average of the true instantaneous pressures. The pressure is also averaged in 
space (over the pressure orifice), introducing a similar error that can be significant in regions of flow with 
small-scale features, e.g. boundary layers. Flow visualization techniques involve a smoothing in space and 
time scales; for example, a schlieren photograph of a shock wave-boundary layer interaction will appear 
steady in a photograph with a common light source duration, but will disclose high frequency oscillations 
of the shock “foot” penetration (and associated high frequency velocity perturbations) when taken with 
short duration spark photography. Dolling (1996) described experiments in compression ramp hypersonic 
flows which ostensibly appeared to be steady, but in which mean flow unsteadiness (i.e., below the 
fluctuation scale of turbulence models) was a dominant phenomenon. The oscillations of the separation 
shock caused major intermittency in the pressure signal (~ 50% of the mean). Furthermore, the boundary 
layer separation line indicated by surface patterns (the kerosene -lampblack technique) is not near the 
center of the spread in the intermittent separation positions, but is at or close to the downstream boundary 
of the region of intermittent separation. The discrepancy is significant, as measured in the appropriate scale 
of boundary layer thickness. Three-dimensional tests on swept surfaces show that the separation line 
indicated from surface patterns moves upstream (in the intermittent region) as sweep is increased.  
 A major qualitative discrepancy between such experiments and the many computations performed over 
years is that the (steady) simulations always show a much steeper pressure rise (in the area of the shock-
boundary layer interaction) than the experiments. Dolling pointed out that this is a natural and unavoidable 
outcome of the assumption of steady state in the simulations: there is no steady shock position that will 
produce the smoothed-out pressure rise of the experiments, which are due to temporal smoothing of a sharp 
shock position. 
 Although these examples of Dolling’s have the common element of explaining computational - 
experimental discrepancy on the basis of the assumed steadiness in the computations, there is a 
fundamental distinction to be made in regard to the responsibility, between experimenter and computational 
modeler. First, it would have been preferable if all the experimental documentation had warned explicitly 



Chapter 9. Difficulties with Experiments and Validation 
 

 

301 

and emphatically that the data were time-averaged and that instantaneous temporal variations were in fact 
large. Still, the CFD predictions should be expected to be able to model the unsteady flow, and then time-
average the CFD results to compare with experiments. It would seem to be the responsibility (though a very 
difficult one) of the computational modeler to reproduce (within some useful tolerance) the averaged 
positions of the separation shock, and thus reproduce the time-averaged rise to the pressure plateau. The 
same is true of the time-averaged separation lines. However, there is one significant proviso: that the 
unsteadiness is quantitatively inherent to the problem definition.  
 The point is this: if the unsteadiness is actually caused by, or significantly modified by, un-reported 
experimental artifacts (such as fluctuations in tunnel operating conditions, free-stream turbulence, or model 
vibration), then the CFD prediction cannot be expected to anticipate these uncontrolled and unreported 
experimental variables.109 The responsibility for the failed Validation in this case would rest with the 
experimenter. With some knowledge of fluid dynamics, most would agree that it is probable that the 
unsteadiness of shock position and separation position are in fact inherent to this problem, so that we would 
expect the steady state assumption used in the CFD simulation to be at fault, but it is also possible that 
experimental artifacts contribute something to the discrepancy. More pointedly, the problem Dolling 
described in regard to pitot pressure measurements is clearly an experimental artifact. Perhaps the CFD 
simulation could account for the spatial smoothing of pressure data in the boundary layer, but it would 
seem that the experimenter could more properly account for this in the data reduction technique. For the 
temporal smoothing (and “pumping” of the pitot pressure above the temporal mean) the CFD practitioner 
cannot be expected to account for all the relevant experimental artifacts, including (in one cited experiment) 
the “several feet of plastic tubing” connecting the wall pressure tappings to the scani-valve. This is 
experimental error, and the failure of the Validation exercise is not an indictment of the code or its 
assumptions. 
 For physical airfoils, there is always some scale of unsteady flow (evidenced by small-scale vortex 
shedding) yet steady-state equation solutions can be acceptably Validated. However, at higher angles of 
attack, the scale of unsteadiness increases, and perhaps because of this, the accuracy of Validation 
deteriorates (Jameson and Martinelli, 1996). Whether this discrepancy is viewed as a shortcoming of the 
conceptual modeling or as a criticism of the code, the Validation of the conceptual code/model combination 
has failed in this parameter range.  
 These and other examples from many areas of science demonstrate that the assumption of steadiness is 
not always justified and is scale dependent. Significantly, the assumption is probably made (implicitly) as 
often in experiments as in computations, and even more so in theoretical analyses. Recall that in most 
cases, wind tunnel flow is not the ultimate interest; rather, the wind tunnel flow is itself a “model” for an 
engineering flow of interest. Likewise, Darcy flow in a laboratory is a “model” for groundwater flows in 
nature, etc. In either case, the assumption may be invalid at the scale of interest, making Validation 
impossible or ambiguous. 
 Even if the intended application of an experiment (e.g., free flight) produces a steady state flow (at an 
acceptable scale), the experiment may not, since many experimental ground-based facilities are transient or 
border-line steady, especially for high enthalpy flows. Van Wie and Rice (1996) noted that “In general, 
more accurate measurements can be made in long-duration facilities as compared to pulse facilities.” When 
purportedly “steady” experimental data really contain artifacts from tunnel or shock tube transients, a 
literally impossible burden is placed on the computational modeler. 

                                                
109 See also Section 9.20. 
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9.14 SPATIAL SCALES, SCALING UP, AND DIMENSIONALITY 

 Similar considerations apply to assumptions of physical scales and of dimensionality. It is well 
recognized that turbulence modeling involves a separation of scales, but this is true of virtually all 
macroscopic concepts. Laminar viscosity works as a concept only when the scale of molecular mean free 
motion is far removed from the physical size of the aerodynamic body, and fails in high altitude, high speed 
flows. At the other end of the flow spectrum, the measurement of permeability in a porous medium involves 
spatial averaging; if the scale of the variability is extreme, it may not be possible to adequately define an 
“average” permeability. Even qualitative features may not be accounted properly; as computational 
experiments show, a “scaled up” averaged permeability in strong velocity fields will require a tensor form, 
even though the underlying fine-scale permeability is a scalar (Durlofsky, 1991; Russell, 1996). Likewise, 
an elementary thought experiment will quickly disclose that alternating layers of isotropic material with 
differing heat conductivity will result in a non-isotropic (i.e., tensor property) material when “scaled up,” 
i.e. when either computations or lumped physical measurements are made at a scale larger than the layer 
size. 
 The assumption of dimensionality can be equally misleading. The following examples of simple 
laminar flows demonstrate the problem. Williams and Baker (1997) showed that the often-reported under-
estimation of reattachment length for a backward-facing step in incompressible flow above Re ~ 400 is due 
to the assumption of two dimensionality; their fully 3-D calculations agree with experiments. Likewise, the 
following examples were provided by Oberkampf et al (1995). Pironneau (1990) noted that nominally 2-D 
channel flow with a infinite periodic array of cylindrical obstructions exhibits a critical Reynolds number 
Re (based on channel half width) of Re  150, above which the flow remains laminar and 2-D but becomes 
unsteady; above Re  600 the laminar flow becomes 3-D and unsteady. Rudy et al (1991) noted that 
laminar hypersonic flow over a 2-D compression corner with a large deflection becomes 3-D. [It is not 
necessary to consider hypersonic flows -  the classical problem of Goertler vortices (e.g., Saric, 1994) is a 
strong example of 3-D flow in an 2-D geometry.] Mittal and Balachnadar (1995) have performed 
“impressive computational work” to shed light on another classical and deceptively simple flow 
configuration, that of low Re flow perpendicular to a long circular cylinder. For Re ~  49, the flow is steady 
and 2-D. For 49 ~  Re ~  180, only 2-D but unsteady flow exists. For Re ~  180, experiments had 
suggested that only 3-D unsteady flow exists. Mittal and Balachnadar (1995) shed light on this issue with 
simulations, which of course have the great advantage over physical experiments of controlled time-
dependence and dimensionality. They computed the flow at Re = 525 using both a 2-D and a 3-D 
simulation. “They found that both solutions converged to a periodic solution, but the mean drag coefficient 
for the 2-D simulation was 1.44 and the 3-D simulation produced a value of 1.24. Experimental 
measurements yield a value very near their 3-D simulation value.” Oberkampf et al (1995) noted the lesson 
involved, that the 2-D assumption might seem to be appropriate, and reasonable computational results are 
produced, but the results for drag are inaccurate even for this very simple flow. “With the change of one 
parameter (Reynolds number), over a relatively small range, three fundamentally different flow fields, i.e., 
solutions to the Navier-Stokes equations, emerge.” 
 Even when a flow can be 2-D, it is a well-recognized fact of experimental life that it is difficult to 
achieve accurately 2-D experimental flows in planar geometries. (Axisymmetric 2-D flows are easier.) 
 Some problems do not scale up well, e.g. engines (Benek et al, 1996). Thus, the aerospace “vehicle 
performance modeling process becomes a decomposition of effects: the propulsion system characterized by 
full scale simulations and the aerodynamics characterized by scaled simulations.” 
 In Aeschliman et al (1995), there are many points of agreement with the present book, notably their 
recommendation for physical experiments specifically designed for Validation. Experiments designed 
specifically for Validation of codes are quite different from those designed for other practical uses of the 



Chapter 9. Difficulties with Experiments and Validation 
 

 

303 

data. They are easier in some ways, but more difficult in others. The reason for additional difficulty is the 
measurements necessary for simulations. The typical wind tunnel approach is to quantify small effects like 
flow angularity, and perhaps apply correction to data for lift, drag, etc. usually involving a shift in the 
measured angle of attack. However, this is not sufficient for point values of velocity components or 
pressures. What is needed is full measurement of inflow properties. 
 On the other hand, experiments for code Validation are easier in some respects. A very important point 
is that, for purposes of Code Validation, high quality wind tunnel flow characteristics are often not 
required, as long as they are measured and reported in detail. For example, consider non-uniform flow 
properties at the beginning of the test section of a wind tunnel. Variations in flow angularity of 5–10o 
would be unacceptable for almost any engineering measurement, if the purpose were to predict free-flight 
quantities like lift, drag, etc. But if the purpose were to Validate a panel code (using inviscid equations), 
such flow angularity might well be acceptable, but if and only if the experimental map of flow angularity 
was given. Once so Validated, the code could then be used with some confidence for the prediction of the 
free-flight case, the assumption being that the wind tunnel flow, although too distorted to provide 
quantitative predictions of the free flight case, was still “nearby” and therefore covered the class of 
Validation problems for the code. Concerns with model blockage effects in wind tunnel tests are thus 
greatly reduced, if not virtually eliminated, for experiments designed only for Validation. For similar 
statements on this approach, see Oberkampf et al (1995) and Marvin (1995, p. 1784). 
 Aeschliman et al (1995) presented a “Case Study for CFD Code Validation Methodology” which is 
recommended reading for anyone serious about design of experiments for Validation. Also, good case 
studies were provided by AGARD (1988). 

9.15 ASSUMPTIONS OF PERIODICITY 

 As noted earlier, the fundamental considerations regarding the solution qualities of spatial scales, 
scaling-up, dimensionality, and steadiness are not unique to simulations, but are equally significant to 
laboratory and field measurements and to theoretical analyses. Precise quantitative experimental techniques 
that give only local values often carry with them assumptions about these qualities. Global experimental 
techniques such as flow visualization are often less precise or simply qualitative, but are less susceptible to 
gross errors in assumptions. An example from experimental boundary layer transition studies (Knapp and 
Roache, 1968) illustrated a common assumption that is one level more subtle than an assumption of 
steadiness: the assumption of (regular) periodicity. 
 The most studied path to boundary layer transition involves the development Tollmien-Schlichting 
waves, which are a clearly unsteady phenomenon. However, the assumption is commonly made that they 
develop in a regular fixed pattern, i.e., the flow exhibits (regular) periodicity. In fact, some erratic behavior 
had been noted from the earliest studies, and experiments typically were designed to regularize this 
periodicity, through the introduction of small-amplitude periodic disturbances via single-frequency sound or 
vibrating ribbons. Even in quasi-natural (unforced) transition, flow visualization with still photographs 
appeared to show regular periodic traveling waves. Occasional photographic images showing no waves in 
the transition region could easily be attributed to experimental error due to drift of the smoke flow. But 
high-speed cinematography showed clearly that the unforced phenomenon was not regularly periodic, but in 
fact displayed a bursting of quasi-periodic waves. Predictions of skin friction and surface heating which 
would assume regular periodicity could be in significant disagreement. 
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9.16 OTHER DIFFICULTIES OF VALIDATION IN AEROSPACE 

 As noted in previous chapters, Verification for unsteady flows is not qualitatively different from steady 
flows; it necessarily involves more data, but is just more of the same process. However, Validation is much 
more difficult for unsteady flows just because of the paucity of data, e.g. Benek et al (1996). They also 
noted a clearly non-scientific impediment to Validation. “The major stumbling block to Validation of wind 
tunnel correction methodology is that the majority of data is either classified or proprietary, and therefore, 
not generally available.” The same issues will occur in other than the aerospace industry. 

9.17 UNIVERSAL TURBULENCE MODELS vs. ZONAL MODELING 

 A fundamental difficulty with Validation of turbulence modeling is the essential lack of a universal 
turbulence model. By essential I mean that the problem is not going to be solved. Not everyone agrees, and 
some continue the quest, but many turbulence researchers believe it is not going to succeed. (For example, 
see discussions in Kline et al, 1981.) Experience has shown that turbulence models that are moderately 
successful for a very limited class of flows (e.g., 2-D incompressible steady boundary layers in zero 
pressure gradient with no-slip walls) fail miserably and cannot be salvaged by tuning when the class is 
slightly expanded (e.g. the addition of an adverse pressure gradient to the k- turbulence model). The reason 
for the failure is fundamental, though probably not provable nor universally agreed upon. The “universal 
turbulence model” is already known, namely, the unsteady and small-scale Navier-Stokes equations. It is 
asking much of mathematics to devise a different and radically simpler set of equations that provide 
approximately the same solutions for all classes of flows, i.e. for all flow parameters and boundary 
conditions. The nearest thing to a viable universal turbulence model is the large eddy simulation (LES) 
approach, which requires so many fine-scale details that it still requires zonal turbulence modeling to be 
nearly practical. 
 In my opinion (as I expressed in Kline et al, 1981) the root of the problem is semantic; turbulence is 
just too broad a term to be meaningful. By creating the words “laminar” and “turbulent” and using them in 
juxtaposition, we can deceive ourselves into thinking that they have equal weight and meaning. In fact, 
“laminar” means something, but “turbulent” does not define the condition. If instead we used the term 
“non-laminar,” the lack of specificity would be more obvious. Consider the folly of describing certain flows 
as “lacking laminarity” and expecting that condition to define the appropriate governing equations! There is 
just not enough information there to define the problem and to create alternate approximate equations. 
Using the word “turbulent” vs. “laminar” is like using the words “color” or “non-gray” vs. “gray.” We do 
not expect the words “color” or “non-gray” to adequately define an artist’s palette; we need words like 
green, mauve, fuchsia, ... 
 Conferences, symposia, and workshops on turbulence modeling that involve Benchmark comparisons 
with experimental data, especially if the data is not published beforehand (i.e., true temporal “prediction” 
vs. “postdiction”) invariably have come to the following conclusions, perhaps stated more delicately. 
1. Sloppy numerical work confuses the entire meeting.  
2. “Every dog has his day,” i.e. virtually every turbulence model can predict something correctly for some 

problem.  
3. No single turbulence model predicts all features of a moderately complex flow.  
 
 This last evaluation is not the result of overly stringent accuracy standards. For examples, see Kline et 
al (1981), de Vahl Davis (1994), Pollard (1995), and European efforts (ERCOFTAC, GAMM, 
BRITE/EURAM, EUROVAL) mentioned by Pollard (1994). 
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 The alternative to the hopeless quest for a universal model of non-laminarity is the “zonal modeling” 
approach espoused by Kline and others; see pro and con discussions in Kline et al (1981), Avva et al 
(1988). In this approach, turbulence models appropriate to each zone of a complex flow are used, e.g. a 
different model for an attached and approximately zero-pressure gradient boundary layer, another for a 
separated shear layer, another for swirling flow, etc. This approach leads to significant numerical and 
coding difficulties (as noted by Rizzi and Vos, 1996), e.g. specification of boundary conditions between 
zones, and the transfer of information through zone boundaries when different dependent variables are used 
in each zone, requiring transition/blending functions, etc. Ideally, a zonal modeling code would have a 
built-in “expert system” for adapting the zonal models to the developing flow solution, rather than requiring 
the user to define zone boundaries and select zonal models a priori.  
 However it is implemented, a zonal modeling approach greatly complicates each of the following: 
1. the act of Verification of code,  
2. the act of Verification of calculations, and  
3. the act of Validation, even if the individual turbulence models have previously been Validated on 

single-zone flows. 

9.18   SPECIFIC AND GENERAL SENSES OF MODEL AND MODEL VALIDATION110 

 Model in a general sense (often termed a weak model) is the model form, or the general mathematical 
formulation, e.g. the incompressible Navier-Stokes equations, or the Fourier law of heat conduction. Model 
in a specific sense (often termed a strong model) includes all the parameter values, boundary values, and 
initial conditions needed to define a particular problem, e.g. Reynolds number, airfoil shape and angle of 
attack, or the conductivity and specific heat.111 
 In Chapter 2 and elsewhere, we noted that, in a meaningful sense, one cannot Validate a Code but only 
a particular calculation or at least a range of nearby calculations defined over some limited parameter 
range. However, we can also speak of Validating a Code and its underlying conceptual model in a more 
general sense and still be meaningful, provided that we make these distinctions.  
 We need the specific parameters and boundary values to run a simulation, so in a sense, we can only 
validate specifics. The same is true for experimental confirmation of physics theories, i.e. we only have 
specific samples of physical cases. However, when we have validated many specific cases, we generalize. It 
is understood what turbulence modelers mean when they say that the k-ε model has been validated (or is 
acceptably accurate) for attached boundary layers in favorable pressure gradients, but validation accuracy 
fails in adverse pressure gradients. The details will vary with particular cases (airfoils, Re, M, etc.) but 
there is a sense that the general k-ε model is validated in a range of parameter space, i.e. the domain of 
validation. Thus, one performs specific model validation which ultimately results in an ensemble general 
model validation or community-level acceptance of the general model. 

                                                
110 Material added to this Section of V&V1 is adapted from Appendix C of V&V20. 
111 The paper by Leijnse and Hassanizadeh (1994), written in response to Konikow and Bredehoeft (1992), 
was important for unraveling the semantics associated with the word model, in particular, whether model 
includes parameter values, and introduced the qualifiers strong and weak. They also discussed the related 
terms of “prediction models” and “analysis models.” They asserted that not only is there no clear and 
unambiguous meaning of validation (neither in the general public nor in the scientific community), but also 
that there is no unanimity within the scientific community (in their case, the groundwater modeling 
community) on what constitutes a model. Also recall the ambiguity regarding inclusion of the grid in model 
discussed in Section 2.20. 
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 Yet, validation of a model in the general (weak) sense may be a less daunting task than validation in the 
specific (strong) sense. For example, one may demonstrate that Darcy flow assumptions are valid for a 
geologic site, and even obtain quantitative prediction to an acceptable level of accuracy. However, if the 
strong definition of model is used, and the input includes uncontrollable factors (e.g., climate effects such 
as rainfall into the groundwater model) then one could argue [as did Konikow and Bredehoeft (1992), 
without benefit of this distinction of weak and strong definitions of model] that one could never hope to 
Validate the (predictive) model in this strong sense. Even then, we would argue that Validation in a 
meaningful sense is possible, depending on error tolerances, and especially if a single predictive calculation 
is replaced by more meaningful input parametric uncertainty study, e.g. Monte Carlo simulations that 
sample rainfall over historical ranges, etc. 
 In any case, whether comparisons of simulations with physical data are judged to be acceptable or not, 
the analyst would do well to acknowledge this distinction between strong (specific) and weak (general) 
definitions of model and to define or describe terms with sufficient precision. As Leijnse and Hassanizadeh 
(1994) asserted, these considerations “do not support abandoning the use of the term ‘model Validation’. It 
only makes it apparent that the modelers have to carefully specify what their models constitute and what is 
being Validated.” They quoted McCombie and McKinley (1993) who stated that if confusion arises about 
Validation, “use of the term Validation is much less to blame than poor science and sloppy documentation.” 
It would be impossible to revise, and wrong to ignore, these contradictory existing practices so the context 
will have to guide the reader. 

9.19 MYTH OF THE “TOTALLY VALIDATED CODE” 

 In discussing Verification in Chapter 8, we noted the “myth of the converged solution,” in the sense 
that different variables can converge at different rates, and that it would always be possible to devise some 
error measure that is exquisitely sensitive to discretization error, so that this measure is far from converged 
even when other, more benign measures are well converged. Thus, in the pursuit of Verification of a 
Calculation, the concept of a “converged solution,” ascertained to be so independent of the intended error 
measure, is a myth. 
 There is an obvious analog in Validation. Although we want to maintain that it is meaningful to speak 
of a “Validated Code/Model” (either a commercial code or a specialized scientific code) this has to be 
understood in the context  
1. of a class of nearby problems,  
2. for specified variables, and  
3. for a specified level of accuracy.  
 
 Given a set of variables known to be of interest for an engineering project, one can follow the directive 
of Tjonneland (1988). “If you want a Validated Code you should look for the most critical part of the flow 
and for the toughest variable to get right and look at that.” In the terminology defined in Chapter 2, this 
would certainly be appropriate for a Certification exercise, i.e. a project-oriented evaluation of a code, with 
understood variables and accuracy. But more generally speaking, the above 3 restrictions on the context 
must be recognized and honored.  
 For a real-world example, consider Validation of Code based on a k- turbulence model. Many 
Validation exercises have demonstrated that k- is good for attached boundary layer flows in zero and 
favorable pressure gradients, and is inadequate for adverse pressure gradients, swirl, etc. However, “good” 
is defined in the context of engineering needs, primarily friction drag (i.e., shear stress at the wall ). While 
the k- model predicts turbulent kinetic energy k and dissipation rate , Validation is usually based on . 
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But suppose someone now wants to predict not just  at the wall but the  distribution throughout the 
boundary layer, say for applications to optical propagation through boundary layers (e.g., Truman and Lee, 
1990). Validation for  is encouraging, but it cannot be assumed that there is such a strong correlation that 
this can be taken for Validation of (y) throughout the boundary layer. The calculation would have to be 
Verified for (y) (first for iteration convergence, if that variable had not previously been tested in the 
iteration convergence criteria, and second for grid convergence) and then Validated for (y). In actual fact, 
the k- model prediction of (y) is inadequate.  
 Thus, the concept of a “Validated Code,” ascertained to be so independent of the intended variable 
measured, is a myth. 

9.20 §  FRAUDULENCE IN FINANCIAL RISK MODELING 

 The world-wide financial disaster of autumn 2009 was due in significant part to failure of financial risk 
modeling. While ostensibly a failure of Validation of economic models, the blame probably should go 
elsewhere, depending on where one draws the line between an economic model per se and user input 
parameters as specified by modelers. 
 Quigley (2008) described the visit of a hedge fund manager to Moody’s Investor Services, the credit 
rating agency that “had routinely declared what we now call toxic assets” to be AA-rated securities on the 
basis of economic models. The hedge fund manager inquired what would happen to these securities, all 
backed by home mortgages, if housing prices were to fall. The astounding answer was that the computer 
model would not accept such input. 
 If the risk model was built to not accept the possibility of declining house prices, then it is indeed a 
model error, and a gross one. An educated guess is that the restriction was added in a "wrapper" around the 
core financial model, and the wrapper was a lie. Investment experts certainly knew that real estate prices 
decline, sometimes precipitously, as in the world-wide Great Depression. And their "models" (the core 
models, not the user-friendly wrapper) would have predicted the outcome correctly; the system is unstable 
and would collapse because of leverage. But the users did not want to allow this possibility. 
     Financial models, like any other models, can be lied to. Financial models have worked very well, and 
made a lot of people rich. But lying to a model, or building a wrapper that accomplishes the lie 
automatically, is fraudulent.  

9.21 §  NEED FOR CONTROLLED AND MEASURED EXPERIMENTS112 

 Quality validation experiments are rare, at least in fluid dynamics and similar fields. The turbulent flow 
backstep problem of Driver and Seegmiller (1985) is often cited as an example of high quality experimental 
work, yet the organizers of the Lisbon III V&V Workshop (Eça and Hoekstra, 2008) realized upon careful 
reading that there was no measurement of inflow boundary layer properties at the upper wall, and no 
experimental uncertainty given for the time-averaged velocity components or Reynolds stresses. When the 
V&V20 project was begun, it was intended to use real experimental data on a heat exchanger for the 
example end-to-end problem of the document. No adequate experiment, with thorough measurement of 
inflow and outflow values and uncertainties, could be found. Instead, synthetic experimental values were 
used to illustrate the V&V procedures. When the follow-on documents to V&V10 (Computational Solid 
Mechanics) were begun in 2007, the original intention was to use real experimental data for a simple 
structural problem, but no adequate experiment could be found; instead, synthetic experimental values were 

                                                
112 From Roache (2008b) 
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used. The ASCE V&V document for free surface flows (Wang et al, 2009) has  plenty of real and valuable 
experimental data, ranging from laboratory scale to site scale (e.g. sections of the Mississippi River, San 
Francisco Bay), but uncertainty statements are rare. In a 5-day workshop (Anon., 2008) on Nuclear 
Reactor modeling held in Idaho in July 2008, only one paper had any experimental uncertainty estimates; 
this work by Dr. H. McIlroy and colleagues (McIlroy et al, 2006) is an exceptionally high quality PIV 
(particle image velocimetry) experiment designed expressly for CFD validation, with complete flowfield 
measurements (including inflow) and complete uncertainty measurements. It is so rare as to be perhaps 
singular for these flows. The benchmark study for validation experiments in aerodynamics remains 
Aeschliman and Oberkampf (1997, 1998). Oberkampf and Trucano (2007, 2008) emphasized the 
importance and common neglect (in their considerable experience) of experimentalists performing 
measurement and documentation of all input quantities. In a 5-day Workshop on Combustion Modeling 
(Anon., 2006) held in Pittsburgh in February 2006, only one experimental paper (on stationary gas turbines 
at NSF) had complete description of inflow properties - not uncertainties, just measurements of the inflow 
properties. 
 The last example leads to a distinction between uncontrolled experiments and unmeasured 
experiments. Some experiments will fundamentally include uncontrolled parameters, e.g. atmospheric tests 
cannot control the conditions of the atmosphere. But it may be possible to measure the uncontrolled 
variables, at least at some coarse resolution, e.g. average wind speed, temperature, etc. Laboratory 
experiments are more controlled but still fail at some scale, producing variable results with repeat 
experiments. The worst situation is the unmeasured experiment. Of course, the quantities of interest 
[(termed “System Response Quantities” or SRQ by Oberkampf and Trucano (2007, 2008)] are measured 
but often the parameters defining the physics are not measured, e.g. inflow properties in a wind tunnel or 
compliance in a beam bending experiment. Note that an experimental procedure might be controlled yet 
unmeasured, i.e. the experimental protocol produces repeatable input parameters and therefore repeatable 
measurements, yet we do not know what are the values of these repeatable input parameters. This is a 
surprisingly common situation, and is much more serious than the lack of experimental uncertainty 
estimates. This is not merely a computational issue; such experiments cannot be repeated across facilities. 
The discrepancy between facilities, in those rare instances where they have been compared, is typically 
attributed to “experimental bias errors” but are often more fundamentally attributable to elementary lack of 
measurement of the controlling parameters of the experiment. 
 The majority of experimental works, at least in aerodynamics and fluid dynamics, not only fail to 
report experimental uncertainties but fail to measure all pertinent inflow quantities, so that results could not 
be compared with other experiments - forget CFD. Uncontrolled, unmeasured experiments are the norm, 
and experimental work is the weakest link in V&V. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 10. Validations by Error Bars 
 

 

309 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER  10 
 

  VALIDATIONS BY ERROR BARS 
 
 
 
 This Chapter title description “Validations by Error Bars” is chosen to differentiate the straightforward 
and customary practice of assessing Validation/Certification level by comparing, often graphically, 
experimental values including experimental uncertainties to computational values including 
computational uncertainties, from both less and more refined approaches. The inclusion of uncertainties 
distinguishes this approach from mere comparison of best experimental values (usually the mean of repeat 
calculations, all too infrequently corrected by an estimate of systematic error) to the best computational 
values (usually the finest grid solution, often without an estimate of error or uncertainty). The approach 
that ignores errors and uncertainties is naive, and deserves the somewhat pejorative term “viewgraph norm” 
(Oberkampf et al, 2002, 2004) although the approach still has considerable value. As argued in Section 2.3 
and Appendix B, such comparison without uncertainty estimates no longer deserve the designation of full 
“Validation.” Many of the Validations in this Chapter do deserve this designation, although many lack the 
inclusion of experimental uncertainties (no fault of the modelers); though incomplete, these semi-
Validations may be the only source of information for engineering decisions. Publication standards would 
be improved if all were held just to this level. However, compared to Validations by Error Bars, the total 
Validation Uncertainty approach promulgated in ASME ANSI Standard V&V20 offers more clear insight 
into Validation and provides guidance regarding what can be done next. This total Validation Uncertainty 
approach will be described in the following Chapter 11. We do not suggest that the total Validation 
Uncertainty approach supersedes the Error Bar approach; both are valuable and informative. 
 The examples of Validation/Certifications (and semi-Validations), Calibrations, and Certifications in 
this Chapter are each presented with a philosophy or “moral of the story” in mind. Sometimes the moral is 
just the high quality of the work and/or the early date (i.e., the high quality obtained with earlier and 
therefore comparatively primitive computer power). More often, the example is chosen to elucidate some 
aspect of Validation/Certification exercises. 
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10.1 SOURCES OF PHYSICAL MODELING ERRORS IN AERODYNAMICS CFD 

 Oberkampf et al (1995) gave the following taxonomy of sources and list of non-exclusive sub-
categories of physical modeling errors in CFD. Their emphasis is in aerodynamics, and the original paper 
includes worthwhile discussion based on their extensive experience. 
 Physical Modeling Errors for Aerodynamics CFD 
 Partial Differential Equations for Fluid Dynamics 

 Inviscid Flow 
 Viscous Flow 
 Incompressible Flow 
 Gas with Vibrationally Excited Molecules 
 Inert Gas Mixtures 
 Chemically Reacting Gas 
 Turbulent/Transitional Flow 
 Additional Physical Phenomena (e.g. thermal nonequilibrium,  

ionized flows, radiative transfer in gases, multi-phase mixtures) 
 Temporal Nature Assumptions 
 Spatial Dimensionality Assumptions 

 Auxiliary (or Closure) Physical Models  
 Equations of State 
 Thermodynamic Properties 
 Transport Properties 
 Chemical Model, Reactions, and Rates 
 Turbulence Model 

 Boundary Conditions for the Partial Differential Equations 
 Wall Boundary Conditions 
 Open Boundary Conditions 
 Free Surface Boundary Conditions 

 
 In addition, simple specification of geometry (even smooth surfaces) can introduce significant errors. 
Cosner (1995) stated “Serious issues are unresolved in transferring geometry efficiently from CAD systems 
to the CFD grid generators.” 

10.2 ACCURACY LEVEL FOR VALIDATION /CERTIFICATION 

 As previously discussed in Chapter 2 and more in Appendix B, some prevalent concepts of code/model 
Validation (though not our recommended use) involve an error tolerance or pass/fail accuracy level, 
determined “from the perspective of its intended uses” (Mehta, 1995). In all prevalent concepts of 
Certification (specific to a project) the required accuracy level is an essential aspect. In many of the sources 
cited, the term “Validation” was used with this sense of included error tolerance or accuracy level. Rather 
than change the terminology of the original papers from “Validation” to “Certification” or (just as 
misleading) to use the original term when we now want it to apply to “Certification,” I have chosen the 
clumsy but transparent device of rendering the term as “Validation/Certification” when appropriate. (When 
the original is clearly consistent with Validation as defined herein without a pass/fail accuracy level, the 
word “Validation” is retained.) 
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 A code/model could be convincingly Validated/Certified for one use but shown to be unacceptably 
inaccurate for another use, even if the physical problems are identical. (For example, see Van Wie and 
Rice, 1996.) Also, note that Validation/Certification will tend to be more precise, or have higher standards 
of accuracy level, for a purely scientific project that for an engineering project. As Rizzi and Vos (1996) 
noted, “in industry this [level of acceptable accuracy] usually is in the direction of ‘just enough’ certainty 
for the problem at hand.” In considering the accuracy level appropriate for a Validation/Certification, it is 
also worthwhile to keep in mind that a simulation can have various expectations, depending on the 
application. In increasing level of accuracy requirements, the simulation may be expected (Benek et al, 
1996) to 
 only provide diagnostic information, 
 supply only incremental data, or 
 generate “base line data” for the performance model data base. 

10.3 GENERIC MODELS VS. REALISTIC MODELS FOR VALIDATION/CERTIFICATION 
AND CALIBRATION: PHASES OF VALIDATION/CERTIFICATION 

 Marvin (1995) noted somewhat different Validation/Certification experimental needs for different 
stages of aerospace CFD code development: research codes, pilot codes, and production codes, referring to 
“building block and benchmark experiments.” He noted the historical development of Validating 
computations (and theoretical approaches) “first, by performing small-scale experiments in ground-based 
facilities to Validate the approaches and any related extrapolation techniques and, later, by data from flight 
experiments with design hardware or prototypes.” He noted that research organizations (such as NASA) 
tend to view Validation/Certification from a more fundamental level, stemming from a long history in CFD 
research and pilot-code development, whereas industry tends to view Validation/Certification in a broader 
sense, having to additionally consider the total design process in which the code is used. Wang et al (2009), 
in the ASCE V&V document for 3-D free surface flows, similarly distinguished between Validation for 
“unit processes” by controlled laboratory-scale experiments and Validation for the necessarily uncontrolled 
situation of coarse resolution field experiments (of which that document contains a wealth of information). 
 Although design engineers would prefer to see codes Validated and Calibrated for complex geometries, 
these increase experimental uncertainties. It is often preferable to perform Validation/Calibration exercises 
for simpler generic models, especially for new areas of investigation. Marvin (1995) cited an example of 
approaching the formidable challenges of Validation/Certification in hypersonic flow. A generic hypersonic 
vehicle model was tested to provide Benchmark data for Validating forebody codes developed for use in 
integrating air-breathing propulsion systems with vehicle airframes (Lockman et al, 1992). Marvin (1995) 
also noted the attraction of flight experiments designed with Code Validation/Certification as an integral 
part of their motivation, though he noted these are often difficult and expensive. 
 Marvin (1995) also provided an excellent example of a success story for experiments specifically 
designed for Validation/Calibration, rather than “practical” designs, in the development of the Johnson-
King (1985) turbulence model. The experiment (Bachalo and Johnson, 1979) that provided much of the 
data for guidance of the development and Validation/Certification for transonic wing applications did not 
remotely resemble a wing. The test configuration was an axisymmetric cylinder with a circular arc section, 
aligned parallel to the flow; the motivation was to avoid extraneous 3-D effects. “The turbulence model 
derived made use of experimental evidence on the development of the turbulent shear stresses through 
shock waves of varying strength that developed on the circular arc section as the freestream Mach number 
was varied.” The resulting Johnson-King non-equilibrium turbulence model has an intermediate level of 
complexity, more so than simple algebraic models (equilibrium models which have no “history” 
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dependence) but less so than two-equation models like k-  and k- because it uses a single additional 
ordinary differential equation (i.e., 1-D) rather than multiple partial differential equations. For a small 
increase in computing burden and complexity over algebraic models, the Johnson-King model provided 
better predictions of pressure recovery, separation location and extent, and velocity profile development. 
Improvements to the original model (Johnson and Coakley, 1990) have been made, and the 
Validation/Certification has been extended to additional experiments (Marvin, 1995).  
 Similarly, Marvin (1995) cited the example of Menter’s (1992) in developing a variation of the Wilkox 
k- model (e.g., see Wilcox, 1993) based on the reliable “building block experiments” on non-design 
geometries of Driver (1991). 
 Sindir et al (1996), like Marvin (1995), Melnik et al (1995), and Rizzi and Vos (1996), see 
Validation/Certification as a multi-phase process. Their code “Validation/Certification” process is perhaps 
closer to what others call Certification, but the meaning is clear, and Validation/Certification as used herein 
is certainly involved at all phases. Their four phases (see Figure 10.3.1) progress from  
 
 Unit Problems (single flow features), to  
 Benchmark Cases (more than one flow feature, simple to moderate flow physics), to  
 Simplified/Partial Flow Path (multiple flow features, moderate to complex flow physics), to  
 Actual Hardware (complete flow physics).  
 
As the phases progress in geometric and flow complexity, the authors noted a tendency for decreasing 
availability and accuracy of experimental data. 
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Figure 10.3.1. A Four-Phase View of Code Validation/Certification.  
(From Figure 1 of Sindir et al, 1996.) 
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 They also noted three levels of “Validation/Certification” depending on the use:  
 Conceptual Design  Validated Code,  
 Preliminary Design  Validated Code, and  
 Detail Design  Validated Code,  
  
with increasingly high standards of accuracy and specificity. Here, it is clear that their use of “Validation” 
corresponds more to other’s use of “Certification.” They gave a case study of this Validation/Certification 
process in the application of their UniFlo code to a turbomachinery dynamic loading problem. 
 Marvin (1995) cited the example of the experiments by Olsen and Seegmiller (1993) specifically 
designed for code Validation/Certification. The problem was transonic flow over a low aspect ratio wing. 
Rather than try to simulate free-flight conditions as well as possible, they tested the model in a solid wall 
wind tunnel, so that issues of corrections for transonic tunnel wall ventilation and interference were 
eliminated. The key feature is that conditions at the tunnel walls and free-stream inflow values were 
measured and included in the code Validation computation. (The modeling included viscous calculations at 
the tunnel walls by way of boundary layer calculations and a displacement thickness included in the CFD 
code being Validated.) In such exercises, once the basic code is Validated, practical calculations can be 
obtained with better far-field boundary conditions (which themselves must have been Verified and/or 
Validated). 

10.4 CFD AND EXPERIMENTAL FACILITY CORRECTIONS 

 Benek et al (1996) gave an overview of CFD successes in providing corrections (Calibrations) for 
experimental facilities. (See discussion of “Trends, Computational and Experimental” in Section 9.7.) 
Sickles and Erickson (1990) demonstrated excellent agreement between measured and computed 
corrections to an aircraft configuration. The calculations of Martin et al (1993) of increments of normal 
force and pitching moment on the space shuttle launch configuration “agreed well with measurements at 
several model scales.” Willhite et al (1995) computed sting interference corrections that “compared well 
over a wide range of flow conditions.” Hinkleman (1995) made “unpublished comparisons of drag 
increments accounting for a mismatch of wind tunnel and flight Reynolds number” that were “in excellent 
agreement with the measured values” from a “conventional” vs. a “high Reynolds number wind tunnel.” 
Benek et al (1996) noted the potential for CFD to “make practicable the evaluation of increments that can 
not be readily obtained experimentally,” such as scale model geometric compromises (like oversized 
boundary layer gutters in wind tunnels), and Reynolds number corrections for inlet swirl and total pressure 
maps. However, they also noted “The major stumbling block to Validation of wind tunnel correction 
methodology is that the majority of data is either classified or proprietary, and therefore, not generally 
available.” The use of CFD in the operation of adaptive wind tunnel walls is discussed briefly in Section 
10.6.4 below. 

10.5 VERIFICATION MUST BE INDEPENDENT OF VALIDATION:  
AIRFOIL CALCULATIONS 

 In Chapter 2 and elsewhere, the importance of performing Verification of Calculations before 
Validation was stressed. Logically speaking, the actual time sequence would be immaterial, of course; the 
point is that Verification is required regardless of agreement with experiments. But people can get led 
astray with fortuitous agreement with experiments, and are tempted to not bother with Verification of 
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Calculations. Zingg (1992) has pointed out the importance of this precept in his airfoil calculations 
involving thorough and systematic grid refinement studies (previously cited in Chapter 6 as examples of 
good Verification practice). In 4 out of the 7 flow cases calculated, agreement with experiment was better 
with coarse grid calculations than with fine grid calculations. This would have given a “false positive” 
Validation/Certification, caused by inadequate grid resolution, had not the systematic Verification been 
performed independent of agreement with experiments. 
 Rizzi and Vos (1996) noted the same phenomenon, and identified the reason. The physical model used 
includes the Baldwin-Lomax turbulence model. Being algebraic (a “zero-equation” model), there is no lag 
in adjustment to new boundary layer edge conditions. This may be an adequate approximation for slowly 
varying edge conditions, but is not for transonic flows with shocks. Physically, these flows require a small 
distance aft of the shock for turbulence equilibrium to be attained. Quite by accident, spatial discretization 
provides such a lag in adjustment. The longitudinal discretization increment x thus provides a non-
physical parameter that behaves something like a physical relaxation length. The agreement with 
experiment occurs only from this numerical artifact, the computational error happening to partially cancel 
the physical modeling error in these cases. As Rizzi and Vos say, “Issues related to the interaction of these 
two sources of errors have been of constant concern to the CFD and turbulence modeling communities 
because fortuitous cancellation of errors can lead to a very erroneous conclusion about Validation.” 
 Clearly, to jump to a conclusion about Validation without thorough Verification is to build a house on 
sand. 

10.6 SYNERGISM BETWEEN COMPUTATION AND VALIDATION EXPERIMENTS 

 Aeschliman and Oberkampf (1997, p. 14) noted that beneficial synergism arises when experiments are 
designed specifically for Validation. “By a ‘synergism’, we mean an activity whose primary intent is to 
meet a requirement for one approach, whether CFD or experiment, but which generates improvements in 
capability and/or accuracy of the other, such that both computational and experimental methods benefit.” 
Presented below are instances of such synergism. 

10.6.1 Artificial Heart Valves 

 In pioneering work on simulation of artificial heart valves, Mueller and colleagues (Mueller, 1974; 
Underwood and Mueller, 1977,1979) showed the advantages of an integrated numerical and experimental 
program. Over the multi-year program, four different experimental flow visualization techniques 
(electrochemical, dye, hydrogen bubble, and nylon micro-spheres) were used to Validate the numerical 
solutions. Even using 1972 vintage computers such as the UNIVAC 1107 and the IBM 370/155, this group 
managed to perform reasonable grid convergence testing, i.e. Verification as well as Validation. “The 
overall flow patterns as well as the occurrence, location and extent of separated flow regions obtained 
numerically agreed very well with the experimental results for the laminar flow cases.” (Underwood and 
Mueller, 1977.) The advantage of the integrated experimental/numerical program worked both ways; “the 
numerical results were found to be very helpful in positioning the hot-wire and hot-film anemometer probes 
in later physical experiments.” (Underwood and Mueller, 1979.) 

10.6.2 Transonic Flow 

 Marvin (1995) cited another interesting example of synergism between computations and Validation 
experiments when cooperative efforts are made. The related papers by McDevitt et al (1976), Levy (1978) 
and Marvin et al (1980) involved experiments and simulations of transonic flow over a circular arc airfoil. 
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Airfoil pressures, tunnel wall pressures, and flowfield velocity profiles were measured experimentally with 
a (non-intrusive) laser anemometer system. Depending on the experimental Mach number M, steady flow or 
unforced buffet flow developed. The buffet onset condition displayed hysteresis; the buffet M domain was 
different for experiments during which M was increased or decreased. Computations using a time-accurate 
Navier-Stokes code and a simple turbulence model were performed at three M. At the intermediate M = 
0.755 the computations were not converging. The experimentalists pointed out that the flow was unsteady 
at this M for experiments wherein M was decreased once buffet occurred, and that perhaps the computation 
was in fact reproducing the correct physics. With this motivation, the computational modelers continued the 
simulation for a time equivalent to several airfoil chords of flow travel, and indeed periodic buffet 
developed in the simulation. The magnitude and frequency of the computed buffet “compared well with the 
experiment, although the frequency was found to be about 20% less than the experimental value.” 
According to Marvin (1995), “These studies confirmed for the first time that time-accurate solution 
methods used to solve the Reynolds-averaged Navier-Stokes equations had the potential for predicting 
buffet.” 

10.6.3 Simple-to-Complex Geometry Flows 

 Aeschliman and Oberkampf (1997, p. 14) also presented an example of beneficial synergism between 
CFD and experimentation in the Validation activity in their long-duration hypersonic facility. 
 “If in a wind tunnel experiment the wind tunnel model is designed for easy modification from 
geometrically simple to complex, it becomes possible to produce a wide range of flow conditions. The 
geometrically simple flows could possibly be calculated with high confidence, while the complex geometry 
flows may exceed the current computational state of the art. As an example, for attached, perfect gas, 
laminar flow over a slender sphere/cone at low angle of attack, confidence in the computed solutions for 
flow over the simple model with simple flow physics can be at such a high level that the results are usable 
for an in-situ calibration of the freestream wind tunnel flow. This type of calibration can provide new, and 
sometimes surprising, information about the facility. For flow over more complex geometries, the 
measurements can be used to Validate the code.” 

10.6.4 Operation of Adaptive Wind Tunnel Walls 

 The use of CFD in the operation of adaptive wind tunnel walls and in correcting for wall and model 
support interference is described by Aeschliman and Oberkampf (1997, p. 14) as “a synergism that has a 
large potential payoff. It is desirable to test aircraft configurations at the largest possible scales to 
maximize Reynolds number, a goal which is in immediate conflict with minimizing interferences.” That is, 
the larger the wind tunnel model, the better is the Reynolds number, but the worse is the tunnel interference. 
The interference effects can be calculated (and removed from the experimental results) by CFD. These 
authors and others noted that the “CFD capability required to compute interference corrections must 
advance in concert with the testing requirements.” 
 Likewise, Aeschliman and Oberkampf (p. 14) stated “In a similar vein, advances in the use of CFD to 
compute flows in perforated-wall wind tunnels are retarded by a lack of well characterized wall boundary 
conditions. Detailed measurement of the actual wall boundary conditions as a function of test section 
location and given tunnel operational parameters would directly improve wind tunnel data accuracy, in 
addition to providing the needed [boundary conditions] for a CFD calculation.” 
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10.6.5 Boundary Layer Transition 

 The paper by Haynes, Reed and Saric (1996) presented an excellent example of Validating a reduced 
set of equations, the nonlinear Parabolized Stability Equations, for 3-D crossflow-dominated transition by 
direct comparison with extremely carefully performed wind tunnel experiments. This paper contains many 
insights and suggestions on the general topic of Validation, and especially provides an excellent instance of 
synergism between computation, theory, and Validation experiments. 
 As noted in Chapter 2, a major opportunity for computational simulation technologies like CFD is to 
contribute to experimental work being used to predict the importance of difficult-to-measure quantities like 
wind tunnel flow angularity, non-uniform stagnation enthalpy, surface waviness, etc. (See Aeschliman et al, 
1995.). A premier example of this given by Haynes et al is the sensitivity of boundary layer transition to 
free stream vorticity, which is “an unusually difficult experiment” but which can be modeled by CFD. 
Surprisingly, when streamwise vorticity is not included in the simulations, “the subharmonic mode is 
present as predicted by theory but not seen experimentally. When streamwise vorticity (as is present in the 
flow from the turbulence screens upstream of the nozzle) is also included, the subharmonic mode is 
overshadowed by the fundamental mode (as in the experiments!)”...“Here is a case in which the 
computations have explained [long standing] discrepancies between theory and experiments.”  
 Haynes et al (1996) also demonstrated conclusively that, although linear theory predicts many features, 
a nonlinear calculation is required to obtain complete Validation for the growth rates for stationary cross-
flow waves.  

Other examples cited in Haynes et al (1996) are the computations by Fasel (1990) in which the CFD 
simulations isolated the significant effect of a small streamwise pressure gradient, and the CFD simulations 
by Joslin and Street (1992) in which subharmonic modal discrepancies with experiments were eliminated 
by including a small adverse pressure gradient and a small effective frequency variation in the input 
disturbance.  
 Haynes et al (1996) also suggested an innovative and synergistic use of CFD simulations in 
conjunctions with experiments. Their simulations have shown that free-stream vorticity has a major effect 
on transition, yet free-stream vorticity cannot be measured! “At first glance, the situation seems hopeless. 
How do you quantify an effect you can’t even measure? How do you ever hope to establish [an 
experimental] database for CFD Validation when you can’t provide precise initial and boundary 
conditions?” Their solution is to systematically apply CFD (spatial DNS) simulations to study the effect of 
different conditions along edges of the computational domain, “identifying those quantities in the boundary 
layer that are indicative of the forcing.” The key is that “amplified quantities in the boundary layer are 
often larger than their predecessors in the freestream and therefore measurable, thus providing a database.” 
They call for “CFD leadership in the identification, cataloging, and modeling of the effects of freestream 
disturbances.” 
 The subject area of direct spatial simulation of boundary layer transition is one of the few that proves 
difficult from the aspect of computer round-off error. From Haynes et al (1996): “Because of the long fetch 
from the onset of instability to breakdown and the large amplitude ratios associated with this process 
[(e10) and larger], resolution and bit accuracy limit how far into breakdown a spatial simulation can go. 
Because of the large differences in amplitudes throughout the domain and the large growth rates known to 
exist near breakdown where smaller scales appear, truncation and round-off errors can easily contaminate 
the solution. Consequently, spatial simulations are currently unable to proceed completely through 
transition and into turbulence.” 
 This area of fluid dynamics (boundary layer transition) can also be sensitive to outflow boundary 
conditions, which (as noted in Chapter 2) might appear to be a “gray area” in the distinction between 
Verification and Validation, but, in the final analysis, is best considered part of (the purely mathematical 
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area of) Verification. Haynes et al (1996) suggested five exercises for testing [Verifying] a CFD boundary 
layer transition code:  
a. grid refinement studies,  
b. solving test problems for which the solution is known,  
c. changing the ‘far-field’ boundary conditions systematically and re-solving,  
d. comparing linear growth rates, neutral points, and eigenfunctions with linear stability theory,  
e. running the unsteady code with time-independent boundary conditions to ensure that the  

calculations remain steady. 
 
They also require that the “manufactured solutions should be chosen with topological qualities similar to 
those anticipated for the solution to the ‘real’ problem (e.g. gradients close to the wall).” As noted in 
Chapter 3, We do not believe this is a necessary feature mathematically, although it is desirable from the 
viewpoint of intuition and confidence building. 
 These studies from Haynes et al (1996) are powerful examples, not only of Validations of 
computational PDE codes, but also of the power of simulations when performed very carefully, with 
rigorously Verified codes, in conjunction with high-level theory and highly controlled experiments. These 
results could not have been attained by haphazard application of commercial codes by unqualified 
engineering personnel; such exercises could only serve to pollute the literature, and degrade the reputation 
of computational PDEs. Likewise, sloppy experiments do much more harm than good. As Haynes et al 
(1996) noted for boundary layer transition (but the observation holds in many other areas of fluid 
dynamics, heat transfer, and other areas of applied science), “Validation requires comparison with careful 
archival experiments, but few such experiments have been performed.” Computations can contribute to the 
“determination of relevant Validation experiments.” 

10.7 DIFFICULTY OF DEFINING A “NEARBY” PROBLEM 

 As noted in Chapter 2, we would not want to be so scrupulous as to insist that only a single Calculation 
can be Validated. However, the concept of Validation of a Code, rather than just a single calculation, is 
meaningful provided that the evaluation of “Validated” is applied only to a range of “nearby” problems, 
close to the discrete set of experimental Validation parameter space. It was also noted that the concept of a 
nearby problem will fail near parameter transition boundaries, which should be identifiable from knowledge 
of the general field (see list in Chapter 9, Section 9.9.). However, the following example exemplifies how 
difficult this can be.  
 Consider the effect of chemistry modeling on aerodynamic coefficients. Without trying to decide a 
priori by theoretical considerations whether or not chemistry is important, one might reasonably assume 
that, if chemistry could be shown to be insignificant in a given parameter range for one aerodynamic 
coefficient, it would also be insignificant for another coefficient at the same parametric conditions, i.e., 
surely this would constitute a nearby problem. Unfortunately, this is not always the case. Marvin (1995) 
gave an example of experimental data on sharp and blunt cone models fired in a hypervelocity gun range, 
compared to two sets of calculations, one assuming a perfect gas, and one using non-equilibrium chemistry. 
High enthalpy, reacting but laminar flow was established over the model, so chemistry was an issue, but 
turbulence modeling was not. For a 5o blunt cone, perfect gas calculations for drag were within the 
experimental uncertainty and similarly close to the nonequilibrium chemistry calculations. However, the 
data for drag are insensitive to chemistry modeling only because drag is composed mainly of forebody 
pressure drag, whereas the flowfield generally, and the pitching moment Cm especially, prove to be sensitive 
to chemistry. The error in Cm for the non-equilibrium air calculations (full Navier-Stokes and seven species 
air) was within the estimated experimental error of 3% over the entire range of angle of attack  from 0 
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to 8, but the error for the perfect gas calculation at  = 5 is an order of magnitude larger, ~ 3035%. 
This is indeed a sobering example of the difficulty of defining a nearby problem for Validation of a Code. 

10.8 MISSING EXPERIMENTAL INFORMATION 

 Barber (1996) provided a review of several code Validation/Certification studies in the aerodynamics 
literature, and cited examples wherein missing experimental information have lead to poor Benchmark 
calculation comparisons. The missing information includes  
• the geometrical definition, 
• the data reduction procedures, and 
• the dominant physics. 
 
 Advances in experimental techniques can now supply details of flow fields that were impossible in the 
past. For example, Eklund et al (1995) performed Validation of the SPARK Navier-Stokes code 
predictions of Mach 2 flow over a rearward-facing step. This Validation was unique in that the 
experimental techniques used (Laser-Induced Iodine Fluorescence and Laser Doppler Anemometry) 
produced not only velocity data but also in-stream static temperature measurements. McIlroy et al (2006; 
see also Condie et al, 2005) used PIV (Particle Image Velocimetry) in an MIR facility (Matched Index of 
Refraction) to provide detailed measurements of a highly 3-D unsteady turbulent flow in a physical model 
of a lower plenum in a gas-cooled nuclear reactor, including inflow with strong nonuniformities and non-
normal velocity components, which are essential to defining the problem to be modeled in a Validation 
exercise. Significantly, all the measurements include uncertainty estimates, a rarity. 
 Hutton (2006) gave an example of a code comparison exercise on turbulence modeling that failed for 
lack of such experimental measurements. As is often the case, a wide range of results were obtained, even 
between groups using the same “code.” As expected, the difficulty was a familiar one: code ≠ model, and 
the experimental problem specification was not complete because of unspecified radial velocity at inflow. 
Unlike the Third Lisbon V&V  Workshop (Eça and Hoekstra, 2008), “very few” of the contributors 
performed grid convergence studies. (Hutton referred to one university group who “actually” refined the 
grid!) This presented an excellent example of a K- calculation that agreed better with experiment for a 
coarse grid than a fine grid, not just with a single-valued solution functional but over a distribution. The 
systematic cancellation of discretization error and modeling error occurs because K- overproduces 
turbulent kinetic energy while under-resolution reduces it. This is yet another warning against rushing into 
Validation without first ascertaining grid convergence in Calculation Verification. With his experience, 
Hutton also affirmed the fact, widely acknowledged in the V&V community but always requiring 
reiteration, that old experimental data is generally inadequate for good Validation exercises. He presented 
some examples of a Best Practices Guideline and a QA system for such code exercises, accessible at 
www.QNET-CFD-KB.com. 
 Roy and Blottner (2000, 2001) performed exceptionally thorough Code and Calculation Verifications 
for 2-D hypersonic flows with several 1- and 2 - equation turbulence models. The Validation component 
was limited by the virtually non-existent experimental uncertainty estimates from a 1968 free flight test at 
Mach 20 at 24.4 km (80,000 feet) altitude. The atmospheric conditions had to be taken from a standard 
atmosphere, and not even the geometry was known precisely because the ablated nose tip shape came from 
other simulations. The experimental condition included a small (0.14 degree) angle of attack while the 
computations were axisymmetric. [Nevertheless, this experiment with major uncertainties but true 
conditions was more valuable than laboratory experiments with better uncertainty estimates but wrong 
conditions.] The Validation levels for surface heat transfer were convincing and, for some of the models, 
successful. 
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 See also Strazisar and Denton (1995) and discussion in Section 12.12. 

10.9 ONSET OF 3-DIMENSIONALITY IN BACKSTEP FLOW 

 The experiments of Armaly et al (1983) showed the abrupt onset of 3 dimensionality in the nominally 
2-D laminar incompressible flow over a backstep. These trustworthy experiments have been used as the 
basis of comparison for many CFD Validation exercises, mostly for the 2-D flow regime (Re < 400). The 
2-D CFD predictions for reattachment length are in good agreement with the experiments up to Re ~ 400, 
but predict a longer than observed reattachment length for Re > 400, evidently due to the onset of 3-D 
effects in the experiments. Conjectures on the causes of the 3-D flow (besides possible experimental flow or 
other errors) included Taylor-Goertler instability associated with the concave streamlines near 
reattachment, and tunnel side-wall boundary layer growth, the latter being rejected due to discrepancy 
between the proposed mechanism and experiment as Re is increased (Ghia et al, 1989). 
 The actual mechanism was determined by 3-D calculations by Williams and Baker (1997). This 
carefully performed study (involving 7 levels of grid refinement, and evaluation of sensitivity to entrance 
length) first of all showed good agreement with experiments for both 2-D and 3-D flows, thus Validating 
the numerical solutions (using the finite element Continuity Constraint Method). More interestingly, the 
detailed flow calculations disclosed a previously unrecognized flow feature, that of a wall jet at the 
backstep plane that grows in strength with increasing Re. This wall jet is the source of 3-D vortices, and the 
Lagrangian particle tracks of the simulation “reveal a fascinating picture of very complex three-
dimensional flow structures.”  
 This study by Williams and Baker (1997) shows the power of carefully performed simulations applied 
to trustworthy experimental data, and guided by sound theoretical reasoning, to convincingly explain 
complex phenomena. 

10.10 GRAY AREA: “VALIDATION” FROM A CALCULATED BENCHMARK 

 A gray area exists in using a DNS (Direct Navier-Stokes) computational data base for Benchmarking 
“Validation” of simpler turbulence models. Should this be called Verification or Validation? Apparently, 
confidence in the governing equations and the solution (obtained with highly accurate spectral or mixed 
spectral and high-order FDM) is so high that agreement is taken as a Validation. We are reluctant to 
confuse the mathematics vs. science distinction of Verification vs. Validation, but we have no reluctance 
with the word “Benchmark.” 

10.11 GRAY AREA: “VALIDATION” OF AN EXPERIMENTAL TECHNIQUE BY A 
COMPUTATION 

 In Newling et al (1997), a comparison was made between experiment and computation with the object 
not of Validating the computation, but “Validating” the experimental technique!  
 The experimental technique was velocity determination by Magnetic Resonance Imaging (MRI). In 
fact, it is difficult to determine what is the cause for discrepancies - the CFD code, the grid, the 
experimental flow (especially symmetry problems), the “seeding” of the flow with particles that respond to 
MRI, the MRI data acquisition, or the MRI data reduction, which involves significant calculations. The 
authors took the CFD computation as the standard, but in such a case there is no clear-cut “Benchmark” 
and no certainty of what is being Validated or invalidated. Nevertheless, the overall agreement (at least 
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qualitative) builds some confidence in the experiment, the MRI technique, and the simulation, at a 
discrepancy level appropriate for a new technology. 
 Another approach to Validating a new experimental technique by way of simulations, with more easily 
defensible results, is that of Jumper and Hugo (1995); see also Hugo et al (1995) and Jumper et al (1994). 
The paper described the small-aperture beam technique, which is a sparse-instrument method for 
quantifying the instantaneous optical wave front distortions caused by propagation of a laser beam through 
an optically active (aberrating) turbulent flowfield. The method takes advantage of the fact that the 
structures on the wave front convect through the viewing aperture. A numerical simulation of a 2-D heated 
jet, using a discrete vortex model, was used to “explore the validity” of using beam-jitter signals from 
multiple probe beams to obtain a measure of the distortion (optical path difference, or OPD) in a flow 
region where eddy production constitutes the major character of the turbulent flowfield. The concept 
involved is that the numerical simulation provides a Benchmark of high-resolution space and time data for 
the numerical quadrature of the optical propagation. In this situation, high fidelity between the simulation 
and a physical experiment is not strictly required. Since “the essential character of the experimental flow 
appears to be captured by the numerical flow,” the numerical data base can be used to “Validate” the 
experimental technique.  
 Although these types of studies cloud the distinction between Validation and Verification, their value is 
indisputable, semantics aside. 

10.12 THE MADE-2 EXPERIENCE: CAN GROUNDWATER FLOW MODELS BE 
VALIDATED? 

 In Chapter 2, Section 2.2, the paper by Konikow and Bredehoeft (1992), “Groundwater Models 
Cannot be Validated,” was criticized for its excessive pessimism. However, it is true that error tolerance in 
groundwater flow and transport modeling is huge compared to other fields. Rigorous Validation sometimes 
seems to be an insurmountable problem for field data on groundwater flow, and some sites are worse than 
others. A well known difficult case is the MADE-2 experiment.113 
 MADE-2 (for MAcroDispersion Experiment) was a natural-gradient experiment in which water and 
dissolved contaminants (tritium and four organics) were injected into an unconfined aquifer in a two-day 
pulse and monitored for 15 months. The tritium provided a conservative tracer (its decay with a 12.26 year 
half life was easily corrected) while the non-conservative organics (realistic components of fuel spills) 
exhibited sorption and proved to experience significant natural (probably biological) attenuation, which is 
highly beneficial to prospects for natural remediation techniques. MADE-2 was unique in two respects: the 
density of the experimental resolution in both space and time, and the heterogeneity of the site. A 3-D 
sampling network tracked contaminant plumes, and other extensive field measurements make it one of the 
most completely characterized sites in the open literature (Boggs et al, 1990). Compared to other 
experimental field sites, this one is highly heterogeneous. Significantly, it is not known at the present time if 
this is non-representative of nature in general, or just of the instrumented field sites. Which is more 
representative of a typical contamination site is hard to say. What is clear is that, given the limits of present 
field test measuring capability, no combination of Tuning of model parameters, reasonably constrained by 
in-situ field measurements of properties, and within the conceptual model limits of isotropic Darcy law 
flow, will reasonably match the field measurements, without introduction of ad hoc assumptions. 

                                                
113 Boggs et al (1992), Adams and Gelhar (1992), Rehfeldt et al (1992), Boggs and Adams (1992), 
MacIntyre et al (1993), Stauffer et al (1994). 
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 As dense as the field measurements were (e.g., there were 2500 measurements of hydraulic 
conductivity in 77 different boreholes), there is room for improvement with conceivable developments in 
instrumentation. Although permeability measurements were dense, porosity measurements were scarce. 
(Only one measurement was made of specific yield.) These affect transport calculations for time-dependent 
flow. Also, the field measurement technique used to determine permeabilities is considered to be state of the 
art, but nevertheless has a significant limitation. 
 The borehole flowmeter technique involves injection of water through a probe, and measurement of 
resistance to infer permeability. Vertical resolution is achieved, so the data is 3-D. This is important for 
geological formations, since geological layering causes significant heterogeneity (as well as isotropy) in the 
vertical direction. Of course, there is some inevitable smoothing associated with the data, being inherently 
averaged over some volume of space of the scale of the probe itself. The more fundamental limitation is the 
inherent averaging in the circumferential direction. This means that only an effective scalar (non-
directional) permeability can be measured. If the site actually had significant tensor properties (i.e., 
directional preference in hydraulic conductivity) this could not be detected because of instrumentation 
limitations. Recall the statements of Section 9.3: “A conceptual model is needed prior to experimental data 
gathering” and “Every observation is laden with theory.” The step of converting the raw data into 
permeabilities assumes a Darcy Law formulation with scalar (non-directional) permeability. Nor could the 
data be re-interpreted with a different assumed form of the law, since the experimental technique has no 
directional sensitivity.  
 Likewise, the inference of dispersivities is obviously dependent upon the assumed conceptual and 
mathematical model, and upon the scale of definition, which clouds the border between continuum 
definition and discretization (Roache et al, 1997). 
 The well known vertical directional properties (due to geological layering) were probably not a major 
problem, because the horizontal resolution was adequate. In the absence of vertical flow data, groundwater 
modelers typically use a factor of 10 vertical heterogeneity, i.e. a tensor property with vertical permeability 
assumed to be 1/10 that of the measured or otherwise modeled horizontal permeability. For the MADE-2 
site, an average value of vertical anisotropy was calculated as 0.18. The results are usually not very 
sensitive to the ratio, since vertical flow is a secondary effect. In fact, most groundwater flow simulations 
are performed with a 2-D code in which the vertical layer is represented with a single control volume, and 
no vertical flow is calculated. (“Vertical” is also a simplification; the small angle approximation is used, so 
that no flow is calculated through the top and bottom of the layer, but the layer may be inclined slightly to 
the horizontal.) For the MADE-2 experiments, we found (Roache and Rucker, 1996; Roache et al, 1997) 
that in order to obtain good fit with the experimental plume data, it is necessary to use highly anisotropic 
horizontal conductivities (by factor of 15). These were not substantiated by field measurements, nor can 
they be because of the circumferential averaging implicit in the field instrumentation. However, the 
possibility of anisotropy was suggested by aerial photographs of the site that showed some indication of 
previous streambeds in the area, and by some well draw-down tests. Clearly something is going on, since at 
the scale of measurement, the observed flow paths (inferred from contaminant tracers) did not follow the 
head (pressure) gradients; no amount of Tuning with scalar properties can match this behavior. 
 Whereas improvement is conceivable with new instrumentation that would allow measurement of 
tensor properties, it is also clear that there are limits of what can be predicted with mathematics. If 
standards for precision are excessive, it is true that “groundwater models cannot be Validated,” but neither 
can anything else. As stated previously, the concept of Validation must include an acceptable error 
tolerance or level of precision. It is also true that groundwater flows will always have an error tolerance 
large compared to most areas of science and engineering. 
 This does not mean that groundwater modeling is useless, only that it must be used with commensurate 
tolerance. The “predictions” may be of very coarse precision, but still useful compared to no predictions at 
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all. Even very long term simulations can be useful, e.g. the 10,000 year simulations required by law for 
low-level radioactive waste disposal114. Such exercises properly are not conceived as “predictions” at all, 
but as rational bounding exercises. No one knows if or when some luckless future wildcat operator will 
drill into the repository; nevertheless, a rational probabilistic study (including geostatistics) can be made to 
bound the consequences and rationally and quantitatively (vs. emotionally) evaluate the risks and costs, and 
allow comparisons to alternative disposal concepts. 
 As quoted in Chapter 2, Konikow and Bredehoeft (1992) asserted that “In the end, action concerning 
waste disposal will be a judgment; a professional judgment by the scientific community and a judgment by 
society.” As discussed in Chapter 2, Section 2.2, such replacement of modeling by “judgment by the 
scientific community” or scientific expertise is nonsense. Decisions must be made quantitatively; we need 
numbers, whether or not the numbers come from codes. If the decision is based on a classic “back of the 
envelope calculation” based on a simple theory, then that is the model! The only difference between such a 
calculation and a computer code simulation is that the “back of the envelope” model is incredibly limited, 
and makes much less defensible approximations and assumptions than the computer model. Once the 
knowledge of the geophysics scientist is put into usable quantifiable terms, it is a model. And decisions 
cannot be made on non-flow-model geological data. The type of information dear to the hearts of geologists 
- the age of the rocks, or the color of the rocks, or the chemical composition, or the description of earth 
processes that formed the rocks - even if these data were quantitatively accurate, would not answer the 
question of the suitability of the site or of a proposed remediation technique.  
 Groundwater flow modeling is not a choice, it is the only approach. The only remaining question is the 
scale of the “modeling,” from a suite of thousands of 3-D time-dependent computer simulations with 
O(106) cells over 10,000 years, to a “back of the envelope” single-cell steady-state “model.” In any case, 
the models must be Validated in some sense, at some level of accuracy, no matter how crude, in order to be 
quantitatively useful. 

10.13 DYNAMIC STALL WIND TUNNEL DATA: WHO DOES THE TWEAKING? 

 In Salari et al (1994), we presented simulations of 2-D dynamic stall using the Wilcox k- turbulence 
model and comparisons with experiments. The experimental data were unpublished. Agreement with the 
experimental data initially was poor. It became clear from inspection of the data itself (without regard to 
simulation results) that a problem existed, namely, there was significant flow angularity in the tunnel. (This 
was evident from the behavior of the static data on the symmetric airfoil.) We (i.e., the modelers) estimated 
a flow angularity correction from the static tunnel data, not using our simulations, and applied the 
corrections to the input parameters (angle of attack) of our simulation. The result was greatly improved 
agreement with experiment. 
 This kind of data reduction activity creates a gray area - it “muddies the water” of Validation. If such 
corrections are done by the code user (or worse, by the code developer in a Validation exercise) they could 
be subject to snickers and knowing accusations of “tweaking the data to fit the computations.” But if the 
experimenter had done the same calculation and called it “data reduction” instead of tweaking, no one 
would criticize it. The folklore observation is close to literally true: no one believes a CFD calculation 
except the person who performed it, and everyone believes the experimental data and reduction except the 
person who performed it. Cooperation and team work between computer modelers and experimentalists is 
often and properly called for, yet it does open the door to criticism. 

                                                
114 WIPP PA Dept. (1992), Helton et al (1995, 1996). 
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10.14 CONSORTIUM EFFORT AT CFD CODE CERTIFICATION 

 Melnik et al (1995) described a collaborative effort in CFD code assessment that covered Verification, 
Validation, and Certification. The work assessed the usefulness of CFD codes in a production design 
environment. The project was conducted by a U. S. industry/university team working within a consortium 
called MADIC (the Multidisciplinary Analysis and Design Industrial Consortium) with funding provided 
by NASA.  
 The Code Certification plan was developed by a MADIC/NASA review panel and exercised on five 
NASA codes in six Certification projects defined by the configuration tested. (Only one configuration was 
calculated using all five codes, and another using two codes; the remaining three configurations were each 
calculated with a single code.) The panel developed the overall organizational structure and plan for the 
Certification process, and facilitated formation of the Certification teams. Although the term QA (Quality 
Assurance) was not used in the paper, this Certification involved some standardization of metrics, 
evaluation forms, and log forms, separately published in the open literature (Melnik et al, 1994) and was 
essentially a QA exercise. 
 The focus was not on fundamental flow quantities (like velocities, pressures, etc.) but on design 
performance data; this distinguishes Certification from Validation as the terminology was used by the 
authors. (See comments in Chapter 2.) Herein, I use the more general term Validation in some cases where 
Melnik et al used “Certification.” Also, when they use the term “Verification” or even “Verification of 
Code,” they are referring to what has been described (see Chapters 2 and 4) as “Verification of 
Calculations.” (They do not address “Verification of Codes” in the sense used herein in Chapters 2 and 3, 
i.e. demonstration of the order of discretization convergence to a known exact solution.) 
 Aircraft design performance data include lift, drag, moment, maximum lift and loads, flap 
effectiveness, stall prediction, buffet onset, internal flow losses, etc. The authors stated that, despite many 
ad hoc studies in the literature, it was not possible to draw broad conclusions, e.g. the fundamental 
question of how well maximum lift of a simple transport model can be predicted “remains largely 
unanswered.” 
 The six classes of flow configurations simulated follow. (Only four will be synopsized herein.) 
 Isolated Wing 
 Nozzle/Boattail Flows 
 Axisymmetric Nozzle 
 Wing-Body Combination 
 Turbine/Compressor 
 Flexible Wing (steady and unsteady aeroelastic problems) 
 
 The experimental data used was restricted to wind tunnel data because “there is little flight data 
available that was suitable for Code Certification.” This is an impressive statement on the paucity of 
reliable and complete flight data, coming as it does from a consortium including NASA and major 
aerospace firms. The teams assessed experimental data with respect to four “factors/issues”: 
“measurements, test conditions, data accuracy, and wind tunnel installation effects.” The panel noted that 
experimental error estimates should be provided for: 
 model and support geometry dimensions 
 wind tunnel wall and support system interference 
 instrumentation 
 free stream and operating conditions 
 model distortions due to aerodynamic loads. 
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Corrections for wind tunnel interference should include Mach number, incidence, forces and moments. 
They noted that “it is also highly desirable that pressure measurements on all wind tunnel walls and model 
support systems be provided. These can be used either to develop wind tunnel interference corrections or to 
provide boundary conditions in CFD computations that include the wind tunnel configuration in the 
computational model.” They also pointed to “the continuing need for high quality experiments that are 
designed specifically for CFD Code Certification” [Validation]. 
 The panel developed a set of criteria and metrics for the assessments “to add uniformity to the process 
and because Certification of a Code as a design tool requires specific criteria and metrics.” The criteria are 
in four broad categories: “numerical, physical, operability, and range of applicability.” The criteria are 
listed in Figure 10.14.1; see Melnik et al (1995) for further discussion. 
 A sampling of interesting results from Melnik et al (1995) is now given for various configurations. 

10.14.1 Isolated Wing C 

 This was the only configuration for which all five NASA codes were applied. The wing is highly three 
dimensional, with aspect ratio = 2.6, leading edge sweep angle = 45, tip chord/root chord = 0.3, and twist 
= 8.17. 
 The Wing C configuration was simulated for three flow conditions of Mach Number M and angle of 
attack , all at Reynolds Number = 10 million: M = 0.82,  = 5; M = 0.84,  = 4.62; M = 0.85,  = 5. 
Only an algebraic turbulence model was used because only this was common to all five codes.  
 Grid sensitivity [Verification of the Calculation] was investigated using two single-block C-O topology 
grids, one with 49  241  49 (578,641) nodes and the other with 65  321  65 (1,356,225) nodes. 
“Solutions on both grids agreed well with each other” so the coarse grid was selected for code-to-code 
comparisons. Note this is an example of the methodology described in Chapter 5, common especially in 
such cost-conscious design environments, of Verifying a coarse grid calculation by comparison with a fine 
grid calculation for a single nearby problem. In this case, “nearby” signifies not only small changes in flow 
conditions M and  but also a “nearby” code. The coarse grid is then used for the sequence of simulations 
including parametric variations and, in this study, five different codes. 
 Although the stated “Certification” goal was design parameters, comparisons were made for surface 
pressure coefficients (Figure 11 of Melnik et al, 1995). The assessment was that “all [five] solutions agree 
quite well at the inboard station. The cause of discrepancy between ADPAC [code] solutions and others at 
the outboard stations needs to be further investigated.” 
 Comparisons of the five code predictions and the experimental values for aerodynamics coefficients for 
the case M = 0.85,  = 5 are given in Table 10.14.1.1. [The normal force coefficient CN is close to the lift 
coefficient CL at this small , so the experimental agreement for CN is indicative of the agreement for CL 
and is fairly good, 3.2% discrepancy in the worst case. The discrepancy in drag coefficient CD might be 
expected to be worse, but no experimental values were given. However, see the M100 wing-body 
combination results below. The discrepancy in moment coefficient CM is large, 75% in the best case, 88% 
in the worst.] See Melnik et al (1995) for comparison of code economics; total computer times ranged from 
3440 to 22000 seconds, and memory required ranged from 17.3 to 39 mega-words. 

10.14.2 Nozzle/Boattail Flows 

 This geometry consisted of a 3-D aft end with a 2-D converging/diverging nozzle. A seven zone grid 
with a total of 989,595 nodes was used. Verification involved calculations with a grid with 75% grid 
density and another with 125%. Two codes were used, with three turbulence models: an algebraic or “zero-
equation” model (Baldwin-Lomax), and the Baldwin-Barth and Spalart-Allmaras one-equation models. 
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Both codes confirm the now well-documented inadequacy of algebraic turbulent models in separation, 
wakes, shear layers, etc., flows for which they were not designed and where they require ad hoc 
adaptations. A representative comparison of surface pressures is given in Figure 10.14.2.1. 

10.14.3 Wing-Body Combination 

 Melnik et al (1995) provided an excellent lesson on the pitfalls of inadequate initial Verification of 
Calculations, misleading Tuning of experimental corrections, and mixing of Verification and Validation, in 
their case study of the Wing-Body Combination. 
 The configuration is a transport type wing (designated M100) mounted on a simple circular cross 
section fuselage. The mean-chord Reynolds Number was 3.2 million, and boundary layer transition was 
forced at 7% chord in the experiments. The thin-layer Navier-Stokes code TLNS3D was used with two 
turbulence models: the one equation Spalart-Allmaras (S-A) model and the blended k-/k- model of 
Menter (M–T). Original simulations were done assuming full turbulent flow everywhere; later calculations 
enforced transition at the experimental location. The code had options for strictly numerical explicit 
artificial dissipation using either a scalar form of dissipation (SD) or a full matrix form (MD). Although 
“extensive grid studies were conducted in this project” details were given on two grids, 321  57  49 
(896,553) nodes and one doubled in the spanwise k-direction to 321  57  97 (1,774,809). 
 Important to the tale is the fact that an angle of attack correction (for tunnel flow angularity and 
interference) of  = 0.2636 CL was supplied with the experimental data. (Note the point made in 
Chapters 2 and 9, that experiments as well as simulations require computations and therefore include 
numerical errors.) “The one problem noted in the initial phase of the work was attributed to an aeroelastic 
effect; the first computations made predicted a 15% higher lift than the experiment. In particular, the 
section lift at the wing tip section was significantly higher than the experiment,” suggesting that the culprit 
was aeroelasticity, i.e. the wing model was twisting significantly under the aerodynamic load. The 
experimental report stated “measurements on a similar model indicated maximum aeroelastic wing tip 
deflection and twist of about +25 mm and 0.25 nose down.” So the modelers included the correction for 
twist in their computations, and this “significantly improved the lift comparisons.” 
 After this twist correction, the drag polar (the plot of CL vs. CD, parameterized by , Figure 10.14.3.1) 
remained shifted about 69 counts, i.e., the drag coefficient CD was 0.0069 higher than the experimental 
data. Originally, this was attributed to inaccuracy in the computations, but the issue was revisited in 
Melnik et al (1995). 
 The next effort to reconcile the simulations with the experiments involved Tuning of both numerical 
parameters and physical models [i.e. an ill-advised mix of Verification and Validation, in the present 
terminology]. The base line simulation on the 321  57  49 grid had used scalar dissipation (SD), fully 
turbulent flow, and the Spalart-Allmaras (S–A) turbulence model, and had produced drag higher than 
experimental data by 69 counts. A 10 count reduction in this discrepancy was achieved by including 
another physical feature in the simulation, eliminating fully turbulent flow by including boundary-layer 
transition at the experimentally fixed location. Another 30 count reduction was achieved by changing the 
turbulence model from S-A to M-T. After these conceptual model changes, pure numerical changes were 
used, doubling the spanwise grid to 321  57  97 and switching from scalar artificial dissipation (SD) to a 
matrix form (MD). These numerical changes achieved another 20 count reduction in the drag at zero lift 
CD0 (along the abscissa of Figure 10.14.3.1), high by only 12 counts instead of the earlier value of 69. 
 This set of simulation parameters was taken as the new base-line, and attention shifted from the drag 
polar (Figure 10.14.3.1) to generating a new lift curve of CL vs α (Figure 10.14.3.2). Here, the pitfalls of 
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Figure 10.14.1. Criteria /Metrics for CFD Code Assessment for Production Design Environments. 

     (From Figure 7, Melnik et al, 1995.) 
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 CL CD CN CM 
Experiment   0.5400 0.0393 
     
Codes:     

CFL3D 0.5256 0.04097 0.5272 0.0726 
TLNS3D 0.5254 0.04290 0.5271 0.0736 
ENSAERO 0.5212 0.0423 0.5230 0.0739 
ADPAC 0.5217 0.03453 0.5227 0.0686 
OVERFLOW 0.5267 0.04422 0.5285 0.0768 

 
Table 10.14.1.1. Comparisons of five code predictions and the experimental values for aerodynamics 

coefficients of a highly three dimensional isolated wing for the case M = 0.85,  = 5. 
(From Table 1 of Melnik et al, 1995.) 
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Figure 10.14.2.1. Comparison of Surface Pressures at Mid Sidewall for an Aft-End/2-D Converging-

Diverging Nozzle Flow at M = 0.938. (From Figure 13b, Melnik et al, 1995.) 
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Tuning became evident. The old baseline set of simulation parameters had predicted CL vs.  fairly well, 
but had produced the 69 count discrepancy in the drag polar. The new baseline set improved the zero-lift 
drag discrepancy to 12 counts, but now (Figure 10.14.3.2) produced CL vs.  curves nearly 20% high! 
 The resolution of the paradox begins with the recognition that the agreement in CL vs.  of the original 
baseline was somewhat illusory. The aeroelastic effect (0.25 twist at the wing tip) had been “substantiated 
by matching the experimental lift, so that it is not surprising that the original base-line computation (solid 
circles) matched the experimental lift curve.” The sleuthing then continued (see Melnik et al, 1995 for 
details) to conclude that the source of the problem is the under-estimation of aeroelastic correction to angle 
of attack provided in the experimental data. This correction had been based on under-resolved simulations, 
i.e. on inadequate Verification of the calculation inherent in the experiment. 
 The team forcefully concluded that Verification of the Calculation should precede Validation and 
Certification. Especially, this study provided an example of the error and confusion propagated by faulty 
experimental data reduction calculations, including the pernicious practice of judging grid refinement 
adequacy simply by agreement with experimental data. “This experience clearly indicates the importance of 
the three steps (i.e. Verification [of the Calculations], Validation and Certification) in the assessment of a 
code as outlined in this paper. Before Certifying a code for design, its numerical accuracy must be 
established (i.e. Verify that the grid used is adequate) and the turbulence/transition model must be 
Validated. Only then can the Certification [Validation] process begin.” 
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Figure 10.14.3.1. Drag polar for M100 Wing-body Combination; Experimental Data and Simulations 
Using Code TLNS3D. S-A = Spalart-Allmaras model, M-T = Menter blended k-/k- model. SD = scalar 
artificial numerical dissipation, MD = matrix dissipation. (From Figure 19 of Melnik et al, 1995). 
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10.14.4 Turbine/Compressor 

 The study in Melnik et al (1995) of Turbine/Compressor flows involved eight different configurations. 
The grid convergence study involved 2-D slices with grid density ranging from 193  33 to 385  81. Even 
so, the results (Figure 10.14.4.1) showed “the strong dependence of the total pressure loss coefficient 
(mixed-out) on the grid spacing at an exit Mach number of 0.90.” 

The “fine mesh prediction of 94.1% peak efficiency agrees fairly well with the measured value of 
93.4% and occurs at essentially the same mass flow relative to the choking flow (9.990 predicted vs. 0.989 
measured).”  
 The team’s assessment of the single code used noted that “ADPAC is relatively easy to apply by a 
first-time user,” and gave this curious, virtually universal statement that “Moderate CFD experience is 
suggested to achieve optimal results.” [I should hope so.] Less obviously, they noted the need for “serious 
debugging of less used options” [a Verification of Code issue, in present terminology], for better than an 
algebraic turbulence model [a Validation issue, in present terminology], and for “more consistent version 
control” [a Certification or Code QA issue, in present terminology]. 
 

SOLID SYMBOLS FULLY TURBULENT
OPEN SYMBOLS EXP. TRANSITION



EXPERIMENTAL DATA
S–A, SD (321 57 49) 
M–T, SD (321 57 49) 
M–T, MD (321 57 49) 

CORRECTED  EXP

CL

0.6

0.4

0.2

0.0
–3.0 –2.0 –1.0 0.0 1.0 2.0 3.0

 
 
Figure 10.14.3.2. Lift Curve for M100 Wing-body Combination; Experimental Data and Simulations 

Using Code TLNS3D. S-A = Spalart-Allmaras turbulence model, M-T = Menter 
blended k-/k- model. SD = scalar artificial numerical dissipation, MD = matrix 
dissipation. “Corrected  Exp.” refers to the new base-line set of simulation parameters, 
which had produced improved agreement with the experimental drag polar. (From Figure 
20 of Melnik et al, 1995). 
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10.14.5 Selected Observations of Melnik et al 

 A brief selection of observations from Melnik et al (1995) follows. Some are repetitious here, but 
deserve to be. 
 “Certification is an expensive and time consuming process that is currently carried-out in piece-meal or 

ad-hoc fashion in the [aerospace] industry. Our experience in the project has demonstrated, at least to 
us, that a consortium or other type of teaming approach is a very effective way to accomplish code 
Certification. It is cost effective because it reduces duplication of effort, it accelerates technology 
transfer to the designers who are the ultimate users and it promotes code developers to do the right 
thing through the generation of consistent and broad based industry feedback.” 

 “Code assessment (at the Verification [of Calculations] step) requires computations on grids that are 
fine enough to reduce numerical errors below those from other sources. Our studies in the project 
clearly established that this is a necessary first step in the assessment process. Failure in the 
Verification step will, at best lead to inconclusive results, and at worst to misleading or erroneous 
assessments.”...“In this project, because we were able to use grids that were sufficiently fine, we were 
able to observe first-hand the pitfalls of working with inadequately Verified codes [Calculations].” 
From our experience on this project it is clear that proper Verification [of Calculations] is an 
absolutely necessary first step in the code Certification process.” 

 The complete Certification process cannot be done in general or once-and-for-all but must be carried 
through for each general class of configurations...and/or physical phenomena...Each of these situations 
involves differing grid and physical modeling requirements that must be addressed in the [Verification 
of Calculations, Validation, and] Certification process.”...“Certification has to be thought of as an 
ongoing activity...” 
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Figure 10.14.4.1. Loss Coefficient for a Turbine/Compressor Flow as a Function of Exit Mach 
Number, Showing the Effect of Grid Density. (From Figure 23 of Melnik et al, 1995). 
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 “Data archiving is an important aspect of the code Certification process...”...“The data should be 
archived in a standardized form...”...“Lack of a process of archiving Certification data is hindering the 
Certification process and the transfer of CFD technology to the industrial design community.” 

 All the studies pointed to the inadequacy of simple algebraic turbulence models. 
 “The prevailing view seems to be that CFD cannot be trusted for absolute values of drag. Our results, 

at least for the simple M100 wing/body combination, indicate that the TLNS3D [code] can predict drag 
to within 5% on a relatively crude 1.7 million point grid.”...“This conclusion was reached only after a 
careful grid study in the Verification stage on the assessment.” 

 “All teams pointed to the critical need for additional experimental data for CFD code Certification.” 
 “Larger computing resources will be needed to treat problems of greater complexity...” 
 “Support is needed for the acquisition of suitable experimental data as well as for the Certification 

process itself. Unfortunately, this NASA supported project is the exception and not the rule.” 

10.15 SIMULATION TEAM RESPONSIBILITIES IN VALIDATION/CERTIFICATION 

 Rizzi and Vos (1996) noted that the engineering activity of CFD simulations involves the interaction of 
three distinct teams. 
1. Code DevelopersSoftware engineers, mathematicians, and  

physical model developers. 
2. Physical model experts who carry out Calibration and Validation. 
3. Users, who are [generally] not experts in either the code nor modeling,  

but are application specialists. 
 
 Rizzi and Vos stated that, of the four steps (Verification, Validation, Calibration, Certification) 
required to build credibility, Verification [of the Code] and Certification are the responsibility of Team 1, 
the Code Developers. (Recall that, as described in Chapter 2, Rizzi and Vos do not include Validation in 
their concept of Certification.)  
 “The work of the second and third teams are interrelated because Calibration and Validation are 
specific to a particular design application and user community. It is the task of the second team to Calibrate 
a code, and through Validation determine its range of applicability, which then has to be transferred to the 
end users. Validation and Calibration are related. In Calibration you improve the results of your Validation, 
at the expense of a general Validation because you modified or specialized the physical model to make it 
work for a certain type of generic flow. In Validation you identify all the generic flow types that make up 
the complex flow and then choose the appropriate model to make the predictions. The reasoning behind this 
approach is inductive, and therefore must be Validated. The key activity, which is also the most demanding 
and expensive, is Validation.” 

10.16 SHIFTING RESPONSIBILITIES AND GRAY AREAS 

 Discussion of shifting responsibilities is a practical consideration, even though it might appear 
confrontational (vs. team-oriented). Consider the common situation (e.g., cited in Barber, 1996) wherein a 
Validation exercise shows discrepancy between CFD simulation and experiment, and the cause is agreed to 
be probe interference. That is, the experimental flow is perturbed significantly by the introduction of the 
experimental measuring apparatus. 
 
 Should the CFD modeler volunteer to model the perturbed flow about the probe? 
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 If he does, the responsibility for the discrepancy shifts from the shoulders of the experimentalist (whose 
job it is to minimize probe interference effects, calibrate them, and if possible account for them in the data 
reduction process) to the shoulders of the modeler. Unfortunately, the probe flow introduces another scale 
of resolution, and possibly another dimension into the modeling problem. (For example, the undisturbed 
flow may be axisymmetric 2-D, but a boundary layer probe makes it fully 3-D.) 
 This is a QA and engineering management issue. The modeler’s decision will be influenced by the 
professional environment, levels of trust (will “responsibility” become “blame”?) and personal values and 
goals. 
 More difficult assignment of responsibility will occur in gray areas. For example, in a comparison with 
wind tunnel data, if the experimenter claims uniform free-stream flow conditions, then any deviation from 
this condition is the responsibility of the experimenter. But it would not be unreasonable to expect a CFD 
code to accommodate some non-uniformity in free-stream conditions. (Unlike the probe example, this 
would not introduce another scale of flow variation, although it might destroy axisymmetry.) If the CFD 
code cannot include variable free-stream conditions (due to limitations on input data simplicity, memory 
requirements, or the fundamental formulation of the equations) then the responsibility (blame?) shifts 
towards the modeler. 

10.17 WUA BENCHMARKS IN 1994 AND 1996 

 The World User Association in CFD sponsored conferences in 1994 and 1996 (Muller, 1994; Muller 
and Loffler, 1996) that included benchmark calculations by commercial code vendors. The problems were 
defined by a WUA committee, with suggestions solicited from true industrial users. In spite of much work 
and expertise, difficulties were experienced with inadequate problem definition. These included undefined 
geometry and undefined inflow boundary conditions needed for turbulence models. By commitment and 
attention to feedback from the first conference (de Vahl Davis, 1994), the committee succeeded in 
correcting many difficulties for the next meeting.  
 The test cases provided good range of industrial fluid dynamics, including a generic automobile model, 
flow in a chemical smoke flue, impinging turbulent jet flow with heat transfer, and a stirred reactor tank. 
The biggest difficulty with the WUA comparisons, common to all such exercises, was that any vagueness 
in problem specification (e.g., inflow turbulence quantities), no matter how realistically representative of 
the industrial modeling environment, means that the exercise becomes a comparison of the skills of 
analysts, when what is desired is a comparison of codes. 
 Note again the false criticism of turbulence models and CFD, previously discussed. No reasonable 
turbulence model requires more information (boundary conditions and initial conditions) than the physics. 
In fact, all turbulence models are simplifications of the true physics, i.e. the full Navier-Stokes equations, 
and therefore may be expected to require less information than required to rigorously define the problem. 
Thus, if a CFD turbulence model shows that the results of interest (e.g., distance to reattachment for a 
backstep separated flow problem) are sensitive to some parameters (such as the upstream turbulence 
kinetic energy distribution) and if this model has been Validated on this point, then the fact that some 
experiments have not measured this quantity indicates that the experimenters have been running a test with 
uncontrolled variables. (No wonder agreement between facilities is poor!) Nevertheless, these undefined 
variables from incomplete experiments impede Validation, making the agreement with experiment or lack 
thereof dependent more on engineering guesswork and intuition than on reliable data. 
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10.18 CFD TRIATHLONS 

 The CFD Triathlons organized by Freitas (1993c,1995b) and sponsored by the ASME were designed 
to apprise potential customers and users of the capabilities of CFD commercial codes. Rather than simulate 
complex industrial fluid dynamics problems with the difficulties noted above (Section 10.17), the vendors 
were invited to submit their simulations for fairly simple, unambiguously defined, somewhat academic 
problems. Freitas did not evaluate the results but just let the papers stand for themselves. Even though the 
problems were simple, some of the discrepancy can be attributed to the skill of the modelers as well as 
codes. 
 These observations come to mind. 
1. Verification of Calculations were generally inadequate, with most of the papers reporting results from 

only one grid on all or some of the problems, or minimal non-quantified reference to other studies. 
2. Often, CFD commercial codes show poor accuracy, usually due to the sacrifice of accuracy to 

robustness.  
3. A general point, aside from the evaluation of commercial codes or research codes, etc. is that user 

training is required. (See also Rizzi and Vos, 1996, and Section 10.23 below.) 
4. There was a wide range of computer times required to solve the same problem with roughly similar 

grid densities. 
5. Some results were clearly erroneous, and others differed from one paper to another. 
6. Although the flows were laminar, Validation (i.e., determination of whether or not the “right equations” 

were used) was still an issue, because of the assumption of 2-D flow in two of the problems. 

10.19 CANADIAN CFD SOCIETY TEST CASE 

 A. Pollard organized a comparison exercise of commercial and research CFD codes for the 1995 
meeting of the CFD Society of Canada (Thibault and Bergeron, 1995). The problem was one of turbulent 
heat transfer in the vicinity of stagnation point flow. It was intended to be a true prediction exercise (rather 
than “postdiction”), i.e. the experimental data was not made available to the participants beforehand. 
However, some of the participants recognized the problem specification and identified the journal paper 
with the experimental data. Not surprisingly, their results were best. (See Section 9.2.4.) As is often the 
case, some of the turbulence information required was missing from the experiment, so the problem 
specification had to be supplemented by the experience and intuition of the modelers. 
 As is always the case with non-trivial turbulent flow cases, the results were generally unsatisfactory. 
Agreement with experiment was generally poor, and agreement between different modelers using the same 
turbulence model was also poor. The exercise was worthwhile, again showing the unsatisfactory state of 
experimental data, especially for turbulence measurements, and the lack of Verification of Calculations. 

10.20 WORKSHOPS 

 10.20.1 Older Workshops 

 Workshops have been a part of CFD for many years. A workshop for Verification and/or Validation 
may be described as “a collective learning process where a group of researchers actively working on a 
sharply defined topic meet to discuss in detail their problems and experiences and make direct comparisons 
and critical evaluation of their computational and experimental data.” (Rizzi and Vos. 1996.) The 1980/81 
Stanford Conference widely known as the “Stanford Turbulence Olympics” (Kline et al, 1981a,b) is a 
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premier example. Rizzi and Vos (1996) reviewed several such activities, and noted that a strong case exists 
for collaborative Validation, involving a number of different codes and at least two rounds of analysis. (See 
also Section 10.23 below.) Another good example is the transonic airfoil workshop of 1987 (Holst, 1987). 
 Marvin (1995) noted that an important aspect of Validation strategy is the “cataloging, documentation, 
and assessment of experimental databases. Such information can be used in workshops to assess code 
development and Validation, by CFD design groups, who must Validate codes used in the design process, 
and by planners of future experimental programs, who should be aware of existing data.” He cited AGARD 
(1979, 1985), Kline et al (1981a,b), and Settles and Dodson (1991) as precedents of Validation 
Workshops. Porter (1996) also contains references to Primary Workshops, Databases, etc. The JANAFF 
Airbreathing Propulsion Subcommittee, Airframe Integration Panel has sponsored a series of workshops on 
CFD Code Validation/Verification and “has found the subject to be one of major interest and impact on the 
aerospace community as a whole.” Proceedings are published yearly by the Chemical Propulsion 
Information Agency (CPIA) under JANAFF auspices, e.g. CPIA Publication 551, etc. See Porter (1996) 
for discussion. 

 10.20.2 §  Lisbon III V&V Workshop 

 The series of three Lisbon Workshops (Eça and Hoekstra, 2004, 2006b, 2008) were exceptional 
experiences. The first focused on Calculation Verification for a realistic problems of RANS turbulence 
flow over a backstep. The Workshop organizers provided non-orthogonal boundary fitted grids, some of 
which were deliberately problematical in order to stress the uncertainty estimators. The second workshop 
also covered Calculation Verification but expanded to include Code Verification by MMS using 
manufactured solutions for several RANS models provided by the Workshop organizers and committee; 
these manufactured solutions in themselves constitute a valuable contribution to the V&V literature (Eça et 
al, 2007b,c). The third Workshop covered all three V&V aspects, using the often cited experimental data 
on the turbulent backstep flow by Driver and Seegmiller (1985) and the brief version of the Validation 
Uncertainty methodology of ASME ANSI Standard V&V20 as described in the following Chapter 11. 
 Besides these technical descriptions, all three Workshops were judged remarkably successful and a 
paradigm of Workshops in general by virtually all participants. The Workshop was narrowly focused on 
V&V from the modelers’ viewpoint (rather than much discussion of experimental work). All the 
participants shared the same V&V ethic of striving for high quality work and conscientious effort to 
estimate uncertainties. Most notably, the organizers arranged for the ratio of discussion time to formal 
presentation time to ~ 1. That is, these were truly Workshops, not just technical paper presentations. Even 
the Proceedings and the AIAA summary papers (Eça et al, 200, 2007a, 2009) exhibit the deep level of 
discussion and sharing of experience that occurred during the two full days of each Workshop. Anyone 
planning to organize a V&V Workshop would do well to consider this approach.  

 10.20.3 §  INL Nuclear Systems V&V Workshop 

 The “Verification and Validation for Nuclear Systems Analysis Workshop” (Imel and Mousseau, 
2010) convened in Idaho Falls (USA) for five days in July 2008, sponsored by the U.S. Idaho National 
Laboratories and three other academic and research institutions. While some of the presentations were 
focused on V&V as intended, others were more general experimental papers with no presentation of 
experimental uncertainty. Only one experimental paper included thorough experimental uncertainty as 
described in an earlier publication (McIlroy et al, 2006). Not all participants shared the V&V ethic, e.g. 
declaiming responsibility for verifying commercial codes for their own high-consequence applications. 
Most participants agreed that the sessions devoted to discussion rather than formal presentation were most 
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valuable, and several experimentalists stated that they benefited from the Workshop atmosphere with an 
enhanced appreciation for the modelers’ needs for accuracy and especially experimental uncertainty 
estimates. 

 10.20.4 §  AIAA Drag Prediction Workshops 

 The AIAA Drag Prediction Workshops (http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/) are an 
exemplary series of ongoing Workshops with a narrow focus. As an example of continually updated 
assessment of computational state-of-the-art, they are perhaps unmatched. See Section 10.24 for 
description and references. 

10.21 AGARD 1988 VALIDATION OF COMPUTATIONAL FLUID DYNAMICS 

 In May 1988, AGARD (the NATO sponsored Advisory Group for Aeronautical Research and 
Development) hosted a conference/workshop entitled Validation of Computational Fluid Dynamics in 
Lisbon, Portugal. The proceedings (AGARD, 1988) covered 3 invited papers, 34 contributed papers, 16 
poster papers, and a Round Table Discussion. The lengthy proceedings provided an overview of the status 
of aeronautical Validation, including terminology, as of 1988. Session topics included: CFD Validation 
Concepts; Airfoils; Vortex Flows; Wings/Wing Body; External High Speed Flows; Turbomachinery; and 
Intakes and Ducts. 
 The proceedings are worth perusal by anyone active in CFD aerodynamics, yet some deficiencies are 
noteworthy. The semantic problems go beyond the usual ones, approaching “epistemological chaos.” Not 
all the papers even treat Validation - some just present CFD methods, some present only experimental data 
that might be used for Validation, but were not designed specifically for CFD Validation. Some are not 
well done, and few address general concepts. Some common themes emerged from the specifics of grunt 
work, including these. 
 There is real value in using some definitions (though not overly precise)  

to distinguish concepts. 
 Good experiments are hard to find. 
 It is best to have experiments specifically designed for CFD Validation. 
 As a corollary, cooperation is required (and was often evident) between  

computationalists and experimentalists. 
 There is a wide range of opinion as to what one may honestly describe as  

“good agreement with experiments” 
 Navier-Stokes codes are better than Euler codes for predicting separation. [!] 
 Boundary layer transition was never modeled, neither in the CFD computations  

nor in the wind tunnel “modeling.” 
 The candidate definitions presented have already been discussed in Chapter 2; in AGARD (1988), 
semantic clarity was lacking. Some of the participants certainly grasped the essential distinction between 
mathematics and science (e.g. see the remarks by K. Gersten and by L. Roberts in the Round Table 
Discussion) although no one used the precise terms Verification and Validation. (The conference was held 
in 1988, and agreed-upon distinctions were still emerging.) On the other extreme, even the standard terms 
consistency, stability, and convergence were misused. “Consistency” was confused with behavioral errors 
(Roache, 1998b) so that the desirable, but not at all necessary, property of an algorithm identically 
preserving uniform free-stream flow at all discretizations became confused with recovering of derivatives 
from differences. Likewise, “stability” was confused with parameter sensitivity. Definitions of “stages of 



Chapter 10. Validations by Error Bars 
 

 

336 

CFD code development” may be expected to be somewhat vague managerial terms, but the criteria of 
“value exceeds expectations” is irrelevant, having nothing to do with the code per se but only with previous 
managerial prognostications. The claim that [iterative] convergence acceleration schemes constitute a 
limiting factor to accuracy is not true; to the contrary, faster iteration convergence will make it easier to 
achieve near steady-state solutions and therefore may be expected to slightly improve accuracy. Empty 
statements are common, such as “today’s computers do not permit total elimination of this error source” 
related to grid density - as if tomorrow’s computers will? There was significant lack of consensus on the 
difficulty of gird generation, with one participant claiming that “It is now clear that the construction of 
grids around complex configurations is not a major problem anymore.” This is at a conference in 1988! 
Generally, there were lots of lists with incomplete coverage. Many of the papers noted the now familiar 
need for convincing grid convergence in order to evaluate the experimental comparisons. 
 In the AGARD Proceedings, Bradley (1988) described four categories of experiments related to CFD 
development.  
 
Experiments designed to 
1. understand flow physics 
2. develop physical models for CFD codes 
3. calibrate CFD codes 
4. validate CFD codes.  
 
Each of these experiments should be designed differently with regards to variables measured, measurement 
resolution, accuracy required, etc. 
 On the quality of Validation experiments, the respected experimentalist S. Bogdonoff gave (in the 
Round Table Discussion) an attention-getting evaluation. “I am appalled at the use of experiments that 
were made over the past 40 years to do computational ‘Validation’. Those experiments were carried out to 
do specific things for many reasons, but they were surely not designed for computational Validation. I 
know of very few experiments which were carried out 30 years ago or 20 years ago, or even 10 years ago 
that have the quality, the basic resolution, and the parameter variations that are required for computational 
Validation. I would suggest that developing a code and then looking for some experiments to Validate it is 
unreasonable. The experiments that you need to Validate a code, I believe, have to be designed specifically 
for that task. You should have computations to tell you what kind of details you need from the experiment, 
what range of parameters, what kind of instrumentation you need to really test if the code is worth anything 
or not.” Bogdonoff also stated that, as an experimentalist, “the major contribution that I have gotten from 
computation...is that what I thought was important in the experiment was not the physics that turned out to 
be critical.” This is strong testimony on the effectiveness of simulation, recalling the statement of Hamming 
(1962): “The purpose of computing is insight, not numbers.” 
 In regard to what constitutes “good agreement,” we am not talking about the differing needs for 
differing end uses, but differing standards of quality for the same end use. The laxness of some computors 
was simply shocking. 
 It should come as no surprise that Navier-Stokes codes are better than Euler codes for predicting 
separation. On the contrary, one would be forgiven for expressing surprise that use of Euler codes was even 
attempted, since inviscid flows do not separate. What happens is that discretization introduces viscous-like 
behavior. Often in Euler codes it is an explicit artificial viscosity that is very close to physical viscosity; 
sometimes it is implicit effects that are only analogous, not strictly equivalent, to viscosity; or sometimes it 
is not really viscous-like but just some kind of numerical error that allows separation to occur. If the body 
has a geometrical feature that practically fixes the location of separation (i.e., a sharp leading edge delta 
wing ) then virtually any viscosity, physical or otherwise, gives a reasonable answer. Unfortunately, people 
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then push their luck, and try some rounding of the leading edge. If that works, why not a normal airfoil? 
The reason why not is that the artificial viscosity, and therefore the separation location and the entire 
solution, depends on the grid spacing. As the grid is refined, the solution does not converge to a physical 
answer. (This discourages grid refinement studies.) Nevertheless, attempts persist, and ill-conceived Euler 
solutions of separation are as persistent as 1st-order upstream differencing, or crabgrass. Of course, if 
Euler codes are built with zonal boundary layer submodels, grid convergence can be meaningful. 
 Boundary layer transition was never modeled because it is very difficult, both computationally and 
experimentally. Instead, transition was always induced artificially in the wind tunnel “modeling” with a trip 
wire or other device. This fixed transition location is then input to the CFD model, often with some 
blending required (over ~5 cells) to maintain stability. This is a wise Validation approach, because to use 
“natural” transition would hopelessly confuse the Validation procedure. Transition is known to be 
devilishly sensitive to wind tunnel idiosyncrasies, even in high-quality tunnels specifically designed for 
transition studies. In tunnels designed for gross measurement of aerodynamic coefficients, it is a very 
loosely controlled phenomenon, unrepeatable from one tunnel to another, or even from one run to another in 
the same tunnel. Also, the CFD codes (certainly those in 1988) did not have transition models in them. This 
does not mean that the modelers were ignoring the importance of transition, just that they did not know how 
to handle it. The Validation of a CFD code is then performed with the understanding that it cannot be 
applied to a new free-flight case without addressing the transition issue. Fortunately, tremendous progress 
has been made in the last few years in predicting transition (e.g., see Haynes et al, 1996; Reed and Saric, 
1989; Reed et al, 1996). It may soon be possible to embed a transition module in full Navier-Stokes codes. 
 For details on what is involved in the careful design of experiments for CFD Validation, the AGARD 
(1988) papers by Elsenaar et al (1988), Firmin and McDonald (1988), and Kordulla et al (1988) are 
recommended. 

10.22 CASE STUDY FOR CFD CODE VALIDATION METHODOLOGY 

 Aeschliman and Oberkampf (1997) presented details of their case study for CFD code Validation 
methodology. The project was a long term, coupled CFD and experimental effort initiated at Sandia 
National Laboratories–Albuquerque in 1990, and referred to as JCEAP for Joint 
Computational/Experimental Aerodynamics Program. The study involved Validation of CFD codes using 
experiments in long duration hypersonic (M = 7.84) wind tunnels, which experiments were specifically 
designed for the Validation. The methodology will be of interest far beyond hypersonic wind tunnels, 
however. Such a project represents a major commitment to quality work on the part of all personnel and 
management. As noted above in Section 10.6, synergism arises when experiments are designed specifically 
for CFD Validation, and much was learned about both computational and experimental techniques. 
 The geometry used was a spherically blunted cone with a sliced aft region and flaps at the rear of the 
slice. With varying flap angles, this relatively simple yet modular geometry generated a wide range of flow 
complexity, from simple attached flow to very complex flow with massive separation and strong shock 
wave/boundary layer interactions. The flow was laminar everywhere, as determined by flow visualization 
techniques. Especially pertinent to the evaluation of tunnel flow angularity and nonuniformity errors was 
that the model was rolled, to take data at 0, 90, 180 and 270 degrees, and its axial location within the test 
section was also varied. This unusually thorough approach used in conjunction with 96 pressure ports, 
various flap angles, and repeat runs produced a massive amount of comparatively high-resolution data. The 
authors performed a thorough experimental Uncertainty Analysis, obtaining an experimentally based 
statistical estimate of variance components of surface pressure measurements, including the effects of 
model geometry uncertainty. 
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 Full details of the statistical methods and conclusions will be found in Aeschliman and Oberkampf 
(1997), and this report is highly recommended. They determined unambiguously that “the dominant 
contributor to uncertainty in these surface pressure measurements is due to the nonuniformity of the tunnel 
test section flow field. Although we had previously suspected this was the case, the present statistical 
analysis quantitatively demonstrates it.” Their suggestion is that this result probably applies to other 
hypersonic facilities, and perhaps to transonic facilities as well.  

10.23115   DYNAMIC DATABASES FOR VALIDATION 

 Rizzi and Vos (1996) presented early their vision for a process of systematic Code Validation that 
involves dynamic, interactive databases stored and accessed on the World Wide Web. The particulars came 
from their experience in the European aerospace community, but the general concepts are applicable to all 
areas of engineering and science involving the numerical solution of partial differential equations. 
 As noted earlier, Validation of a Code, if it has meaning at all (as opposed to Validation of a particular 
Calculation) depends on the concept of a nearby problem, and this concept will fail near parameter 
“transition” boundaries, which should be identifiable from knowledge of the general field. (See list in 
Chapter 9; see also the cautionary examples of difficulty cited earlier in Section 10.7.) The first 
requirement in the vision of Rizzi and Vos (1996) is for the establishment of a detailed taxonomy of flows 
for the subject application field, establishing for the database users sets of flow cases acceptable for 
Validation of “generic flow cases” (what are herein described as “nearby” flows). Rizzi and Vos stated: 
“The taxonomy is also the basis upon which the code user transfers credibility from previously Validated 
generic flow cases to the simulation at hand.” 
 Other elements of their vision for the Dynamic Database for Validation are these. 
 Creation of a detailed flow taxonomy for the applications area. 
 Establishment of an electronic database on the World Wide Web. 
 The database performs these functions: 
 Archives the experimental data from trustworthy experiments; 
 Provides easy access and full public scrutiny to the experimental data for Validation exercises; 
 Provides easy access and full public scrutiny to the previous Validation computational data; 
 Provides data manipulation (plotting) software; 
 Allows for ongoing full public discussion of the information. 
 
 The essential first requirement for a taxonomy of flows follows what Rizzi and Vos denoted as the 
“Stanford Paradigm” (Kline et al, 1981a), which they consider (and most would agree, myself included) to 
be a “landmark event.” They noted the following other features of the Stanford Paradigm, which “still 
stands today as complete in the sense of providing all elements necessary for understanding the state of the 
science and for carrying our CFD validation.”  
 Taxonomies that organize 

 flows, 
 methods of modeling, 
 numerics. 

 Classification of experimental data and computational data through a review process. 
 Comparison of all computational results with experimental data and with  

other computed results, case by case. 
                                                
115 The order of Sections 10.23 and 10.25 have been exchanged from VV1, and Section 10.24 is new.. 
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 Examination, analysis, and discussion of the comparisons. 
 Overall synthesis of the findings by distinguished experts. 
 Storage of all data in specified machine format. 
 
 Rizzi and Vos also stated that the Stanford Conference was “a very professional attempt to give an 
overview of the state of the art in computing complex turbulent flows in 1981 using the experimental data 
base established for this purpose in 1980.” While I agree whole-heartedly with this evaluation, I note some 
limitations of this very professional attempt. (I served on the Evaluation Committee of the Conference.) 
These limitations have a lesson for future projects as well. The project did not really represent the state of 
the art of computing turbulent flows because not everyone active in this area participated in the conference; 
a notable absentee was any representative from the Los Alamos group, who had in fact pioneered the 
development of two-equation turbulence models (Harlow and Nakayama, 1967), what had by the time of 
the Stanford Conference been re-named as the k- model. Of those who did participate, not all computed all 
the flows for which they were equipped. The most obvious reason is that participation in such an activity 
requires much effort, time, and money. Other understandable personal reasons are reluctance to subject 
one’s models and work to so much public scrutiny and inevitable comparison, avoidance of confrontational 
discussion, disagreement and distrust about the evaluators, reluctance to loose one’s competitive advantage 
by disclosure prior to journal publication, etc. The taxonomies of flows and modeling were excellent, but 
the attempted taxonomy of numerics proved to be inadequate because many methods are hybrids of the 
various taxonomic categories (e.g., implicit vs. explicit). Many participants felt the scope of the conference 
was overly ambitious, and that more narrowly focused problems would have been preferable; in fact, this 
has been the trend in later workshops (see Rizzi and Vos, 1996 for examples). Finally, as noted in Chapter 
1 and elsewhere, the lack of Verification by the participants made firm conclusions on the relative merits of 
the turbulence models virtually impossible (Kline et al, 1981b). 
 Nevertheless, the Stanford Paradigm, as well as its experimental data base, still serves well, a 
remarkably long-lived success considering the advancements in computers, communications, and modeling 
in the intervening years. The following major additions in the Rizzi and Vos vision are enabled by advances 
in technology since the 1981 Stanford Conference. 
 A dynamic (rather than static) database that  

 can be updated,  
 can be interrogated by the user with graphical tools,  
 can be searched electronically (via keyword files), 
 can provide some generation of synthesis documents [automatic report preparation], 
 can include reports, pictures, videos, 
 can include expert evaluation and advice on  

 appropriate level of modeling complexity for a user’s needs, 
 specific computational codes, and 
 specific computational procedures,  
 thus providing on-line user training and 
 serving as an electronic “Handbook on How to Use CFD.” 

 
 The updating feature is extremely important. As Rizzi and Vos noted, traditional methods of 
disseminating experimental data are actually quite inadequate. The artificial length restriction on journal 
articles means that the data published is often incomplete and that precision is greatly reduced because of 
small Figures. A dynamic, electronic archive removes these restrictions, and further allows access to “raw 
data” and details of the data reduction (numerical) techniques used to process the raw data into final data. 
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This would allow later refinement of the data reduction; for example, someone (the original experimenter, a 
reviewer, or someone attempting a Validation of a Code) could improve upon the ideal gas assumption 
made in the original data reduction by incorporating real-gas effects. Generally, the dynamic aspect of the 
database allows for the iterative nature of the scientific process to proceed more naturally, without the 
artificial constraints of hard-copy publications that sometimes cast errors in concrete. Describing previous 
static databases, Rizzi and Vos (1996) note that “In some cases the input description is incomplete and the 
output format for the results [has] been specified imprecisely.” 
 The ASME Journal of Fluids Engineering, under the editorship of D. P. Telionis, has established a 
dynamic database at the Virginia Polytechnic Institute and State University. Selected experimental or 
numerical papers are accompanied by data deposited in the Data Bank, accessible at either  
telnet scholar.lib.vt.edu or http://scholar.lib.vt.edu/. This system also contains a bulletin board where 
readers can read discussions and contribute their own on specific papers. 
 A significant difficulty, at least in the aerospace sector and likely in other sectors of industrial fluid 
dynamics, is that some databases are not accessible from the public domain, e.g., the HAEDB system 
described in Rizzi and Vos, 1996. They noted: “In addition, the most sensitive data is saved off-line, and 
can only be accessed after intervention of the HAEDB manager.” 
 The most important first step, the development of a taxonomy of experimental results, will be specific 
to sub-fields within the fields of electrodynamics, chemistry, biological systems, laser physics, structural 
dynamics, fluid dynamics, etc., etc. The fluid dynamics category would itself be much too broad for a 
single database. There is little in common between the fluid dynamics of ocean current modeling, free-
surface wave interactions, groundwater flow and transport in porous media, dusty aerodynamic flows, 
hypersonics, free convection, etc. Within the category of Industrial Sectors, Rizzi and Vos (1996) note that 
ERCOFTAC (the European Research Community on Flows, Turbulence and Combustion Association) 
created an Industrial Advisory Committee. One of their tasks is to define the taxonomies for flows in 
different industrial sectors, such as Aerospace, Power and Energy, Process Engineering, Automotive, 
Environment,... 
 Even restricting the dynamic database to the sub-field of aerodynamics would be to broad. Restricting 
themselves to the aerospace sector and compressible flows that are either fully turbulent or for which the 
transition location is known, Rizzi and Vos (1996) offered “a glimpse of what would be a preliminary 
attempt to categorize features,” presented here in Table 10.23.1. 
 Besides this preliminary taxonomy, Rizzi and Vos gave another list of phenomena pertinent to 
classification of fluid dynamics classes: “turbulence, relaminarization, retransition, catalyticity, chemical 
kinetics, combustion, shock interactions, shear-layer mixing, separation, secondary flows, etc.” Obviously, 
this preliminary attempt was presented to give the flavor of the task; the result is neither unique nor 
complete, nor would it ever be - the dynamic aspect applies to the taxonomy itself as well as the data. As 
the authors stated, “The definition of classes is never completely precise and of necessity imperfect because 
single classes of features never occur isolated in a complex flow, but the categorization is an aid in 
establishing credibility and should be seen as such. The process is more difficult and less reliable without 
it.” 
 Of course, one can easily construct a taxonomic tree and sort through it to the area of interest 
electronically. The point is that creation and maintenance of a dynamic database involves more than just a 
decision tree. As Rizzi and Vos (1996) pointed out, such a database requires a substantial investment to 
develop and maintain, including the cost elements shown in Table 10.23.2. 
 Such efforts require major funding and collaboration from interested groups. Rizzi and Vos (1996) 
stated that “funding on a governmental (or European) level is needed to build and maintain such a system.” 
They gave examples of some electronic databases for aerodynamics in existence in 1996. 
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 Personnel costs of an evaluation committee 
(to assess the quality of each experiment) 

 Initial investment in hardware and software 
 Costs to run the Validation cases 
 Support for a database manager 
 Hardware replacement and/or upgrade 
 Software maintenance 

Table 10.23.2. Cost Elements of a Dynamic Validation Database. (Rizzi and Vos, 1996) 

I. Wall-Bounded Flows 
I.1 attached 

I.1.a with pressure gradient 
I.1.b without pressure gradient 
I.1.c with shocks 
I.1.d with or without suction 
I.1.e with or without blowing 

I.2 separated 
I.2.a bubble type 
I.2.b with reattachment 
I.2.c without reattachment 

II. Free Shear Layer Flows 
II.1 vortex flow 

II.1.a delta wing leading edge 
II.1.b forebody 

II.2 ... 
III. Mixing Layers 
IV. Flows with Confluence of Two Shear Layers 

IV.1 high-lift devices 
IV.1.a off-body recirculation zones 

IV.2 ... 
V. Flows In Cavities 
VI. Wake Flows 

Table 10.23.1. Preliminary Taxonomy of Compressible Turbulent Flows of Interest  
in the Aerospace Sector. (Rizzi and Vos, 1996) 



Chapter 10. Validations by Error Bars 
 

 

342 

 

 
Table 10.23.3. URLs for Five Validation Databases 

 
 
 The annual AIAA “Year in Review” feature of Aerospace America includes updates on databases 
including fluid dynamics and other aerospace disciplines. Several current are given in Table 10..23.3. 
 A dynamic database for Code Verification of primarily FEM solid mechanics problems is NAFEMS 
(2006). The solutions (analytical or accurate numerical) given are for simplified problems. The ASME 
Journal of Fluids Engineering maintains an online database at http://scholar.lib.vt.edu/ejournals/JFE/data/ 
JFE/. The NPARC Alliance database includes basic shapes and nozzle data of interest in fluid dynamics at 
http://www.grc.nasa.gov/WWW/wind/valid. The ERCOFTAC (European Research Community on Flow, 
Turbulence and Combustion) provides several databases accessed through 
http://ercofrac.mech.surrey.ac.uk. A database for turbulent heat transfer is 
http://www.jsme.or.jp/ted/HTDB/dathet.html. 
 Rizzi and Vos discussed some successes and some partial failures, both in the database technology and 
in the science. In the partial failure category, they noted examples of lack of compliance on the part of 
contributors, including failure to provide keyword files, geometry rescaling and coordinate system 
irregularities, and incomplete answers. They stated “although some of the problems appear trivial, they 
prohibited the automatic functioning of the data manipulation tools.” Also, they noted the need for “efforts 
[to] avoid or at least explain major differences in results obtained by different computors with the same 
turbulence model.” (My impression is that, in fluid dynamics, the communications technology is of better 
quality than the science. Also, my impression is that the uniformity of results from various structures codes 
is less than stated by Melnik et al, 1995 and by Rizzi and Vos, 1996.) But even with modern 
communications technology, it will not work to try to create a “database of everything.” (At least, not in the 
immediate future. Later, an all encompassing “database of databases” is feasible in principle. See, for 
example, the online “Encyclopedia of Life” initiated by E. O. Wilson.) 
 Further discussions of these ideas for dynamic databases was given by Vos et al (2002). Oberkampf 
and Trucano (2007, 2008) also considered many of the same aspects, including search engines, standard 
computer languages and formats, etc. Note that their recommendations for SSB’s (Strong Sense 
Benchmarks) for both Code Verification and Validation often appear excessive because their focus is not 
on individual or small scale V&V efforts. “The benchmark effort we describe is not feasible as a short-term 
task.” Rather, their SSB’s refer to long term dynamic database requirements. As they perceptively noted, 
given the high quality recommendations for dynamic database SSB’s not only for V&V techniques but also 
for thorough documentation, “these benchmarks could be viewed as carefully documented step-by-step 
sample problems from which practitioners, new and experienced, could learn a great deal.” They also noted 
that such dynamic databases, if public and widely used, will naturally evolve into international standards. 

DATABASE WWW URL (http://) 
ERCOFTAC Fluid Dynamics Database fluindigo.mech.surrey.ac.uk/ 
NAS Data Set Archive www.nas.nasa.gov/NAS/DataSets/ 
MADIC/NASA Code Certification hpccp-www.larc.nasa.gov/ccpintro.html 
ASME Journal of Fluids Engineering scholar.lib.vt.edu/ejournals/JFE/jfe.html 
NPARC Alliance Validation Archive info.arnold.af.mil/nparc/Validation_information.html 
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10.24 §  STATISTICALLY ASSESSING STATE OF THE ART  

 Hemsch (2002a) developed a simple graphical framework for robust statistical evaluation of results 
from an AIAA Drag Prediction Workshop (Levy et al, 2002). The Workshop goal was to determine the 
state of the art for CFD transonic drag predictions of subsonic transports in an industrial setting. Three 
types of statistical graphical methods were used: (1) running records of individual outcomes, including 
centerlines and scatter bands, (2) histograms116 of individual outcomes, and (3) analysis of means. The first 
two techniques have the advantage of displaying all the data, which addresses one of the biggest concerns 
in statistical analysis, that of possibly drawing incorrect conclusions from aggregated data. For a 
Workshop, there was a large and arguably statistically significant participation; e.g. for the cruise point 
calculations the participation included 14 codes, 35 solutions, 3 turbulence models, and roughly equal use 
of structured and unstructured grids. The statistical approach was based on “N-Version testing” to assess 
reproducibility as if the individual computed solutions were obtained from a replicated measurement 
process. In this respect it is similar to the (later) MV&V approach criticized in Section 5.13, but the 
difference is that the present approach is not used to evaluate grid convergence (Calculation Verification) 
and does not attempt Validation in the absence of experimental data. To the contrary, the experimental data 
used are high quality. However, the assessment results are somewhat corrupted by the same problems 
described in Section 5.13, namely, inability to distinguish discrepancies due to lack of grid convergence. 
Required grids were provided by the Workshop organizers but some participants used additional grids. 
That the effect was not isolated is shown by the fact that there was a significant difference in results for the 
two classes of grids, structured and unstructured, demonstrating that near grid independence was not 
achieved. (See Section 4.7.)  
 Judgment of relative success of the assessment of state of the art hinges on what one conceptually 
includes in state of the art. If the grids used (including those supplied by the Workshop organizers) are 
considered part of the state of the art, then the method of assessment is valid. Certainly any assessment of 
state of the art requires “obtaining results, in a collective sense, for diverse codes, grids, turbulence models, 
and observers” and “computational platforms.” But if the computations were done well, either there would 
be no significant effect of grids (negligible numerical uncertainty estimates) or the effect of numerical 
uncertainties could be isolated from the other contributors like turbulence models, which should be the only 
essential contributor, i.e. the model error or model form error per se. Later AIAA Drag Prediction 
Workshops117 have encouraged Calculation Verification. See http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-
dpw. 
 Any attempt to evaluate a state of the art for any area will be limited by the necessarily vague defining 
population. Participation in a Workshop is affected by many factors, including available funding, other 
commitments, etc. This is further complicated by discarding of “outliers” which, though necessitated by 
common sense, amounts to an a posteriori re-definition of the participating community. Aside from the 
emphasis in this book on systematic methods for V&V, it is probably true that the most practical informal 

                                                
116 There is no time element in the data, so the histogram x-axis is just an arbitrarily ordered integer 
designator for each contributor, a technique used in other Workshops as well, notably the Lisbon V&V 
Workshops (Eça et al, 2005, 2007a, 2009). 
117 Other references for the ongoing AIAA Drag Prediction Workshops include Levy et al (2003), Hemsch 
(2004), Hemsch and Morrison (2004), Rumsey et al (2005), Laflin et al (2005), Morrison and Hemsch 
(2007), Sclafani et al (2008), Mavriplis et al (2009), Vassberg et al (2007, 2008a,b). Vassberg et al 
(2008a) is a summary paper introducing six papers (e.g. Sclafani et al, 2008) from the Third DPW in a 
special issue of the AIAA Journal of Aircraft, Vol. 45, No. 3, May-June 2008.  
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way of assessing state of the art in computational PDEs is simply to run a few different codes and compare 
results, as suggested by Hemsch (2002b). 

10.25118   JOINT CONSIDERATION OF EXPERIMENTAL AND SIMULATION 
UNCERTAINTIES  

 In Section 10.5, we noted the difficulty of possible cancellation of conceptual modeling errors and 
numerical errors (primarily inadequate grid convergence). “Issues related to the interaction of these two 
sources of errors have been of constant concern to the CFD and turbulence modeling communities because 
fortuitous cancellation of errors can lead to a very erroneous conclusion about Validation.” (Rizzi and Vos, 
1996.) The importance of performing Verification of Calculations before Validation was stressed. (See also 
Chapter 2.) However, this admonition does not address the question of what to do with the purely 
numerical error bar during the process of Validation. The safest approach is simply to reduce the purely 
numerical error bars to a level negligible compared to the experimental uncertainty. This may be 
uneconomical. 
 Coleman and Stern (1997) proposed an approach to a Methodology of Validation that included, for the 
first time, joint consideration of both experimental and simulation uncertainties. It was incorporated into the 
ITTC (2002) Manual V&V method. Theirs was a detailed, thoughtful and thought-provoking approach, 
elucidating the complexity and interactions of the combined experimental and numerical uncertainty issues. 
This later came to fruition in the ASME ANSI Standard V&V20 (see Chapter 11). 
  As a preliminary consideration, Coleman and Stern (1997) discussed hypothetical data-simulation 
comparisons as given in their Figure 1 (see also Coleman, 1996), similar to Figure 10.25.1. Parts a and b 
respectively show the data without and with experimental uncertainty bars. The authors stated that one 
might interpret Part a to indicate that Model 1 is superior to Model 2 since it seems to “capture the trend of 
the data.” In contrast, when the experimental uncertainty is considered in Part b, “it is obvious that arguing 
for one method over another based on comparison with the experimental data is wasted effort since the 
predictions from both methods fall well within the data uncertainty.” This negative evaluation was 
somewhat over-stated. It would be true if and only if the uncertainty distribution within the plotted range of 
experimental uncertainty (commonly called “error bars”) was flat, i.e. a step function. (For example, if the 
“error bar” covered the data value D to 10%, this flat distribution would give equal probability that the 
true value was at D +1%, D-3%, D+9%, etc. or at D itself.) In such a case, our probabilistic knowledge is 
indifferent to any values within the range of the “error bar” and therefore to the relative merits of Model 1 
and 2, and the authors’ assessment holds. Of course, we do not know what the appropriate probability 
distribution is, but most physical experiments surely have some preference for the data values reported, and 
the default model of probability is a Gaussian distribution. If, in the judgment of the analyst, this is the 
more likely distribution, then there probably is a trend in the true values, and Model 1 does indeed “capture 
the trend of the data.” One could express this quantitatively as a weighted integral over the assumed 
probability distributions within the error bars; qualitatively, the naive preference for Model 1 is justifiable. 
(For discussions, see Roache, 1998c and Coleman and Stern, 1998.) 
 After this preliminary consideration, Coleman and Stern (1997) proceeded to a joint consideration of 
both experimental and simulation uncertainties. They defined the “comparison error” E as the difference 
between the experimental Data set value D and the value produced by the Simulation S. 
 

                                                
118 The order of Sections 10.23 and 10.25 have been exchanged from VV1. 
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E D S             (10.25.1) 
 
These may be point values (e.g., a drag coefficient CD at given flight conditions) or 2-D plots (e.g., CD vs. 
) or multi-dimensional plots (e.g., CD vs. , M, Re, ... ) E is then just what everyone would naively look at 
in a Validation exercise. There are experimental uncertainties associated not only with answer CD but also 
with the parameters (, M, Re, ... ) so the experimental error “bar” about CD should really be an n-
dimensional error “box” about , M, Re, etc. With an assumption of independence of error sources (the 
subtleties of which are not the main concern here) one can denote the uncertainty values U in the usual 
way, i.e. that the true value lies within D  U in 95 times out of 100 (95%  2  20:1 odds). Again 
assuming independence of the error statistics, the different sources of uncertainty were combined in an 
RMS sense. The key step in their approach was to define the metric for Validation, the Validation 
Uncertainty UV as the combination of all uncertainties that we know how to estimate (i.e., all but the model 
form uncertainty). Their proposal was that this Validation uncertainty UV is the key metric in the 
Validation process, and was to be used as follows. 
 If the “comparison error” E = D – S is such that |E| is less than the Validation uncertainty UV,  
 

E UV           (10.25.2) 
 
then the Validation has been achieved at the UV level. 
 That is, the combination of all the errors in the experimental data set D and in the results of the 
simulation S is smaller than the estimated Validation uncertainty UV, and Validation has been achieved at 
the UV level.  
 The reasoning is that UV is the key metric because it is the Validation “noise level” imposed by the 
uncertainties – all the uncertainties: uncertainties inherent in the experimental data set and uncertainties in 
the numerical solution (including parametric uncertainties as well as uncertainties due to the use of 
previous experimental data in the simulation model). A key point is that “one cannot discriminate once |E| is 
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Figure 10.25.1 Comparison of experimental data and model predictions. 
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less than this, i.e., as long as |E| is less than this one cannot evaluate the effectiveness of proposed model 
improvements.”119 
 Not surprisingly, the ramifications of this pioneering work contained some paradoxes, already 
recognized by the authors in the original work and discussed further in Roache (1998a, Section 10.23; 
1998c) and Coleman and Stern (1998). These paradoxes now are all circumvented and clarified by the 
removal of a specified error tolerance for Validation, or pass/fail criterion, from the concept of Validation 
and relocating it into Certification (or Qualification, or some other project-specific term) as discussed 
extensively in Chapter 2 and Appendix B. In fact, these considerations were contributors to the maturation 
of the Coleman and Stern approach using Validation Uncertainty in the ASME ANSI Standard V&V20, 
the subject of the following Chapter 11.  
 
 

                                                
119 If the view given earlier of the interpretation of Figure 10.25.1 in regards to Model 1 “capturing the 
trend in the data” is accepted, then the original statement would have to be tempered somewhat for an 
assumed Gaussian distribution rather than flat probability distribution, but basically, the point of the 
authors is well taken. 
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CHAPTER  11 
 

§  VALIDATION UNCERTAINTY: 
 ASME ANSI STANDARD V&V 20 

 
 
 
11.1 §  INTRODUCTION120  
 
 The most significant development in Validation since the publication of V&V1 in our opinion has been 
the publication in 2009 of ASME Committee PTC-61 (2009), ANSI Standard V&V 20, Guide on 
Verification and Validation in Computational Fluid Dynamics and Heat Transfer (or V&V20, in our 
shorthand citation). The methodology involves the application of the internationally accepted approach for 
experimental uncertainty to a total Validation Uncertainty including numerical uncertainty. It had long 
been recognized that computational methodology in Validation had lagged experimental methodology121, 
and calls had been made for computationalists to learn from experimentalists, but it was not until Coleman 
and Stern (1997; see also Section 10.25) that an initial effort was made. This seminal work was 
incorporated into the ITTC (2002) Manual V&V method, and was later completed and superseded in 
V&V20. The methodology is not difficult to follow. It results in an estimate of total Validation Uncertainty, 
including the contributions of experimental, parametric, and numerical uncertainties. The interpretation that 
this approach enables is more useful than that of the earlier practice which we have described as an “error 

                                                
120 This is a new Chapter, not included in V&V1. 
121 This is not to imply that widespread experimental practice meets the standards, nor that the standards 
have been established for many years. In NIST TN 1297 (Kuyatt and Taylor, 1994) the Director of the U. 
S. National Institute of Standards and Technology noted that “there has never been a uniform approach at 
NIST to the expression of uncertainty” and it was not until 1992 that he established a NIST Ad Hoc 
Committee on Uncertainty Statements which led to TN 1297.  
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bar” approach (Chapter 10), i.e. presenting the computational results with numerical error bars (i.e. the 
GCI) and parametric uncertainties and comparing (usually in graphical presentation) to experimental 
results with experimental error bars. This older and simpler methodology is often adequate and is 
immediately intuitive; if all publications attained this level of completeness, this would be a success. But 
the total Validation Uncertainty methodology enables more precision in the interpretations, notably when 
the experimental and numerical error bars overlap, and provides more explicit guidance on whether or not 
model improvements can be pursued with present experimental data, or whether more accurate experiments 
are required prior to model improvements. The most informative presentation utilizes both the traditional122 
error bar approach and the Validation Uncertainty. 
 The V&V20 methodology is straightforward to apply in the most common situation of (a) using 
“expanded” uncertainty estimates U95% and (b) assuming independence of experimental, parametric, and 
numerical uncertainties. Departure from (a) to use standard uncertainty u leads to some complications, 
since numerical uncertainties obtained by GCI and similar methods are not based on u but U95% . 
Departures from (b) require additional calculations that are straightforward conceptually (either chain rule 
numerical differentiation or Monte Carlo calculations) but are tedious to carry out (see the detailed 
presentation in V&V20). The methodology will be first described for u, following V&V20, then for U95% , 
followed by distinctions and further discussion of u vs U95%. 

11.2 §  V&V20 BACKGROUND AND MOTIVATION 

 The total Validation Uncertainty approach of ANSI Standard V&V20 is based on the concepts and 
definitions of error and uncertainty that have been internationally codified by the experimental community 
over several decades in the ISO Guide (ISO, 1995)123. This ISO guide was the culmination of an effort 
begun in 1977 by seven international organizations124 to address the “lack of international consensus on the 
expression of uncertainty in measurement.” The ISO Guide has been accepted as the de facto international 
standard for the expression of uncertainty in measurement. This acceptance includes promulgation by the 
U.S. National Institute of Standards and Technology (NIST; see Taylor and Kuyatt, 1994) and the 
publication ASME PTC 19.1-2005 “Test Uncertainty” (ASME, 2005) which is treated as a companion 
document by V&V20. 
 The approach of V&V20 applies these concepts to the errors and uncertainties in the experimental 
result and to the errors and uncertainties in the result from the computation. Thus, the uncertainties in the 
experimental value and in the simulation value are treated using the same process. Using the approach of 
the ISO Guide, for each error source (other than the simulation modeling error itself, which is the target of 
any validation effort) a standard uncertainty u is estimated such that u is the standard deviation of the 
parent population of possible errors from which the current error is a single realization. This allows 
estimation of a range within which the simulation modeling error lies. 
 The limited objective validation involves the comparison of computational solution and experimental 
data for a specified variable at a specified validation point (experimental “set point”) for cases in which 
the conditions of the actual experiment are simulated, expressed as the experiment “as run.” For 
example, in computational aerodynamics, computational results are to be validated against wind tunnel 
                                                
122 Oberkampf and Trucano (2007, 2008), who coined the faintly pejorative descriptor “viewgraph norm” 
to distinguish these from their initial efforts at statistical validation metrics, also agree that such 
“traditional graphical comparisons should be included” in Validation presentations. 
123 Commonly referred to as “the GUM” from the title “Guide to the Expression of Uncertainty in 
Measurement.” 
124 See V&V20 for a list of organizations and details of the history of this international effort. 
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results, with no consideration of the applicability of the wind tunnel tests to free flight, which is a separate 
subject. The experiment “as run” is defined as the reality of interest, so the conditions of the actual 
experiment are the “validation point” that is simulated. Usually a validation effort will cover a range of 
conditions within a domain of interest; in fact, this is highly recommended. Consideration of the accuracy 
of simulation results at points within a domain other than the validation points (interpolation/extrapolation 
in a domain of validation) was not considered in V&V20, nor in V&V10 or other such documents. The 
subject has been treated as a matter of engineering judgment specific to each family of problems and 
therefore beyond the scope of a general methodology. Although this will remain true to some extent, there 
has been recent progress in this area, which will be treated briefly in Section 11.12. 
 Neither the present book nor V&V20 expends much effort to management considerations of V&V for 
large projects, which is the preoccupation of the AIAA Guide and V&V10, and which is treated in 
Oberkampf and Roy (2009). But V&V20 expresses the following understanding of programmatic issues 
for large V&V projects. 
 “Ideally, as a V&V program is initiated, those responsible for the simulations and those responsible 
for the experiments should be involved cooperatively in designing the V&V effort. The validation 
variables should be chosen and defined with care. Each measured variable has an inherent temporal and 
spatial resolution, and the experimental result that is determined from these measured variables should be 
compared with a predicted result that possesses the same spatial and temporal resolution. If this is not 
done, such conceptual errors must be identified and corrected or estimated in the initial stages of a V&V 
effort or substantial resources can be wasted and the entire effort compromised.” 

11.3 §  ERRORS AND UNCERTAINTIES 

 Pertinent definitions and descriptions from ASME 19.1 (2006) and used in V&V20 follow. 
 
 •  error (of measurement): “result of a measurement minus a true value of the measurand” 
 • u uncertainty (of measurement): “parameter, associated with the result of a measurement, that 
  characterizes125 the dispersion of the values that could reasonably be attributed to the measurand” 

  
Also, from the first edition of ASME 19.1 (1984):  
 
 • u uncertainty (of measurement): “an estimate characterizing126 the range of values within which the 
  true  value of a measurand lies” 

 
 Thus, an error  has a particular sign and magnitude. It is assumed that any error whose sign and 
magnitude are known already has been removed by correction, so any remaining error is of unknown sign 
and/or126 magnitude. Then an uncertainty u is estimated with the idea that u characterizes126 the range 
containing . In experimental uncertainty analysis (ISO, 1995) u is the standard uncertainty and 
corresponds conceptually to an estimate of the standard deviation  of the parent distribution from which  
is a single realization. This definition allows u to be calculated for repeat experiments (aleatory 

                                                
125 The term “characterize” is carefully chosen, and signifies less than what one might expect; the full 
implications may not be appreciated until later discussion in Section 11.9.1. 
126 Usually both sign and magnitude are unknown. If the sign is known, that information is lost in this most 
common approach. 
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uncertainty) by a simple Root-Mean-Square (RMS) operation, also described as Root-Sum-Square (RSS). 
For n replications of an experimental measurement f, the sample127 standard deviation is calculated from 
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or for the “population” standard deviation, 
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as appropriate. It is significant to note that no assumption about the form of the parent distribution is 
associated with the definition of u based on standard deviation. Much can be accomplished in V&V without 
assuming a formal distribution. 

11.4 §  DEFINING VALIDATION UNCERTAINTY 

 Consider a variable of interest, for example, temperature To. Following V&V20, we denote the 
predicted value of To from the simulation solution as S, the value determined from experimental data as D, 
and the true but unknown value as . The validation comparison error128 E is defined as 

 

                                                
127 This most commonly used sample standard deviation includes the Bessel correction 1/(n-1) rather than 
1/n. The population standard deviation using 1/n may be appropriate, and NIST TN 1297 uses another 
RMS averaged form in its Eq. (A-5). The distinction seems to be based on modeling philosophy, and 
appears vague and somewhat subjective to this non-statistician. If the analyst intends to characterize the 
spread or variability of the given data set, i.e. considering it to be the entire population, then the population 
standard deviation using 1/n is used. But if he intends to characterize the variability of a larger population 
from which the given data set is merely a sample, which is usually the case, then the sample standard 
deviation using 1/(n-1) is used. (The 1/n form would be a “biased estimator” although this is not 
necessarily bad. The 1/n form is also appropriate if the mean is calculated without using Eq. (11.3.1.a), 
using either the mean of the entire population, or perhaps an estimate from another sample.) Wolfram Math 
World notes that there is “widespread inconsistent and ambiguous terminology.” I would add “overly 
subtle” and “sometimes deceptive,” as when distinguishing between “sample standard deviation” using 
1/(n-1) and “standard deviation of the sample” using 1/n. Some authors use 1/n, others use 1/(n-1), as a 
default definition, so that a report of a value for “standard deviation” without a qualifier of “sample” or 
“population” may be ambiguous. Even “sample” has been used inconsistently, sometimes for 1/n and other 
times for 1/(n-1). “Unbiased” dependably indicates use of 1/(n-1). Fortunately, for large n the distinction is 
insignificant compared to other vagaries of “uncertainty” for the applications considered herein. 
128 Eq. (11.4.1) actually defines E as merely a discrepancy rather than an error at this point in the 
development, but E can be argued to be properly an error by Eq. (11.4.6). 
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E S D             (11.4.1) 

 
The error in the solution value S is the difference between S and the true value . 
 

S S   T           (11.4.2) 
The error in the experimental value D is 

D D   T           (11.4.3) 
From Eqs. (11.4.1-3), E is expressed as 

 
   S D S DE S D           T T       (11.4.4) 

 
The validation comparison error E is thus the combination of all of the errors in the simulation result and 
the experimental result, and its sign and magnitude are known once the validation comparison is made.  
 All errors in the simulation solution S can be assigned to one of three categories (Coleman and Stern, 
1997):  

•  error model  due to modeling assumptions and approximations 
•  error num    due to the numerical solution of the equations, and 

  •  error input   due to errors in the simulation input parameters.  
Thus 

modS el num input                (11.4.5) 
 
The objective of a validation exercise is to estimate δmodel to within an uncertainty range. Using Eq. (11.4.5) 
in (11.4.4), the comparison error E is 

 
mod numel input DE                    (11.4.6) 

or 
mod ( )el num input DE                   (11.4.7) 

 
 Once the simulation and the experiment are run, S and D are determined, and E is known (both sign 
and magnitude, from Eq. 11.4.1), but the signs and magnitudes of num, input, and D are unknown. The 
standard uncertainties corresponding to these errors129 are unum, uinput, and uD. Then the key step of the 
V&V20 methodology is defining the validation standard uncertainty uval as an estimate of the standard 
deviation of the parent population of the combination of errors (num + input - D). Considering the 
relationship shown in Eq. (11.4.7), the interval = (E  uval) then characterizes an interval within which 
model falls, or  
 

 
                                                
129 In the conceptual approach of the ISO Guide (ISO, 1995), ASME PTC 19.1 (ASME 1986, 2006), and 
NIST TN 1297 (Taylor and Kuyatt, 1994) there is no distinction made in the mathematical treatment of 
errors that are “random” and those that are “systematic.” After S and D have been determined, their values 
always differ by the same fixed amount from the true value; so D, input, num, and model effectively are all 
systematic errors and the uncertainties to be estimated are systematic standard uncertainties. 
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model VAL VAL[E - u ,E u ]   .           (11.4.8) 

 
In other words, E and uval are the validation metrics for the modeling error δmodel. The estimation of uval is 
thus at the core of the V&V20 methodology.  

11.5 §  ESTIMATING VALIDATION STANDARD UNCERTAINTY 

 If the three errors num , input  and D are effectively independent, then the corresponding uncertainties  
unum , uinput  and uD can be easily combined by the usual statistical assumption. 
 

222
Dinputnumval uuuu           (11.5.1) 

 
Fortunately, this condition of effective independence is often practical. In the important case in which the 
validation variable To is directly measured, the assumption of effectively independent errors is generally 
reasonable. Unfortunately, however, in the common case in which the validation variable is determined 
using a data reduction equation, the experimental and computational values can be functions of shared 
variables, and input and D are not independent.130 
 Much of V&V20 (Section 5) is devoted to explanations with detailed examples of various cases of 
estimating uval when the errors are not independent and uval must be estimated in a tightly coupled procedure 
to avoid problems. One particular problem is the case where the effects of a parameter uncertainty should 
approximately cancel between uinput and uD if treated correctly, but will contribute two terms if Eq. (11.5.1) 
is used. The variations include situations in which the validation variable is determined using a data 
reduction equation that combines multiple variables each directly measured, with or without shared error 
sources. The methods are conceptually simple, calculating the non-independent effects by tracking the 
mutual influences through data reduction equations using either of two approaches: local sensitivity 
equation evaluated by numerical differentiation (sometimes partially analytical), or global Monte Carlo 
methods. (These methods are also applicable to the estimation of all contributors to uinput.) However, the 
calculations are tedious, and the simpler use of Eq. (11.5.1) is expected to be more common. It is also true 
that the error of this simpler approach often will be conservative, since the dependent effects will often 
reduce the estimate of the Validation Uncertainty. 

11.6 §  PARAMETER ERRORS AND MODEL FORM ERRORS 

 Since the uncertainty contributions to uval take into account all of the error sources in num, input, and 
D, then model includes only errors arising from modeling assumptions and approximations; these are the 
“model form” errors. For example, in a simple heat conduction problem, deviation from the correct value of 
a constant conductivity K would be part of the input parameter error input, while deviation from the 
assumption of constant K (i.e. neglect of dependence of K(x,y,z,T,...) and neglect of tensor vs. scalar 

                                                
130 To a lesser extent, num can be dependent on input because adequate grid resolution depends on the 
parameters. Usually the parameter uncertainty range does not strongly affect num. If it does, its dependency 
must also be accounted (V&V20). 
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conductivity would be part of model form error. In practice, numerous gradations131 can exist in the choices 
of which error sources are accounted for in input and which error sources are defined as an inherent part of 
the model form error model. The term model  is the modeling error which we intend to assess. It is composed 
of the errors in the governing continuum equations of the model (e.g. the RANS model used) and errors due 
to any other non-ordered approximations such as inflow and outflow boundary conditions; these errors do 
not → 0 as  → 0 (where  is a representative measure for the grid cell size). The error num  is composed 
of the ordered numerical errors; these errors do → 0 as  → 0. Likewise, the error input is composed of the 
(non-ordered) errors arising from the use of incorrect parameter values in the model equations. Note that 
the symbol num is somewhat ambiguous in one respect. Errors that result from the imposition of finite 
computational boundaries, e.g., finite distance to a downstream outflow boundary (Section 6.10) or other 
far-field boundary (e.g. see Roache, 1998b), can be thought of as “numerical” in some sense, but they are 
not included in num, because they are not ordered in . Rather, they are included in model .132 
 The code used will often have more adjustable parameters or data inputs than the analyst may decide to 
use (e.g., for a commercial code). The decision of which parameters to include in the definition of the 
computational simulation (conceptually separate from the code) is somewhat arbitrary. Some (even all133) 
of the parameters available may be considered fixed for the simulation. For example, an analyst may decide 
to treat parameters in a chemistry package as fixed (“hard-wired”) and therefore not to be considered in 
estimating uinput, even though these parameters could have been accessed and had associated uncertainties. 
The point here is that the computational simulation which is being assessed consists of the code and a 
selected number of simulation inputs which are considered part of the simulation, while other simulation 
inputs have uncertainties that are accounted for in uinput and thus do not contribute to model. See Appendix 
C of V&V20 for related discussion of specific and general senses of model, and parametric uncertainties 
vs. model form uncertainties. 
 This distinction is also required to explain the following paradox. As the analyst improves the 
thoroughness of a validation study by investigating parametric uncertainty more extensively, the total 
validation uncertainty will become larger, not smaller. Every additional parameter variation considered will 
add to input . The resolution of the paradox lies in recognizing that, with every addition of a parameter 
uncertainty (e.g. considering variable conductivity of K(x,y,z,T,...) instead of fixed K) one is changing the 
“model’ under evaluation. In the limit of a strong model approach, with all parameter values hard-wired, 
there simply is no parametric uncertainty; input = 0 and uinput = 0.  

                                                
131 Virtually all model form errors could be parameterized and thereby included in input. Even such 
disparate model forms as Darcy flow vs. fracture flow in porous media could be parameterized by 
(admittedly arbitrary) blending functions. An appreciation for such distinctions is essential to clarifying 
some muddled claims of philosophy of science, e.g. Popper (1980), Oreskes et al. (1994). See Appendix C 
of V&V1. 
132 As pointed out in Roache(1998b), the imposition of far-field boundaries at finite distances are 
reflexively thought of as inherently numerical, but it is just an accident of mathematics that boundary 
conditions “at ∞” happen to be easier to apply in many analytical solutions. There is nothing inherently 
“exact” about applying the free-stream conditions of constant velocity and fluid properties “at ∞” to model 
free flight when (for example) an exponential atmosphere model would be a better approximation to nature. 
133 If all parameter values are considered fixed in the model, this is the limit of what has been termed a 
strong-model approach; see Section 2.2. 
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11.7 §  ESTIMATING PARAMETRIC UNCERTAINTIES 

 Considering the relationship shown in Eq. (11.5.1), obtaining an estimate of uval requires estimates of 
unum, the standard uncertainties in the experiment that contribute to uD, and the standard uncertainties in all 
input parameters that contribute to uinput . Obviously, estimates of the standard uncertainties of all of the 
input parameters treated as variable (rather than hard-wired) in the model are required. Then uinput is 
determined from propagation by either (1) using a sensitivity coefficient (local) method that requires 
estimates of simulation solution sensitivity coefficients, or (2) using a Monte Carlo (sampling, global) 
method that makes direct use of the input parameter standard uncertainties as standard deviations in 
assumed parent population error distributions. Details are presented in Section 3 of V&V20. The standard 
uncertainty in the experimental result uD is determined using well-accepted techniques developed by the 
international community over a period of decades and is discussed in Section 4 of V&V20. The estimate uD 
is the standard uncertainty appropriate for D. It includes all effects of averaging, all random and systematic 
components, and effects of any correlated experimental errors/uncertainties and any other factors that 
influence D and uD. As noted previously, when D and uD are used in the validation comparison, any random 
uncertainty components have been effectively frozen and uD is calculated as a systematic standard 
uncertainty. 
 A comprehensive and highly recommended end-to-end example of the application of the V&V20 
methodology is presented and discussed in Section 7 of V&V20. For a recommended overview of 
sensitivity analysis and uncertainty propagation, see Blackwell and Dowding (2006). 

11.8 §  INTERPRETATION OF VALIDATION RESULTS USING STANDARD 
UNCERTAINTIES 

 The power of the V&V20 approach based on total Validation Uncertainty becomes evident when the 
interpretation of Validation results is considered.  
 Note again: once a validation effort reaches the point where the simulation value S and the 
experimental value D of a validation variable have been determined, then the sign and magnitude of E (= S 
- D) are known. 
 The validation uncertainty uval is an estimate of the standard deviation of the parent population of the 
combination of all errors except the modeling error (num+ input  - D) in S and D. Techniques for estimation 
of the uncertainty components unum, uinput, and uD that combine to give uval have been discussed, and 
evaluation of uval from those uncertainty components is accomplished by Eq. (11.5.1) in the simplest and 
often realistic cases, or by more elaborate methods as required. 
 We repeat here Eqs. (11.4.7-8) as  
 

mod ( )el num input DE                 (11.8.1) 
 

model VAL VAL[E - u ,E u ]   .            (11.8.2) 
 
The interval of Eq. (11.8.2) will then “characterize” an interval within which model falls; E and uval are the 
validation metrics for the modeling error δmodel. Thus E is an estimate of model, and uval is the standard 
uncertainty of that estimate. 
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11.8.1 §  Interpretation of Validation Results Using E and uval Without Assumptions Made about 
Error Distributions 

 If one has only an estimate for the validation uncertainty uval and not an estimate of the probability 
distribution associated with (num+ input  - D), an interval within which the value of model falls with a given 
probability cannot be estimated without further assumption. One can make the following statements, 
however. 
 Case 1. If 

E uval          (11.8.1.1) 
then probably  

model  E              (11.8.1.2) 
 
 Case 2. If 

E uval          (11.8.1.3) 
then probably  

O(model ) ≤ O(num + input - D).            (11.8.1.4) 
 
That is, probably model is of the same order as, or less than, (num + input - D). 
 The significance of distinguishing these two cases is illustrated when one considers not just the 
evaluation of a computational model, but the possibility of improving the model. From a practical 
standpoint, in the first case one has information that can possibly be used to improve the model, i.e. reduce 
the modeling error. But in the second case, the modeling error is within the “noise level” imposed by the 
numerical, input, and experimental uncertainties and formulating model “improvements” is more 
problematic. That is, an analyst could hardly justify134 tuning parameters in the model form used, or 
changing the model form, without first reducing some or all of num , input , and D. Respectively these 
would require (a) improved computational accuracy and/or uncertainty estimation, and/or (b) reduced 
parametric uncertainty (perhaps by using more complete dependency than the independence assumed for 
Eq. (11.5.1) or by further analysis justifying reduced input parameter ranges), and/or (c) improved 
experiments. Obviously, one could consider reducing error source that is dominant, or most accessible, or 
cheapest to improve. 
 This interpretation of Case 2 is more evident with the total Validation Uncertainty methodology of 
V&V 20 than with the older error bar approach, and constitutes a major advantage of the approach in our 
opinion (e.g. see Pelletier, 2008). An example of similar interpretation using probabilistic (rather than 
standard) Validation Uncertainty will be given in Section 11.10. 

11.8.2 §  Interpretation of Validation Results Using E and uval With Assumptions Made about Error 
Distributions 

 In order to estimate an interval within which model falls with a given probability or degree of 
confidence, an assumption (with possible ranges of justification) about the probability distribution of the 

                                                
134 There is no justification if the error distribution is rectangular. However, without necessarily assuming a 
Gaussian distribution, one would usually expect the model to be improved by tuning that drives the 
simulation value S towards the center of the distribution. See discussion and References in Section 10.25. 
This would be a secondary improvement of confidence. A common engineering rule of thumb is to cease 
tuning when S is within 1-σ of the center of the distribution (Hills, 2008). 
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combination of all errors except the modeling error must be made. This then allows the choice of a 
coverage factor k (ISO, 1995; Coleman and Steele, 2009) such that 

 
Uxx% = k u          (11.8.2.1) 

 
where Uxx% is called the expanded uncertainty. For example, one might be able to say that (E  U95%) 
defines an interval within which model falls about 95 times out of 100 (i.e., with 95% probability) when the 
coverage factor has been chosen for a level of 95% “confidence” (see footnote #34 on page 122). 
 To obtain a perspective on the order of magnitude of k, consider the three parent error distributions 
used as examples in the ISO Guide (ISO, 1995). 
  (a) A uniform (rectangular) distribution135 with equal probability that  lies  
   at any value between –A and +A so that / 3A  . 
  (b) A triangular distribution symmetric about  = 0 with base from –A to +A  
   so that / 6A  . 
  (c) A Gaussian distribution with standard deviation .  

 
 With a decided (assumed or justified) distribution, one can choose a coverage factor k such that (num + 
input - D) certainly (or almost certainly) falls within  k(uval). 
  (a) If (num + input - D) is from the uniform distribution,  
    then 100% of the population is covered for k = 1.73.  
  (b) If (num + input - D) is from the triangular distribution,  
    then 100% of the population is covered for k = 2.45.  
  (c) If (num + input - D) is from the Gaussian distribution,  
    then 95.44% of the population is covered for the most commonly used136 value k = 2.  
 
Other less commonly values for the Gaussian distribution are k = 1 for 68.26%, k = 3 for 99.7%, k = 3.5 
for 99.95%, and k = 4 for 99.99%.  
 These results are not very sensitive to the form of the distribution, thus making uncertainty analysis 
practical. With these comparisons, one can conclude that for error distributions roughly in the family of the 
three distributions considered, it is highly likely that model almost certainly falls within the interval E  
k(uval), where k is typically a number in the range of 2 to 3. 

11.9 §  ESTIMATING VALIDATION PROBABILISTIC UNCERTAINTY 

 Eq. (11.5.1) for combining standard uncertainties extends to “expanded” or probabilistic uncertainties 
with the same requirement that the errors num , input  and D are effectively independent. 
 
                                                
135 The Eurachem/CITAC (2007) guide on measurement uncertainty gives the following guidelines. If ± 
limits are given without a confidence level and extreme values appear likely, a rectangular distribution is 
appropriate. If ± limits are given without a confidence level and extreme values appear unlikely, a 
triangular distribution is appropriate. 
136 The value k = 2 is strongly recommended at the U. S. National Institute of Standards and Technology 
(Taylor and Kuyatt, 1994, paragraph 6.5). “To be consistent with current international practice, the value 
of k to be used at NIST for calculating U is, by convention, k = 2. Values of k other than 2 are only to be 
used for specific applications dictated by established and documented requirements.” 
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222
Dinputnumval UUUU            (11.9.1a) 

 
2

%95,
2

%95,
2

%95,%95, Dinputnumval UUUU         (11.9.1b) 

 
Likewise, the methods for treating dependence are applicable to U’s (local sensitivity or global Monte 
Carlo methods). However, there is a subtlety involved that arises from the mixing of standard and expanded 
uncertainties, discussed below. 

11.9.1 §  Standard Uncertainty vs. “Expanded” or Probabilistic Uncertainty 

 The early assumption of Gaussian distributions in so ingrained in the education of engineers and 
scientists that it requires mental effort to separate Gaussian distribution from other aspects of statistics. 
Standard uncertainty u is commonly associated with 1-σ or ~68% confidence, and 2-σ with ~ 95% 
confidence, so people naturally think of 2u ~ U95%. The distinction between u and U95% is implicitly treated 
as just a matter deciding on the value of the coverage factor k, with k = 1 producing u with ~68% 
confidence, k = 2 producing U95% with ~ 95% confidence, etc. In this common interpretation, the symbol u 
could just as well be written as U68%. This is wrong. 
 In fact, without the assumption of Gaussian distribution, u and U68% are fundamentally different kinds 
of uncertainty definitions. Until a distribution is decided (assumed, or justified) u is not merely a smaller or 
less inclusive uncertainty than U95%. Following the internationally accepted practice for experimental 
work137, u is defined (Eq. 11.3.1) as the (sample) standard uncertainty and corresponds conceptually to an 
estimate of the standard deviation  of the parent distribution from which  is a single realization.138 At the 
beginning of Section 11.3, we described u (of measurement): “parameter, associated with the result of a 
measurement, that characterizes the dispersion of the values that could reasonably be attributed to the 
measurand” and we noted in a footnote that the term “characterize” is carefully chosen; the implications 
will now be discussed. 
 Contrary to a natural assumption, “characterize” here does not imply any probability (not even in a 
Bayesian sense). We cannot say generally, i.e. without assuming a distribution, that the true value 
“probably” lies within the interval [mean ± u] even for the minimalist interpretation of probability > 50%. 
This perhaps counter-intuitive statement is demonstrated by the following example. Consider the set of five 
measurements (normalized about the median value): {0.9, 0.9, 1.0, 1.1, 1.1}. The mean value is 1. The 
(population) variance is calculated as  
 

σ2 = [2(0.9 - 1)2 + (1-1)2 + 2(1.1-1)2]/5 = 0.04/5 = 0.008    (11.9.1.1) 
 
so the estimated standard uncertainty u, or (population) standard deviation, is 
 

                                                
137 See ISO Guide (ISO, 1995), ASME PTC 19.1 (ASME 1986, 2006); NIST TN 1297 (Taylor and 
Kuyatt, 1994), Coleman and Steele (2009), and others. 
138 To be unnecessarily precise, this involves estimates of estimates: σ is standard uncertainty of the infinite 
sequence (frequentist) or parent population, and s is the sample standard uncertainty which provides an 
estimate of σ. Then uncertainty u is an estimate of s, which is an estimate of σ. 
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u = σ = 0.008 = 0.08944...         (11.9.1.2) 

Then the interval 
[mean ± u] = [1 ± 0.08994] = [0.9106, 1.0894]         (11.9.1.3) 

 
includes only one of the five measurements (the value 1.0). Thus the probability of [mean ± u] containing a 
random draw from these experimental values is a mere 20%. 
 In experimental work, standard uncertainty u (or uD in Eq. 11.5.1) is naturally and conveniently 
calculated (at least for aleatory uncertainty, less so for systematic uncertainty). So to obtain what is needed, 
i.e. a probabilistic statement of uncertainty, it is natural to start from u, which strictly speaking has no 
probability associated with it, then to assume a distribution (usually Gaussian, although as noted the 
probabilistic results are not very sensitive to the type of distribution), then to “expand” u by a factor k > 1 
to calculate some “expanded” uncertainty Uxx%, typically Gaussian with k = 2 giving U95%. Thus the 
terminology “expanded” uncertainty makes sense, referring to a probabilistic uncertainty obtained by 
expanding from a standard uncertainty. However, the terminology is unfortunate because it is sometimes 
possible to obtain a probabilistic uncertainty without calculating u and without assuming any distribution. 
The Grid Convergence Index or GCI is just such a probabilistic uncertainty for numerical errors, 
 

GCI = Unum,95%.          (11.9.1.4) 
 
The confirmation of the GCI has been obtained (Chapter 5) by examining data on simulation solutions S 
for a large number (many hundreds) and keeping track of cases of “failure” (true numerical value outside 
the predicted interval) and success, with no need to assume any distribution. It is a powerful fact that the 
empirical validity of the GCI does not depend on any distribution. (There is no fundamental reason why 
a similar approach could not be used for aleatory experimental variation, but this is not common practice.) 
 Since u is fundamentally calculated as a standard deviation, and since u is claimed to “characterize” the 
dispersion of the values yet does not imply any probability (even in a Bayesian sense), one might be 
justified in asking the following. Why does a standard deviation deserve the name “uncertainty”? Good 
question. If standard deviation had been given the symbol d instead of u, it would be more clear that there is 
a conceptual leap involved in proceeding from standard deviation d to probabilistic uncertainty Uxx%. 
Nevertheless, use of the term standard uncertainty (and the symbol u instead of d) is not only widespread 
but institutionalized. (See list of organizations in Section 11.2 and V&V20.) It is not going to go away.139  
 In summary, the calculation of standard uncertainty uD for experimental data does not depend on any 
assumption of Gaussian or other distribution, nor does the calculation of probabilistic uncertainty Unum,95% 
for numerical error. The trouble is that we need to use the same kind of uncertainties to calculate a total 
Validation Uncertainty, using either all standard uncertainties u for Eq. (11.5.1) or all probabilistic 
uncertainties Uxx% for Eq. (11.9.1). To do so, we will need to assume a distribution at some point. And 
unfortunately, we cannot casually go back and forth between u and Uxx% because the assumption of a 
Gaussian distribution (or even a qualitatively similar distribution) is demonstrably not justifiable for the 
best behaved numerical solutions, as we will now discuss.  

                                                
139 Given the fact that most analyses involve assumptions of distributions, usually Gaussian, which enables 
the two-way transition u   U68%, this use does less harm than other standing problems areas of statistics, 
e.g. null hypothesis testing. 
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11.9.2 §  Combining Standard Uncertainty and Probabilistic Uncertainty140 

 This sub-section is somewhat convoluted, and a reading is not necessary if the analyst intends finally to 
base the total Validation Uncertainty on the probabilistic uncertainty Uval,95% , e.g. using Eq. (11.9.1b). In 
this most common case, the reader may jump to the next Section 11.9.3. 
 As noted, the Grid Convergence Index or GCI (Chapter 5) for the fine grid solution is just a Factor of 
Safety Fs applied to the (generalized) Richardson error estimate |E1| as in Eq. (5.6.1) or any other ordered 
error estimate (e.g. Section 7.5). For not very thorough numerical studies, using only two grids and only the 
theoretical order of convergence (say p = 2), the recommended value is Fs = 3. It may be expected that this 
hypothetical ensemble of computational cases will include some that are not in the asymptotic range of grid 
resolution, some that display oscillatory convergence, etc. For these cases, it might be reasonable to assume 
a Gaussian distribution and k = 2. We would not use this k to calculate an “expanded” numerical 
uncertainty Unum,95% since we already know that Unum,95%. = GCI. Rather, we might use k = 2 to work 
backwards to calculate a contracted estimate141 of unum, or more precisely Unum,68%. 
 

unum ~ Unum,68% = Unum,95% / k = GCI / 2 = (Fs /2)×|E1|     (11.9.2.1) 
 
For the recommended value of Fs = 3, this gives unum = 1.5|E1|, a not unreasonable value. Intuitively, since 
|E1| generally corresponds with 50% confidence (see Section 5.14.2), then it is not unreasonable to expect 
that 1.5|E1| could be consistent with 68% confidence or Unum,68%. 
 The difficulty arises for the best numerical work, using three or more grids to establish a stable 
observed p that agrees with theoretical p, and monotonic convergence. In such cases, the recommendation is 
Fs = 1.25. Blindly using Eq. (11.9.2.1) would then lead to unum = 0.625|E1|, which is not only unreasonable 
but contradictory: an intended 68% confidence interval smaller than a 50% confidence interval. The cause 
is evidently the assumption of a Gaussian distribution for the errors. In these best behaved numerical cases, 
monotonic convergence indicates that the true (numerical) solution is outside the set of all grid solutions, 
i.e. it is extrapolated. (See related discussion in Section 5.13.) Thus it is not reasonable to assume that the 
error distribution is even qualitatively Gaussian about the fine grid solution f1; rather, it is likely a shifted 
Gaussian, i.e. Gaussian not about the fine grid solution f1 but about the Richardson extrapolated solution 
fextrap = f1 - E1. (Roache, 2003a) 
 None of these difficulties arise if the analyst decides to use probabilistic uncertainties U95%  for all 
terms, i.e. Eq. (11.9.1) rather than (11.5.1). Any standard uncertainties (uinput and uD) are “expanded” to 
95% probabilistic uncertainties and used in Eq. (11.9.1). (See, for example, the Proceedings of the Third 
Lisbon V&V Workshop, Eça and Hoekstra, 2008.) If the experiments are already reported using U95%, this 
step is not needed. If, however, the analyst needs to use standard uncertainties everywhere, an estimate of 
unum must be obtained from the GCI using a coverage factor ks appropriate for the shifted Gaussian. A 
rough estimate can be obtained by linear interpolation between the known values. 
 
 

                                                
140 I am indebted to Dr. V. Romero for his perceptive review of the initial public draft release of V&V20, 
which review led to these insights. 
141 This approach is recognized as “Type B” evaluation of u by NIST TN 1297 (Taylor and Kuyatt, 1994) 
in paragraph 4.3. Type B evaluations of u are not obtained by direct statistical methods, and are “usually 
based on scientific judgment.” It is noted that “Type A evaluations of uncertainty based on limited data are 
not necessarily more reliable than soundly based Type B evaluations.” There is not always a simple 
correspondence between Types A and B and “random’ and “systematic.”  
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      ks = Multiplier of |E1|   Coverage level 
      1.25       95% (empirical) 
      1.10       68% (target, interpolated) 
      1.00       50% (ordered error estimate) 
 
Another estimate was obtained by Hills (2008) (see also V&V20, Section 2) by analyzing a shifted 
Gaussian, giving a multiplier ks = 1.15. This larger value of ks is slightly more optimistic when contracting 
from GCI to unum , i.e. it gives a slightly smaller estimate of unum.142  
 Continuing this process for greater uncertainty coverage, e.g. targeted 99% coverage, would be 
difficult to justify. The GCI has been established for 95% confidence, and it would be problematical to 
naively extend it to (say) 99%. 

11.9.3 §  Summary Procedure for Probabilistic Validation Uncertainty 

 If the analyst intends finally to base the total validation uncertainty on the probabilistic uncertainty 
Uval,95% using Eq. (11.9.1b), the summary procedure is simple. The probabilistic numerical uncertainty 
Unum,95%  = GCI. If the experimentalist has provided probabilistic data uncertainty UD,95%  it is used 
directly. Otherwise, if the experimentalist has provided data standard uncertainty uD, the analyst must 
assume a distribution (probably Gaussian) and corresponding coverage factor (probably k = 2) to expand 
to UD,95% = k × uD. (See Section 11.8.2 above for other distributions and coverage factors.) Similarly for 
uncertainties of input parameters, which probably have been calculated as standard uncertainties uinput  and 
need to be expanded to probabilistic uncertainties of input parameters Uinput,95%  = k × uinput. These terms 
are used in Eq. (11.9.1b) to calculate the probabilistic total Validation Uncertainty Uval,95%. 

11.10 §  INTERPRETATION OF VALIDATION RESULTS USING PROBABILISTIC 
UNCERTAINTIES 

 Here we use the more specific and common engineering target Uval with 95% level of confidence, rather 
than standard uncertainty uval. We note again that once a validation effort reaches the point where the 
simulation value S and the experimental value D of a validation variable have been determined, the sign and 
magnitude of E (= S - D) are known. But now, (E  Uval) defines an interval within which model falls, with 
~95% coverage or “level of confidence.” 
 

%95~],,[ levelconfidenceUEUE VALVALdelmo  .      (11.10.1) 
 
(This contrasts to Eq. (11.8.2) for uval, which does not have a confidence level specified.) 
 
 Case 1. If 

E Uval            (11.10.2) 
then probably model  E. 
 

                                                
142 Note that both ks = 1.10 or 1.15 are conservative if the unum calculated this way is later “expanded” back 
to an estimate of Unum,95% using k = 2 along with other Gaussian-distributed terms. For the case of uinput , uD  
<< unum , it produces the more conservative estimate Unum,95% = (k / ks )× GCI. 
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 Case 2. If  
E Uval            (11.10.3) 

 
then probably model is of the same order as, or less than, (num + input - d). 
 
 In the first case one has information that can possibly be used to improve the model (i.e., reduce the 
modeling error). In the second case, however, the modeling error is within the “noise level” imposed by the 
numerical, input, and experimental uncertainties, and formulating model improvements is more 
problematic. (See the discussion in Section 11.8.1 after Eq. 11.8.1.3.) 
 The Third Lisbon V&V Workshop (Eça and Hoekstra, 2008; Eça et al, 2009) provided a good 
example of such interpretation, and is worth quoting at length. The problem was the classic CFD 
computation of 2-D turbulent flow over a backstep using the Spalart - Allmaras model, for which there 
were six submissions at the Workshop. The following quotes are from Eça et al (2009). 
... 
 “Close to the wall, |E| is significantly larger than Uval indicating that there is a model deficiency in the 
prediction of the near-wall backward flow. One step height above the bottom wall, Uval becomes similar to 
|E| due to the increase of the numerical uncertainty showing that the numerical prediction must be 
improve to draw consistent conclusions about the modeling error. In the center of the computational 
domain (roughly 2 to 6 step heights) |E| is significantly smaller than Uval. In this case, the main 
contribution of Uval is the experimental uncertainty, which in this case is 2% of the incoming flow velocity. 
In the vicinity of the wall |E| is again larger than Uval. However, at this location all the submitted results 
exhibited the same trend, independent of the turbulence model adopted. We believe that the problem is 
related to the inlet boundary conditions. There is no experimental information available for the top wall 
boundary layer. As a guess, the Workshop organization proposed to use equal boundary-layer profiles at 
the top and bottom walls. The Validation exercise seems to indicate that this was not the proper choice  
...  
 The inclusion of the Validation exercise was an excellent addition to the Workshop. The ASME 
Validation procedure is clearly a step forward compared to the “standard” graphical comparison between 
experiments and numerical predictions. It allowed to point out limitations in the modeling, but also to 
show deficiencies in the numerical simulations and/or in the experiments.” 

11.11 §  MODEL QUALITY VS. VALIDATION QUALITY143 

 It is easy to lose sight of a fundamental fact, related to the easy confusion of error and uncertainty. If 
Uval  is unacceptably large, this says nothing about poor quality of the model144. 
 

The magnitude of Uval  does not reflect upon the quality of the model. 
 
 The magnitude of Uval  increases because of poor computational work, poor parameter estimation, and 
poor experiments, not from a poor model. It does not depend on model. The model quality and the validation 
quality are different values. The development of a model creates model and the performance of a validation 
exercise (including the execution of the experiment and the use of the model in the simulations) creates Uval.  
 A poor quality model combined with a high quality validation exercise leads to E Uval  and 
therefore trustworthy model  E. If model is excessively large for any reasonable application, the result 

                                                
143 This material is not explicitly part of the V&V20 document but is implicit in it. 
144 To avoid semantic confusion it is essential that model here refers to the continuum model, not including 
the grid. 
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(certainly for Certification, and arguably for Validation) is a well-founded rejection of the poor quality 
model enabled by a high-quality validation exercise. 
 In the reverse situation, we could have a high-quality model, with model smaller than any forseen 
application needs (or even a perfect model with  model = 0), yet the validation exercise could fail because of 
excessive Uval  (due to poor computational work, parameter estimation, and/or experiments). Fortunately, in 
the V&V20 methodology, this does not lead to a false negative evaluation of the model accuracy, but only 
to the very useful information that well-founded conclusions about model quality cannot be made unless 
improvements are made, not in the model, but in the validation exercise itself.  
 This distinction is required for the next section on extending the domain of validation.  

11.12 §  EXTENDING THE DOMAIN OF VALIDATION145 

 As noted in Section 11.2, consideration of the accuracy of simulation results at points within a domain 
other than the validation points, i.e. interpolation/extrapolation in a domain of validation, was not 
considered in V&V20, nor in V&V10 or other such documents. Yet a practical and justifiable position is 
that useful Validation is not accomplished until the domain of validation is extended away from the 
experimental validation set points. We refer to a new point, other than a validation set point, at which one 
intends to perform a new computation, as an application point.146 If an analyst needs information at an 
application point that coincides with a validation set point in parameter space, modeling is not much needed 
since he has the experimental values there.147  
 Extending the domain of validation by interpolation/extrapolation involves two components: how to 
interpolate, and what to interpolate. The latter is the more subtle issue. 

11.12.1 Interpolation Methods 

 Interpolation is not a glamorous subject, but those who are involved in practical applications 
acknowledge that it is not trivial, either, especially in parameter spaces of high dimension P. The process is 
simplified if all the parameters are uniformly incremented, producing a P-dimensional regular cartesian 
space. If not, then even linear interpolation involves considerable mathematics. Analysts are free to 
consider higher order polynomial based interpolations, or physics-based interpolations (e.g. interpolations 
based on a functional form of an exponential when interpolating over altitude for atmospheric properties, or 
using the functional form of perturbation solutions from constant-property problems, etc.) or others. 
Experienced analysts working in difficult problem areas often restrict the process to linear interpolation (or 
even to zeroth-order) achieving lower formal accuracy in some metric but avoiding behavioral or mimetic 
errors (Roache, 1998b) such as undershoots (interpolated values exceeding extrema of the original data), 
entropy violations, mass conservation errors, etc.  

                                                
145 The material in Section 11.12 is not part of the original V&V20 document, but at the time of this 
writing it is under more extensive development (including examples) by the ASME V&V 20 Committee, 
and is planned to be published in one of a series of supplements to V&V20. 
146 A term suggested by Dr. R. Hills of the ASME V&V 20 committee. 
147 A model could still have value at a Validation set point. For example, if we had ten validation set points 
and the model agreement was good at nine but poor at the application/set point, an analyst might be 
justified in trusting the model result over the experimental result. Or a model could be used to choose 
between disparate experimental results at almost the same set point. However, this is a fine distinction. 
Usually, validation needs to be extended beyond the discrete set points to be useful. 
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 Also, linear functional form is often used for extrapolation, and zeroth-order is the more prudent 
choice. Although extrapolation has a bad reputation (and some analysts would categorically reject it) it is 
sometimes required and justifiable. For high parameter space dimension P, the distinction between 
interpolation and extrapolation is not so sharp as in the commonly considered 1-D problems. For P-
dimensions, interpolation would be limited to the P-dimensional convex hull around the data points nearest 
to the application point, but this can exclude some of the best data from the basis, i.e. an application point 
nearest to original data points but outside the convex hull. Even in 1-D, extrapolation may be easier to 
justify than interpolation. For example, two data points at x = 0 and 10 would support interpolation to x = 
5 with a distance to the data points of |x| = 5, but would better support extrapolation to x = -1 with a 
distance of only |x| = 1. The danger is that some parameter transition boundary might exist at x = 0 that 
would restrict to interpolation. This cannot be known by general theories for interpolation/extrapolation but 
only by physics particular to the problem. But note that such boundaries can also exist interior to the given 
data points (e.g. x = Mach number = 1 is a dangerous boundary across which to interpolate). 
Interpolation/extrapolation subprograms can be tailored to special physics and the basic algorithms can be 
modified by post-processing to avoid or minimize mimetic errors. 
 The choice of interpolation/extrapolation algorithms is left to the analyst, and we now consider issues 
particular to the Domain of Validation. 

11.12.2 Estimating model by Interpolation 

 We consider what we are given at the Validation set points, and what we expect to accomplish in 
extending the Domain of Validation. Consider the schematic of Figure 11.12.2.1, showing a single 
parameter M (perhaps Mach number) with a sequence of experimental validations at four Validation set 
points M = 1,2,3,4 each with f,  model, and Uval. We then perform a new simulation at M = A, an 
application point which is between M = 1 and 2. Clearly we want to have an estimate of model and 
uncertainty U at A. We distinguish known values at A by subscript A, and interpolated values there by 
subscript Ai. 
 At the Validation set points M = 1,2,3,4, the analyst has only been given experimental values for the 
validation variables f  and estimates of model error model and total Validation Uncertainty Uval (or standard 
uncertainty uval ). 
 
 
 
 

 
       1       A   2    3     4 

 
Figure 11.12.2.1. Schematic of Interpolation in the Domain of Validation. 

δmodel 

parameter M 
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 We expect to achieve an estimate of the model error model at the application point A. We need an 
estimate of the error and total uncertainty of our new computation at the application point, denoted as UA. 
However, note that UA cannot be estimated simply by interpolation of Uval from the Validation set points 
data, since these data generally have no relation to whatever grid resolution and algorithm accuracy we 
might use for our application at A. The quality of the Validation exercises to determine Uval will place a 
limit on UA , but we cannot expect high quality computations at A, where there are no experimental data, to 
improve the Validation uncertainty.148 
 It does makes sense to interpolate model. This is a property of the model, not just of the Validation. (See 
discussion in Section 11.11.) 
 It does not make sense to interpolate the solution S. We do not interpolate S, because we calculate a 
new solution at A, denoted SA.  
 So we interpolate for model,Ai from the known data. If we use all four known Validation set points 
1,2,3,4 and if we use linear or quadratic interpolation, it will be over-determined 149, so we use a least 
squares fit of the “model of a model” and the standard deviation of the fit (e.g., Eça and Hoekstra, 2006a, 
2009b) gives a standard uncertainty term ufit. At each of the four Validation set points, we have been given 
(from the Validation exercise) 

model = E  Uval = S - D  Uval        (11.12.2.1) 
 
In the simplest case of approximately independent error terms, this was determined from Eq. (11.5.1), 
repeated here as 

model = S - D  {Unum
2 + Uinput

2 + UD
2}1/2         (11.12.2.2) 

 
 It does not make sense to interpolate for experimental values DAi . If we had no modeling, it would now 
make sense to interpolate for DAi , but this is replaced by the new computational value SA and the inter-
polated values for model,Ai .150 
 It does not make sense to interpolate for experimental uncertainty UD. There is no intermediate 
experiment. There is generally no relation between UD1 and UD2 or any others; they even could be 
associated with different experiments in different facilities. In any case, there is no experiment at A, so 
there is no associated experimental uncertainty at A. 
 It does not make sense to interpolate Unum . That will be determined by the new simulation at A, which 
could be at higher or lower numerical accuracy than any of the Validation set points 1,2,3,4. Besides, there 
is generally no relation between Unum,1 and Unum,2 or any others. For the same reasons, it does not make 
sense to interpolate Uinput . 

                                                
148 Improved computations at a Validation set point could not be used to extend the Domain of Validation 
but rather to re-execute and improve the Validation at the same set point. A division of labor is assumed, in 
which the results of the Validation exercise are handed-off to the analyst. These results consist essentially 
in estimates of model and Uval , not details of the intermediate steps, which can be quite elaborate (V&V20) 
if Eq. (11.5.1) is not applicable, i.e. if the three errors num , input  and D are not effectively independent. 
149 Often the term “interpolation” is restricted to determining a local function that identically passes through 
the given data. Here, we use it more generally to also refer to “curve fitting” which is not so restricted. 
150 In a meaningful sense of modeling philosophy, we are using a computational model to interpolate 
between experimental set point values. 
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11.12.3 Estimating Umodel by Interpolation 

 It does make sense to interpolate Uval , but the interpretation is aided with a change in notation. Recall 
that Uval is intended to be the uncertainty for the estimate of model. So we can use the somewhat clumsy but 
more suggestive notation model  Umodel . We evaluate Umodel = Uval and interpolate for Umodel,Ai .151 
 The new computation result SA cannot reduce uncertainties at the validation set points 1,2,3,4. It can 
only add new uncertainties at the application point A. The relation is 
 

Umodel,A = {Umodel,Ai
2+ Ufit

2 + Unum,A
2 + Uinput,A

2}1/2      (11.12.3.1) 
 
where Ufit is assumed = 2 ufit for want of any better assumption. 

11.12.4 Reporting New Modeling Results 

 How does the modeler report new results at the application point A ? 
 
(1) If the modeler decides to use the corrected solution152 SCA at A, with 
 

SCA = {SA + model,Ai }        (11.12.3.2) 
 
then the reported solution and uncertainty would be 
 

SCA  Umodel,A         (11.12.3.3) 
 
(2) If the modeler decides to use just the new calculated solution SA at A, without correcting for the 
interpolated model error, then the reported solution and uncertainty would be  
 

SA  some combination of {Umodel,A and |model,Ai |}    (11.12.3.4a) 
 
At the time of this writing, a justified combination has not been determined. A possibly justifiable 
combination  of unlike terms U and δ would use RMS, 
 

SA  {Umodel,A
2+ model,Ai

2}1/2         (11.12.3.4b) 
 
A more conservative combination would be 
 

SA  {Umodel,A + |model,Ai |}         (11.12.3.4c) 

                                                
151 If we do not interpolate for some Umodel,Ai  then the erroneous conclusion could be reached that there is 
only interpolation error for model but no uncertainty at the new calculation point A. We could use a highly 
accurate numerical solution so Unum,A ~ 0 and we could perform a very accurate parameter estimation so 
Uinput,A ~ 0. As already noted, it makes no sense to interpolate UD . If we used linear interpolation, then ufit,A 
= 0. So our nonsense estimate would be Umodel,Ai ~ 0. Obviously we need to interpolate for Umodel,Ai . 
152 The pros and cons of using SCA or SC are reminiscent of those for using the solution corrected by 
Richardson Extrapolation fc vs using the fine grid solution f1, discussed in Section 5.6.1. 



Chapter 11  Validation Uncertainty: ASME ANSI Standard V&V 20 
 

 

366 

11.12.5 Division of Responsibilities 

 The interpolation (non-unique) of model and Umodel could be done continuously (not just at a specific 
application point) to establish a continuum extended Domain of Validation. It could be done by either the 
people responsible for the Validation exercises, or by the user addressing a new problem at an application 
point. If it is the former, they must emphasize that this Umodel cannot be interpreted as the total uncertainty 
at a new application point, UA , but only as a contributor to UA . The total UA will be evaluated from Eq. 
(11.12.3.5) and is the responsibility of the modeler. 
 In closing, we note that even a very well done Validation exercise leading to small Uval at all 
experimental set points and an accurate model giving small model do not absolve the modeler from 
responsibility for conscientious grid convergence and parametric uncertainty studies at new application 
points in the Domain of Validation. 
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PART IV 
 

BROADER ISSUES 
 
 
 

 Parts II and III of this book covered Verification and Validation, which (to 
oversimplify) involve mathematics and science, respectively. The broader issues in this 
Part IV assume Verification and Validation, and involve (to oversimplify again) 
engineering and management practice. 
 



Chapter 12. Quality Assurance Issues 
 

 

368 



Chapter 12. Quality Assurance Issues 
 

 

369 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER  12 
 

  QUALITY ASSURANCE ISSUES 
 

What the hell is quality? What is it? 
 

Zen and the Art of Motorcycle Maintenance: An Inquiry into Values 
Robert M. Pirsig, William Morrow Publishing, New York, 1974 

 

12.1 INTRODUCTION 

 This Chapter covers some general issues involved with formal Quality Assurance activity that may 
affect the practicing analyst, without getting into details of particular QA programs.153 The context in this 
chapter, as in all this book, is that of non-real-time numerical solution of partial differential equations. (See 
Chapter 2 for definitions and connotations.) 
 Definitions of “Quality Assurance” are not very informative. The following description is adapted 
from Rechard et al (1991,1992). 
 QA as related to computer software refers to a formal management system, the goal of which is to 
ensure that the software consistently does what it is supposed to do to meet the expectations of the user 
(often referred to as the “customer”, i.e., recipient, purchaser, or beneficiary of the work). For the type of 
projects considered in this book (non-real-time applications), the primary customer expectation is that the 
software not deceive the user, either by the software producing a meaningless answer or by the developer 
overstating software capabilities. Hence, QA means that a software user has a reasonable degree of 
assurance that the software will correctly perform the stated capabilities (e.g., provide a satisfactory 
solution to the mathematical model) when given the proper input. The degree of assurance must be 
commensurate to the complexity, importance, and risk of failure of the analysis. 

                                                
153 Condensed from Chapter 11 of V&V1. 
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 Beyond this very general description, many factors of code QA could be listed, but will not be pursued 
here. For examples and further discussion, see Mehta (1996) and Sections 11.6-7 of V&V1. Some terms 
are obvious and commonplace, others might require elaboration to be legalistically specific, but all are at 
least suggestive of the elusive term “quality.” 

12.2 QUALITY ASSURANCE (QA) VS QUALITY WORK 

 As noted in Chapter 2, Section 2.11 (repeated here), it is worth making the distinction between the 
technical term “Quality Assurance” or QA vs. “quality work.” QA enthusiasts like to talk as though the 
two were equivalent, but formal QA is largely a system of paperwork (e.g., see ISO, 1991) run by 
managers. A project can meet all the formal QA requirements and still be low quality (or flatly erroneous). 
On the other hand, high quality work can and has been done without a modern and formal QA program. 
QA can, of course, be helpful for quality work. (If nothing else, it can be used to encourage management to 
support quality work.) Even the formality and paperwork are helpful in issues like version control. But if 
allowed to run amuck, formal QA can mire real work in forms and procedures and definitions, impeding 
genuine quality rather than fostering it. For example, formal QA procedures may require expensive re-
running of an entire suite of confirmation problems whenever a code is modified; this can discourage minor 
code fixes and improvements. I have seen QA reviewers complain and require written justification (with 
committee approvals, documentation of resolution, archiving of correspondence on approved forms, etc.) 
for a change in input data that produced numerical value changes from 3.0 to 2.999998. And this, in a 
geophysical problem wherein the parameter ranges were sampled over three orders of magnitude! 

12.3 QA VS CREATIVITY 

 Early and excessive insistence QA issues (e.g., early documentation) will smother creativity. It is 
analogous to the situation of true mathematicians insisting on rigorous proofs and theorems for every stage 
of development in an applied mathematics arena. A quote from an old paper by Biot (1956) on the relation 
between pure and applied mathematics is equally applicable to the relation between QA and creative 
algorithm and code development. 
 

One could understand the feelings of the artist who undoubtedly benefits from the scientific study of 
colors but who would be constantly reminded of proceeding with rigorous conformity to the dictates of 
physics and psychology. 

 
An enlightened QA system should encourage and enable quality programming developed in a flexible, 

professional, and progressive atmosphere, rather than mandate every desirable characteristic in a legalistic 
fashion. 

12.4 QA AND TEMPERAMENT TYPES 

 It is this smothering by paperwork that creates tension and gives QA a bad name among creative 
scientists and engineers. There are sound management reasons for QA, yet there are also deeply rooted 
personality and temperament issues involved as well. In the Myers-Briggs temperament classification 
system (Myers, 1962; Keirsey and Bates, 1984), the typical QA temperament type is SJ, whereas the 
creative scientist type is typically NF, diagonally across the matrix from SJ. These two types do not work 
well together; they get on each others’ nerves. Yet they need each others’ traits. Big trouble occurs when 
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one or the other type does not recognize his or her own temperament traits as simply idiosyncrasies, and 
tries to enforce them on others. QA types will even prefer crude and inaccurate algorithms, just because 
they are easier to document clearly and to understand. (This statement is not an exaggeration on my part. I 
have experienced strong requests from regulators, unqualified in either the science involved or in the 
simulation algorithms, to drop sophisticated algorithms, no matter that they are efficient and accurate, in 
favor of childish and inaccurate spread-sheet type of algorithms which any accountant could understand.) 
 In spite of these statements, and my own temperament type (which, as the reader may have guessed by 
now, is NF), I do believe in the usefulness of a formal QA system for large projects, provided that the QA 
system is designed and applied with some common sense, and that personal power trips are avoided. 

12.5 PREVALENCE OF ERRORS IN SCIENTIFIC SOFTWARE:  
USE OF STATIC ANALYZERS 

 Hatton (1997) performed a huge suite of tests over 5 years on commercial, government and university 
scientific software to evaluate the prevalence of errors. The results were horrifying. 

12.5.1 The “T” Experiments of Hatton 

 Hatton’s projects were in two categories. The “T1” experiment measured defects without running the 
codes, by performing static “deep flow analysis” that “looks for inconsistent or undefined use of language.” 
The software analysis programs QAC and QA Fortran were used to gauge “formal consistency,” e.g., 
inconsistency in variable types and/or numbers between code components (functions, subroutines). The T1 
experiment covered over 3 million executable lines of scientific software written in C and Fortran, from 
“many industries and applications areas.” The “T2” experiments covered a single applications area and 
involved running the codes. The results of the T2 experiments were terrible but, I believe, not so 
representative - the applications area was seismic data processing, a notoriously difficult area involving 
vary large ill-conditioned matrices and fine-grained input data. On the other hand, I believe the poor results 
of the T1 experiments to be more generally representative of scientific software. 
 “More than 100 codes in some 40 applications areas” were tested in T1. No details could be given on 
the types of codes, although the applications areas included “graphics, nuclear engineering, mechanical 
engineering, chemical engineering, civil engineering, communications, databases, medical systems, and 
aerospace,” earth science, and control. We may presume that many of these codes involved our interest in 
this book, numerical solution of partial differential equations. “The age of the codes was evenly spread 
between 1 and 20 years.” All were “mature,” i.e. “in regular use by their intended end users.” Significantly, 
“internationally standardized systems of quality control” [presumably ISO 9000 or something like it] “were 
comprehensively represented.” 
 Once again, it is necessary to introduce semantic distinctions. In Hatton’s terminology, the “defects” 
measured in T1 are called faults, while those defects found in T2 by actually running the codes are called 
failures. Failures can arise through a simple defect (i.e., a programming mistake) but could also be caused 
by non-programming defects such as an inappropriate [or just plain incorrect] algorithm, or variations in 
floating-point implementations. However, Hatton’s results indicate that for his T2 tests, in which a common 
algorithm was used across codes, the only significant source of such inaccuracy failures was in fact 
“simple defects” or faults. Hatton noted that “the terms ‘defect’, ‘error’, and ‘bug’ are often used as a 
generic term for either fault or failure, dependent on context.” 
 Briefly, Experiment T1 showed that “C and Fortran codes, independent of the application area, are 
riddled with statically detectable faults. For example. calling-sequence inconsistencies (also known as 
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interface inconsistencies) occurred at the average rate of one in every 7 interfaces in the Fortran codes we 
tested, and one in every 37 interfaces in C.”  
 

What can we do with such numbers? 
 
 First or all, Hatton does not suggest using C instead of Fortran. As he says, “In C, the delights of 
pointers add many new ways of getting it all wrong. In C++, even more pitfalls await the unwary...” About 
half of the higher incidence of interface errors in the Fortran codes is easily normalized away, since the 
Fortran components on average were about 2.5 times as large and had about 2.5 times as many arguments. 
I venture the opinion that the higher prevalence of errors in Fortran than in C (and the longer components) 
results from simple skewing in time; more old code was written in Fortran. (And there is nothing as ugly as 
really old Fortran code.) Hatton stated that “The net result of changing languages appears to be that the 
overall defect density appears to be about the same. In other words, when a language corrects one 
deficiency, it appears to add one of its own.” 
 Second, the presence of these faults does not always indicate failures. Most codes with many options 
were built with the intention of performing a rather limited subset of the options. It is this limited subset 
that has been given the most attention and exercised. Often, code authors will build in an option more with 
a view towards future expansion, rather than immediate application, and test it only cursorily. Even with a 
commercial code, a potential client will usually be advised as to whether the features of interest have been 
well-exercised or not. Also, some faults are simply not errors at execution time, e.g. failure to initiate 
variables can be correct if restricted to computer systems or compiler options that automatically zero all 
variables. (It is still not good coding practice.) Even inconsistencies in interfaces may not be a true error; I 
have written correct code which only requires the first few arguments for some function options, and no 
error results from not including a list of unused arguments in some calls. It could be argued that such a call 
with a full list of unused variables is less readable. (I do not argue this, anymore, and have added dummy 
zero’s, properly floating point or integer, to the argument list, just to avoid questions and flags from code 
analyzers.) However, Hatton addressed this in a statistical fashion, asking experts in the code applications 
areas to weight the severity of the faults, from 5% to 100%. A 5% severity rating represented a low 
probability that the fault would result into a failure, “for example, casting a pointer to an integral type in 
C.” A 100% severity weighting meant “effective certainty that failure will take place in a reasonable 
software life-cycle,” but no guarantee. Briefly, their evaluation was that the situation was serious. Some 
fluids engineering codes happily were on the low end of the weighted fault distributions, while one nuclear 
engineering code was off-scale with an “awe-inspiring 140 weighted static faults per 1,000 lines of code...” 
[If the mean weighting for a fault was about 50%, this would indicate one coding fault every 4 or so lines 
of code!] As Hatton says, this package “amounted to no more than a very expensive random number 
generator.” 
 Third, Hatton’s results give evidence that (e.g., see Chapter 3) there will always be a continuing 
requirement for Confirmation exercises. 

12.5.2 Use of Static Analyzers 

 Fourth, and most important, Hatton’s survey indicated the importance of performing static tests on 
codes, and raises an obvious question. If Hatton and his collaborators could perform these static tests, why 
did not the code developers do it first? 
 Good question. One might try to argue that the static analysis tools were not available when the old 
code was developed. However, this applies only to the oldest Fortran code, since such static analyzers have 
been commonly available at least since the early 1980’s. Then why is not the analyzer applied after the 
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fact, now, to old code? Because (I believe) while it is simple to turn on the analyzer, it is difficult to go 
through the results, especially for old code. In my limited experience, static analyzers typically present 
many “false positives,” flags that formally could be a problem, but are not. The most common (in my 
experience) has been the flag that states “tests for equality between floating point variables may not be 
meaningful.” Of course, they may be meaningful, and are probably not even dangerous when the test is not 
for simple equality but for “less (greater) than or equal,” which construction still elicited flags. (Similar 
flags occur with some compiler options.) There are other false positive flags, or flags that are true positive 
but intended. For example, one might build a code data structure to accommodate future expansions, 
including more generality in a key sub-program than is presently required. This can result in error flags of 
un-initialized variables, “dead” code segments that can never be accessed, etc. In a good QA program 
(which must include such static tests) all these flags have to be addressed, either by changing the code (with 
subsequent headaches of re-running of test cases, new documentation, etc.) or by explaining on QA forms 
why they are false positives, which is perhaps as big a headache, and often leaves a residue of doubt. In the 
template QA system outlined later, scientific codes at the C level (Candidate for “A,” or QA-approved, 
level) are required to be processed by a static analyzer. However, because these runs typically produce 
many false positive warnings, and consequently require significant effort and judgment from the Code 
developer to process the results, its use is not to be required at all stages of code development, although 
early use is recommended (see below). 
 These static analyzers can also output various indices of the code complexity. For old and ugly Fortran 
code, the numbers are high, and indicate the terrible state of the art at the time the codes were written. 
However, I do not believe in arbitrary limits on these complexity indices, nor on the validity of code 
comparisons based on them. If you want a simple (non-complex) code, you use a simple algorithm. It is a 
sad but true fact that very efficient algorithms tend to be inherently complex, and that general purpose 
codes will have many option combinations. I have had QA aficionados suggest dropping a complex but 
efficient 3-D semi-coarsening multigrid algorithm in favor of simple point relaxation, at a cost of 2–3 
orders of magnitude in efficiency for large problems. This is too high a price to pay for the aesthetic of 
coding simplicity. 
 The static analyzers can also determine adherence to structured programming and other programming 
standards, if anyone is interested. Hatton noted that “experiment T1 proved conclusively that attempts to 
maintain programming standards were risible,” i.e. laughable, hilarious. One can only imagine the output of 
error flags! 
 In spite of these sad stories of additional work required to use static code analyzers, I believe that 
 such static tests should be required in any formal QA program,  
 static tests should be used by any code builder or user interested in true quality, and  
 static tests should be used early and throughout the lifespan of a code. 
 
 It may take a day of drudgery to wade through the analyzer output for a moderate size scientific 
package, but the discovery of one genuine bug will be relatively painless compared to releasing and using 
faulty scientific code. As in the case of Verification of mathematical correctness of codes and of 
calculations, there is a time to put aside creativity, and just think like an accountant for awhile. 

12.6 CODE DOCUMENTATION 

 User acceptance is highly dependent on documentation. In my experience, code documentation is 
second to no other factor in user acceptance, not even ease of use. (Accuracy is not even in the race, for 
most users.) The widespread acceptance of the USGS groundwater flow code MODFLOW (McDonald and 
Harbaugh, 1988) is apparently due to its admirable documentation, as well as its availability. (This is not 
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to say that it is not accurate or efficient.) Although not flawless or 100% complete, the MODFLOW 
documentation is definitely methodical and extensive, and is totally devoid of the deliberate obscurantism 
often seen in scientific journals, using the minimum mathematical sophistication necessary to communicate 
the ideas to the reader.  
 The essential user documentation may cover only the input/output data, but full documentation, 
essential to maintenance, involves internal documentation as well. In each subprogram, internal 
documentation should describe all the parameters. It would be convenient if the internal documentation was 
complete and self-contained, but references to other internal or external documentation will be the more 
usual case. Commercial codes should be paragons of documentation, but unfortunately are often not. 

12.7 COMMERCIAL CODES AND THEIR USERS 

 Most users of commercial codes are primarily concerned with issues other than accuracy. Also, the 
complexity of the option tree in a general-purpose commercial code makes code accuracy Verification of all 
option combinations difficult. Even if a code option set is Verified for numerical accuracy, it still remains 
to Verify the accuracy for a particular calculation, as described in Part II. Some commercial codes include 
a single grid error “estimator,” better referred to as an error indicator; see Chapter 7. As noted therein, 
dependable error estimation with a practical definition of error (an error really of interest to an engineering 
calculation) is not yet available. It could be, with an automatic grid coarsening feature, but the typical 
programming environment is not conducive to inclusion of this feature. Although there are exception and 
signs of improvement, generally speaking, commercial code accuracy is in a sorry state (not in regard to 
flexibility or robustness, but accuracy).  
 The situation is difficult for anyone committed to the QA party line of responsiveness to the 
“customer.” A commercial code user once told me that my concern with numerical accuracy was 
“Neanderthal,” and that the “purpose of calculations is to motivate the cutting of metal.” A director of a 
very successful consulting firm, specializing in simulation of enhanced oil recovery processes, stated that in 
some 20 years of experience he had never had a request from a customer for enhanced numerical accuracy. 
Even dealing with academic researchers, the experience of myself and colleagues has been disappointing. 
We have seen more concern over trivial issues of input data structure than numerical accuracy. Not that 
input data structures and ease of use are not important, but that the customer-users are too easy to please-
they are happy if these problems are solved, with no concern for numerical accuracy. Commercial code 
builders cannot be faulted too much for not including dependable accuracy checks if customers are not 
concerned. 

12.8 CODE TO CODE COMPARISONS 

 Given the suspicion of some regulators, it is inconsistent and surprising that they often like to use 
Code-to-Code comparisons as part of Code QA or Certification. Certainly, if a new code agrees with an old 
code that has already been shown to be of high quality, confidence is gained in the new code. In actual 
practice, such comparisons have often been misused, notably in the groundwater flow community. The 
practice is acceptable if one code is a trustworthy standard-not merely old, or commonly used, but 
accurate. Also, more limited use of Code-to-Code comparisons is often efficient, e.g. in testing the 
installation of a new solver, in which case the comparison is on efficiency only, and the Code-to-Code 
comparison is really used as a debugging device or an aid to confidence building. In general, Code-to-Code 
comparisons are suspect, and are no substitute for rigorous code accuracy Verification by comparison with 
exact solutions (see Chapter 3). 
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12.9 QA FOR LARGE PUBLIC POLICY PROJECTS 

 QA at its best is a flexible philosophy, at its worst a bureaucratic morass. It seems clear that the need 
for a comprehensive software QA system increases as the size of an engineering project increases, and as 
the public becomes more involved, e.g. in pressing environmental issues such as hazardous or nuclear 
waste disposal. The activity of “stakeholders” who may not be either technically qualified nor intellectually 
honest puts extreme pressures on QA management, especially in a litigious society such as the United 
States of America. Regulators may be more competent than the general public, but still technically 
unqualified, and more intrusive. (It is challenging to try to explain difficult algorithmic issues like 
conservation in an Approximate Factorization algorithm to people who are unfamiliar with conservation 
laws or Gaussian elimination.) This political situation leads to excessive rigidity and records-keeping in a 
QA system, beyond what the technical requirements might be. For anyone involved in such projects, the 
inevitable results will include reduced personal productivity and increased job stress.  

My recommendations are  
1.  resist micro-management from unqualified regulators who are not supposed to be even macro-

managing, and 
2.  discuss technical questions with members of the general public only if they understand high-school 

level science and mathematics. (Democracy will not work with an uneducated populace.) 

12.10 QA OF ANALYSES 

 Since computational PDE codes are so extensively used in modern engineering and science projects, it 
is perhaps worth emphasizing again that having the best code imaginable is not a guarantee of an adequate 
analysis. The analysis or design of an engineering project involves much more than the use of a (perhaps 
excellent) set of codes. Therefore, existence of a formal QA system for Codes or Software is not sufficient. 
If the QA approach is to be effective, there also must be formal QA procedures to review and evaluate the 
analyses themselves, and probably the resultant reports (e.g., Rechard et al, 1992). 

12.11 QA / CERTIFICATION OF USERS AND REGULATORS 

 Porter (1996) and others have also considered the possibility of Certification not just of codes, but of 
code users. Porter noted that “the utility of CFD in [a particular Air Force project] will be as dependent on 
the skill and experience of the analysts as on the codes themselves.” To me, the most remarkable thing 
about this statement is that it had to be made at all. It should be patently obvious, but evidently is not.  
 It is our opinion based on some experience in a major project (WIPP PA Dept., 1992; Helton et al, 
1995, 1996) involving sensitive public policy decisions, that specific user training and Certification (not 
just token Certification based on general credentials such as M. S. degree and 5 years of experience) is a 
much needed interpretation of the QA concept. Furthermore, it should be extended to include regulators. 

12.12 ASSESSMENT OF CODES? OR USERS? 

 Strazisar and Denton (1995) presented a “CFD Code Assessment in TurbomachineryA Progress 
Report.” Intended to be (in the terminology used in this book) a Validation comparison of CFD codes, it 
became (in my assessment) a QA exercise on user training. The results are worth considering in some 
detail. 
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 A Working Group in Turbomachinery, set up by the International Gas Turbine Institute, designed the 
assessment as a true prediction exercise, being of the opinion that comparisons with already published 
data-sets “do not provide an objective view of CFD capability.” With the same tactful phrasing, the 
organizers stated “An objective view is not provided when a code is run by its developer.” However, 8 of 
the 12 choosing to participate used their own codes. The test data-set on a transonic axial flow compressor 
rotor (what the organizers considered to be “almost the simplest example of a practical machine”) was 
taken at NASA-Lewis. The data set was not distributed (internally or externally) until the 11 “blind” 
simulations were submitted; the 12th simulation was “non-blind” and performed to test feasibility of the 
project. After the original submission of results, the participants were free to perform additional postdiction 
simulations. 
 Tangential to the main thrust of the exercise, the organizers provided a valuable service to future 
algorithm/code developers by polling several major turbomachinery designers on their goals for CFD 
accuracy, shown below. 
 
 Pressure rise  12% 
 Temperature rise  12% 
 Efficiency  0.51.0% 
 Rotor exit flow angle  12 
 
However, the designers acknowledged beforehand that these levels were not presently realizable, but were 
thought to be “ultimately possible.” The designers also noted two more encouraging aspects of design 
simulations.  
 
 “Accurate prediction of change between two configurations is more important than prediction of 

absolute levels.” [See discussion earlier in Chapter 8 on “Inadequacy of Single Grid Calculations for 
Parameter Trends” and in Chapter 9 on “Trends, Computational and Experimental.”] 

 “[A]ccurate prediction of the shape of radial distributions is more important than absolute accuracy.” 
[This is an interesting variant on the “trends” question.] 

 
 Of the 12 submissions, 10 used the algebraic Baldwin-Lomax turbulence model and 2 used k-. Most 
(9 of 12) used H-type grids [which are known to be difficult to use accurately]. The number of grid points 
varied from 37,000 to 1,050,000; this factor of nearly 30 is not so suspicious as it may seem at first glance, 
since this represents only about a factor of 3 in each of the 3 coordinate directions. However, no mention 
(let alone details) of any Verification of Calculation is made in the article. Thus, it is not surprising to read 
the first conclusion of the organizers; “It has been surprisingly difficult to draw firm conclusions from the 
numerical predictions,” thus echoing the first conclusions of the 1981 Stanford Turbulence “Olympics” 
held 14 years earlier (see discussion in Chapters 1, 9, 10). No numbers on accuracy are reported, only 
general assessments. The statement that “overall performance was reasonably well predicted by most 
methods” [some with postdiction] is difficult to reconcile with another statement, that “overall performance 
can be greatly affected [emphasis added] by the details of the turbulence modeling.” Again echoing the 
1981 Stanford Turbulence Olympics, “no conclusions can be drawn as to the best [turbulence] model.” 
 The hopeless confusion is further evident in the statements about H-grids. “Unfortunately those using 
more complex grids always used more grid points and so it is not possible to identify a particular grid type 
as the source of any improvements.” This statement seems to take it for granted that Verification of 
Calculations was not done adequately. If it were, there would be no significant effect of grid type on the 
results. What it would effect is efficiency, with other grid topologies (O-type grids and especially C-type 
grids) achieving the acceptable level of grid convergence with fewer grid points, if previous general 
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experience is any guide. All joking aside (see the CFD parody in V&V1, Appendix D), the mathematical 
solution is not supposed to depend on the coordinate system! 
 The ultimate confusion (and ultimate justification for the parody) comes from these statements. “Three 
of the participants used the same method...[and]...code, and it is significant that they all obtained different 
results both for overall performance and for flow details. This occurred even though two of the simulations 
used a similar number of grid points. It must be concluded from this that the results are not only code 
dependent but also user dependent.” Many comparison exercises have come to the same (presumably 
tongue-in-cheek) conclusion. (See Hutton, 2006, cited in Section 10.8.) It simply states the obvious: that 
different users who use different code parameters will obtain different results. This conclusion hardly 
requires such an extensive comparative exercise. 
 The authors clearly understood the real issue, when they stated: “It is clear that even tighter controls of 
the CFD code parameter space are necessary in future test case exercises.” To put it another way, 
QA/Certification of users and Analyses (as well as codes) is required. 

12.13 §  VALIDATION CLAIMS WITH USER-SPECIFIED INPUT PARAMETERS 

 The legitimacy of claims of a “Validated code” vs. a Validated model becomes clouded with the 
presence of user-specified input parameters. As noted previously, strictly speaking, it is a computational 
model that is validated, rather than a code. But a computational model must be incorporated into a code in 
order for the model to be exercised and produce results, and it is common and not too misleading to speak 
of Validation of a code, when one means Validation of the computational model in the code. The trouble is 
that a code rarely is built to completely specify a computational model; the model form is certainly 
specified, but the parameters of the model are usually a mix of hard-wired values for some parameters and 
user-input values for others. (See also Sections 6.31 and 9.18.) The claim of “Validated code” or model can 
only apply to a stated range of parameters, but the interpretation and connotation is influenced by the 
accessibility of such parameters. For example, one could have a code with a computational model involving 
10 parameters, 4 hard-wired and 6 user-input, and a well documented validation study supporting a claim 
that the code/model is “Validated.” But then a trivial change in coding that switched one of the 4 hard-
wired parameters (say the i-th parameter xi) to user input specification would require a new qualification of 
the claim of “Validated code.” The original claim did not need to specify the parameter range for xi because 
it was hard-wired, and therefore effectively part of the model form. The new claim would have to specify 
the acceptable range for xi ; if no sensitivity study were done, the claimed “range” would have to be 
restricted to a single number, i.e. the previously hard-wired value of xi , and QA documentation would need 
to be changed to reflect this new status. 

12.14 OTHER QA ASPECTS 

 Chapter 11 of V&V1 covers other QA aspects that may be of some interest to code developers, but are 
not covered here because of primary interest of code users. These aspects include the following: terms, 
factors and components of QA (see also Mehta, 1996);  division of labor, code levels, code sources (see 
Rizzi and Vos, 1996 and Porter, 1996);  desirable but not required code characteristics in QA; the very 
important subject of code documentation; undocumented options; built-in automatic user error detection; 
designing for code maintenance; software certification and ISO 9000 standards; and an example of specific 
QA Procedures and a QA system template adapted from our work in Rechard et al (1991, 1992) on the 
WIPP project.  
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12.15 CONCLUDING REMARKS ON QA 

 Like any bureaucracy, a formal QA system can be frustrating. Like most bureaucracies, it is a 
necessary evil for large projects. Provided that participants exhibit some patience, tolerance, and common 
sense, a formal Quality Assurance system can actually contribute to true “quality work,” especially for 
large engineering projects. It can also provide creative scientists, mathematicians, and engineers with a 
different kind of challenge, and can provide its own sense of satisfaction. 
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CHAPTER  13 
 

  CONCLUSIONS 
 
 
 

13.1 THE OVERALL PROCESS FOR QUANTIFICATION OF UNCERTAINTY 

 This book has treated Verification and Validation, and the general area of Quantification of 
Uncertainty, in Computational Science and Engineering and related disciplines that utilize the numerical 
solution of partial differential equations. Included are the activities of Verification of numerical accuracy of 
Codes, Verification of Calculations, Validation of Codes (or the conceptual and mathematical models on 
which the code is built), and the broader areas of Code Certification and QA. Certainly, more development 
work remains to be done, especially in removing burden of Verification of Calculations from Users of 
commercial codes, and certainly Validation is and will remain an ongoing activity. But there is no excuse 
for not doing a convincing, credible treatment of the numerics. We now have algorithms, codes, 
methodology, and computer power to do a good job on the numerical accuracy. Note that the accuracy 
issues associated with “nonlinear dynamics of numerical methods” (see Chapter 8) are easily handled by 
straightforward techniques, and the “basins of attractions” phenomena relate only to code iteration 
convergence and robustness. While certainly important to Code Users, these are not accuracy issues. 
 Techniques are presently available to generate an exact solution (the Method of Manufactured 
Solutions, Chapter 3) for virtually any PDE code including commercial codes. This method (or another 
equally complete method) should be used first to rigorously Verify the numerical accuracy of a Code, 
before Verifying the individual calculations. The Verified code order (say 2nd order) can then be used to 
verify an actual calculation over 2 grids, or, preferably, the observed order for an actual calculation can be 
determined experimentally by calculations over a minimum of three grids.  
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 Also, good practice requires that one investigate changing the time step even for steady state and for 
adaptive time step methods if nonlinear time stepping algorithms like 4th order nonlinear Runge-Kutta have 
been used.  
 Once the mathematical veracity of the code and the calculation have been established (i.e., 
Verification), then one can proceed to attempt Validation of the code (or better, the conceptual model 
embodied in the code) by comparison to experiments. The Validation is ad hoc, particular to the physical 
experiment and a (usually small, but hopefully usable) parameter range around the particular experiment. 
The voices of extensive experience clearly warn the practitioner (or team): do not attempt the Validation 
process until you have confidence in both Verifications. 
 The various approaches to Verification of Calculations can be compared on the basis of their 
reliability, flexibility, and work required. Single grid error estimators are perhaps most efficient, and are 
appealing because they do not require additional grid generation, but only if the analyst assumes the 
convergence rate to be known. Observed convergence rates can only be calculated with solutions on 
multiple grids. Also, single grid error estimators do require additional code development and numerical 
experimentation to correlate (calibrate) their predictions with more straightforward grid convergence 
studies. This work must be repeated (re- calibrated) for any change in the mathematical model, which 
becomes a serious issue in code maintenance. Nevertheless, these methods are attractive for large suites of 
calculations such as those required in Monte Carlo studies and optimization studies. This re-calibration of 
the error estimator is not required with grid convergence studies and error estimation (or banding) based on 
Richardson Extrapolation. Also, generalized Richardson Extrapolation-based methods such as the Grid 
Convergence Index are the most reliable, are the most quantifiable, are specific to whatever practical error 
measure is of interest, and are adaptable to various order of accuracy; they can be used to Verify and 
extract the observed order of convergence for a calculation. Methods using separate PDEs to transport the 
errors require the most work, and are fragile; they are interesting and powerful but not quite ready for 
general recommendation. 
 The convincing Verification of a Calculation sometimes involves subtleties, but generally does not 
involve difficult concepts or mathematics. It is somewhat tedious and requires attention to detail. Melnik’s 
advice is realistic: “Think like an accountant.” I would add, “Go do your homework.” 
 The level of confidence required depends on the project, i.e. on the intended use of the results. As we 
noted in the 1986 ASME Journal of Fluids Engineering Policy Statement (see Chapter 1), many industrial 
calculations will probably continue to be single grid calculations without an error estimate, with adequacy 
of the grid resolution estimated by intuition and experience. But the “practical engineer” must recognize 
that computational PDE practitioners with an extensive experience base usually cannot infer grid resolution 
requirements from ostensibly nearby calculations. This is a task for the code user, not the code builder. It is 
just as difficult when a commercial code is used, no matter what the advertising promises may imply. 
Furthermore, although merely predicting trends produced by changes in parameters will generally require 
less grid resolution than predicting absolute values, the user cannot be casual; under-resolved calculations 
cannot be expected to always produce correct trends, even if the solutions are qualitatively correct. There 
exist counter-examples showing that grossly or even moderately under-resolved solutions do not show the 
correct trends in some quantities of interest. Also, such trends or sensitivity studies may require tighter 
iteration convergence criteria than absolute values do. 
 Compared to just obtaining a single grid solution, it requires (very) roughly twice as much work to 
Verify a new calculation, if we are using a previously Verified code and the same parameter range, and if 
the Verification is positive on the first try. If the new problem exhibits new features (compared to the 
previously Verified problem), perhaps three times the effort will be required 
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13.2 FULFILLING THE PROMISE OF COMPUTATIONAL POWER 

 With the often noted tremendous increases in computer speed and memory, and with the less often 
acknowledged but equally powerful increases in algorithmic accuracy and efficiency, a natural question 
suggests itself. What are we doing with the new computer power? with the new GUI and other set-up 
advances? with the new algorithms? What should we do? Shall we continue to produce more pseudo-
solutions, or shall we finally solve the problems correctly? I suggest that, when all things are considered, 
including the inevitable fruits of quick-and-dirty calculations - anxieties and guesswork and misdirections 
and distrust and tarnished reputations, both for individuals and for the computational community in 
general–that it is simpler and easier to “just do it!” Get the right answer.  
 
 The statement of Ferziger (previously quoted in Chapter 3) bears repeating. 
 
 “... the frequently heard argument ‘any solution is better than none’ can be dangerous in the 
extreme. The greatest disaster one can encounter in computation is not instability or lack of convergence 
but results that are simultaneously good enough to be believable but bad enough to cause trouble.” 
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policy are listed and responses are given. The general successes and particular difficulties experienced in 
the implementation of the policy are noted. The broader question of code verification, validation, and 
certification is considered. It is suggested that professional societies such as the AIAA and American 
Society of Mechanical Engineers may ultimately become involved in the task of certification of available 
CFD commercial codes. 

I. Introduction 

 This paper, on the general philosophy and need for numerical accuracy control in computational fluid 
dynamics (CFD) codes, is based on experience with the implementation of an editorial policy statement by 
the American Society of Mechanical Engineers (ASME), published in the Journal of Fluids Engineering 
(JFE) [1]. The policy statement was conceived following the creation of the position of Associate Editor for 
Numerical Methods in the JFE, which formally recognized the special needs of this discipline. The ASME 
policy and supporting statements are reproduced in the Appendix. The rationale and needs for the policy 
statement are explained in the announcement. The JFE had previously published and had many years of 
experience with a similar requirement for uncertainty analysis in experimental papers. Following our early 
experience with this new policy, a similar policy was also adopted by the ASME’s Journal of Heat 
Transfer. The general subject of control of numerical accuracy has become something of a “hot topic,” 
with special reference to the National Aero-Space Plane, a session at the AIAA 1989 Thermophysics 
Conference, ASME sessions at the 1988 and 1989 Winter Annual Meetings, and by the Texas Institute for 
Computational Mechanics workshop on the slightly broader topic of reliability in computational mechanics 
in October 1989. 

II. Resistance and Objections 

 Although Roache et al [1] thought that the policy statement and the editorial requirement were quite 
mild, it was not universally welcomed. Objections were offered by some of the other editorial board 
members and by other members of the professional community from whom I solicited comments in the 
months following the publication of the statement. Some of these objections, all of which are actual (i.e., 
not straw-man objections), are listed below, together with my responses. 

Objection 1 
 It is too expensive of computer time to do mesh doubling calculations in order to ascertain grid 
convergence. 
 
 There are, of course, other ways to ascertain grid convergence than the straightforward method of grid 
doubling. In fact, this is probably the most reliable method available, but there are other approaches, as 
briefly touched upon in the original policy statement. If the cost of computer resources is not a problem to 
the researcher, this is certainly the easiest approach to take. However, if computer resources are a problem, 
there are other methods that are not intensive users of computer time. It seems that the greater objection for 
doing grid convergence studies is the fact that it requires a bit of conscientious work on the part of 
researchers. 
 Also, if it is argued that it is simply too expensive to do any kind of control of numerical accuracy, then 
I would argue that the author simply cannot be in this CFD business. After all, if you do not have a wind 
tunnel you cannot do experimental testing. My impression of the situation is actually worse than this. 
Journal articles in the late 1960s and early 1970s commonly predicted high resolution accuracy runs when 
the next generation of computers became available. But for the most part they have not been used that way. 
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Generally the tremendous advance of computing power has been used to produce more mediocre papers 
rather than fewer reliable ones. 

Objection 2 
 Some exception to the policy should be made for expensive calculations, particularly three-
dimensional turbulent studies. 
 
 I do not think that the overall cost of the computations should be a consideration. It seems clear that the 
incremental cost of performing a grid convergence test should be normalized by the cost of the base case. In 
this sense it is cheaper to validate the grid convergence on a three-dimensional problem than on a two-
dimensional problem, presuming that the incremental work involves an extra coarse grid computation. This 
again relates to the first point, which states that it is not necessary to do a grid doubling in order to 
ascertain some index of numerical accuracy. A grid halving is also appropriate. Of course, the advantage 
lies in doing a grid doubling test because the error bounds will be sharper. 

Objection 3 
 Turbulence modeling, rather than the numerical solution of the partial differential equations, is the 
real determinator of accuracy. 
 
 My response is, yes and no. Accuracy is a question to be addressed even for laminar flow calculations, 
wherein the constitutive equations are not in doubt. The discretization error does not disappear just because 
one uses a turbulence model! Our point in the JFE policy statement, and the first criticism which our 
evaluation committee made at the 1980/81 Stanford meeting on complex turbulence flows [2], is that one 
cannot evaluate different turbulence models unless one first satisfies grid convergence. There are yet more 
considerations in the overall accuracy question; including, for example, the attainment of a true steady state 
in the computations (yet another “convergence”), inner-loop convergence for incompressible flows, 
equation of state accuracy, low Mach number approximation, geometry representation, accuracy of 
viscosity and conductivity coefficients, constant Prandtl number assumptions, chemical reaction rates, and 
so forth. And, of course, coding errors! These all affect accuracy but do not remove or over-ride the 
requirement for grid convergence testing. I am of the opinion that these modeling questions, including 
turbulence modeling, should be kept separate from the question of the numerical accuracy of the solution to 
those mathematical models. 
 However, there is in fact another special problem with turbulence modeling in that both the fine and 
coarse grids have to get some points into the viscous sublayer. I do not know any easy way around this or 
any other problem that generates such a range of significant length scales which must be adequately 
resolved. However, thorough work can be done. See, for example, Ref. 3. 

Objection 4 
 The policy statement does not go far enough. 
 
 This is certainly true. We consider the JFE policy statement to be a minimalist statement. The idea is to 
make it clear that the authors have to address the topic of numerical accuracy control, and to give the 
editors and the referees the support they need in demanding some effort in this regard. For example, in the 
policy statement, no mention is made of the control of errors due to far-field boundary conditions. Cheng 
[4] pointed out two decades ago that this computational modeling error does not improve as the grid is 
refined. The only way to test for its effect is to move the position of the far-field boundary. Likewise, the 
simple reporting of, for example, a 5 or 10% difference in some function of the solution between two grids 
is not really a rigorous indicator that the solution has been obtained to 5 or 10% accuracy. Although claims 
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have been made that the finite-element methodology offers a more rigorous approach to error estimation, I 
have not been convinced that anything useful and dependable has been produced for nonlinear systems of 
partial differential equations. (The theoretical work that has been done is interesting to some extent, but it is 
usually limited to a very simple model equation.) Schonauer [5] has devoted much time and effort to 
producing accurate error estimators for Navier-Stokes codes. In fact, his goal is not merely to produce 
accurate solutions but to accurately predict the error bounds on those solutions. I suppose a really tough 
journal policy or certification policy would require such effort before accepting a solution, but the journal 
policy that we adopted was much more lax than this. The only intent was to avoid the syndrome of 
producing a single calculation on a single grid (the all too common “take it or leave it” attitude). 
 It is important to note here that grid convergence is really only one aspect of numerical accuracy 
control; it is, however, a necessary component. For example, a statement of results on grid convergence 
studies really has nothing to do with coding errors (unless an exact solution is known, as will be discussed 
subsequently). 
 Mehta [6] is concerned with code validation, verification, and certification. Note that a code is 
certified, but a particular calculation still needs to be examined for the control of numerical accuracy. A 
wrong code can “converge” and, conversely, a correct (i.e., certified) code can be applied to a particular 
problem with an inadequate resolution. Therefore the question of grid convergence testing really presumes 
ahead of time that we have a correct code. The only question then remaining is whether or not the code has 
been applied with adequate resolution to obtain an accurate answer to the problem at hand. 
 Common sense and experience certainly indicate that this presumption of code correctness is not 
always justified. There are now tools available to perform this kind of verification quite convincingly, in my 
opinion. In Ref. 7, we showed how to verify a FORTRAN code that was produced entirely by a symbolic 
manipulation code. The idea is to generate a selected analytic solution to a problem by introducing forcing 
terms and then to monitor the convergence of the CFD code to that solution as the grid size is reduced. This 
procedure verifies the coding accuracy, the grid transformation equations, and even the order of accuracy 
of numerical method. In Ref. 7, it was performed only for the Poisson equation in a transformed three-
dimensional coordinate system and for the most common elliptic grid generation equations. Shih et al [8] 
have applied this concept to the full incompressible Navier-Stokes equations in two-dimensions. I consider 
this paper to be one of fundamental importance in the area of code verification. It would seem that the 
principle can readily be extended to compressible and three-dimensional flows using symbolic manipulation 
programs such as MACSYMA. Turbulence models also appear to be amenable to this approach of 
accuracy checking-noting of course that we are not talking about the adequacy of the turbulent 
representation of the real physics but rather the correct coding and the numerical solution of the turbulence 
model. Shocks, however, seem to be a more difficult topic to approach in this manner. 
 Note that there is an earlier history of using very simple solutions to verify models, but false indicators 
of accuracy sometimes have been obtained. The key in such an exercise is to choose a solution with enough 
structure in it to exercise all of the terms in the equations and all of the leading error terms in the 
discretization. If, for example, one selects a Couette flow solution, one will be lead to the erroneous 
conclusion that a first-order accurate method is perfectly adequate even with a coarse-grid resolution. The 
power of the Shih et al method [8] is that the particular solution they have constructed behaves like a real 
fluid dynamics problem with boundary layers and significant solution structure. 

Objection 5 
 First-order methods and hybrid methods are not more difficult to judge for convergence than second-
order methods, contrary to the discussion in the policy statement. 
 



Appendix A. Need for Control of Numerical Accuracy 
 

 

419 

 I do not understand this objection. It is an elementary behavior of numerical methods that higher order 
accurate methods, as they approach convergence, do so more quickly. For example, a fourth-order Runge-
Kutta method applied to an ordinary differential equation is easier to judge as being converged than is a 
second-order method. If a paper reports that a successive grid doubling of a solution of a linearized 
advection-diffusion equation produces only a 5% change in the answers, one could expect with some 
confidence that the fine grid solution is indeed within 5% of the true solution, if the method used is fourth-
order accurate. If the method used is second-order accurate, it is more problematical; if the method used is 
only first-order accurate, I would be skeptical of the 5% limit on the “accuracy.” 
 {Addition to the original JSR paper. In view of my later analysis in the paper on the Grid Convergence 
Index (Roache, 1994 cited in Chapter 5) I am now more optimistic, especially for a grid doubling with a 
second order method. However, the basic point, that reliable grid convergence is more difficult to ascertain 
with lower order methods, is still valid.} 

Objection 6 
 Agreement of the calculations with experiment is enough justification for the solution accuracy, 
without any need for doing systematic grid convergence testing. 
 
 This objection is quite attractive at first glance. In practice, it does not seem to work very often because 
the agreement with the experiment is usually not universal. This is especially obvious (as stated in the 
original policy statement) with turbulence modeling. Whether or not the turbulence parameters have been 
“tuned” to a particular problem, we still have a “package deal” of discretization errors and turbulence 
modeling errors. The discretization errors should be separated from the turbulence modeling errors. If 
constitutive equations are not an issue, and if the agreement with a very good experiment is complete, I 
suppose I would have to relent. But I would still maintain that a better paper would result if two grids or 
some other grid convergence testing were used. For one thing, it would give some idea of how difficult the 
problem is numerically. (For example, perhaps the results presented were on 100  100 and a 30  30 grids 
might have been sufficient.) Also, such an exercise may help to verify the code, and would also verify the 
order of convergence of the code. As Blottner [9] demonstrated two decades ago, plausible second-order, 
boundary-layer approximations in fact do not always behave in a second-order manner, and this rate of 
convergence can be established by a systematic grid refinement testing. 

Objection 7 
 I do not have any “truncation error” in my solution since I use finite-element methods (FEM). 
 
 Sure you do! (Whether or not the Taylor series is used in the derivation of a discrete method, it can 
still be used in an analysis of the method.) But it would have been better in the JFE policy statement if we 
had used the more general term of “discretization error.” (Also, “truncation error” strictly speaking is not 
applicable in the presence of discontinuities.) I would also note that the commonly referred to FEM “error 
evaluation” practice of substituting the basis function and the solution values into the original partial 
differential equation is perhaps a valid index of discretization error, but it is not absolutely the error 
evaluation that we ultimately want. That is, this procedure does not tell us the difference between our 
discrete solution and the exact solution. 

Objection 8 
 It should not be necessary to legislate such a requirement for doing conscientious work. 
 
 It should not have been necessary, but it was. The need is indicative of the problem; that is always the 
case for legislation, rules, formal ethics committees, and so forth. If a 25th century historian were to read 
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through Albuquerque newspapers from 1989 he would find Sunwest Bank advertising that it has been 
“Safe, Strong, and Sound for 65 Years.” The historian would rightly conclude that the U. S. banking 
industry in 1989 was in trouble. He would also read a lot about congressional ethics committees and rightly 
conclude that political ethics were somewhat lacking. And if he read our JFE policy statement on the 
control of numerical accuracy, he would rightly conclude that there was a bit of sloppy work going on. As 
Professor George Raithby wrote to me after Ref. 1 was published, “The need to legislate that authors check 
accuracy is sad, but the enforced discipline will benefit the field.” 

III. Difficulties in Applications 

 Generally speaking, the response from the reviewers has been positive. Also, the authors have been 
willing to perform the extra work required. The existence of the policy statement has helped since both the 
reviewers and the editors can refer to the policy statement and thus avoid rehashing the arguments with the 
authors. However, there were some particular difficulties. 
 
1. The policy statement was phrased in such a way as to allow the editor to reject papers outright (without 

bothering reviewers) for failure to address the numerical accuracy issue. In practice, this seemed too 
severe and would have led to excessive publication lag since it would have put the numerical accuracy 
review/response in series with the other communications. Consequently, I often did initiate the review 
process even on papers that clearly did not abide by the policy. This also made it easier to be firm with 
the authors later, since I had the additional moral support of the reviewer’s comments. 

2. Some authors chose to abide by the letter of the law in the policy statement with generic statements that 
could be inserted into any paper, such as “the results from different grid resolutions were compared, 
and a 13  13 grid was shown to be adequate.” Although our policy statement was not very demanding, 
I did reject such “trust me” statements and insisted on some quantifiable grid convergence results. As 
someone put it, “Convergence lies in the eyes of the beholder.” I agree, but that is exactly the point of 
requiring some quantifiable criterion; it allows the reader to decide for himself. It would be naive in the 
extreme to think that there is any consensus agreement on what constitutes adequate convergence 
testing. We were not requiring a priori any particular method or any particular quantitative measure of 
convergence, but it is necessary to supply the reader with some numbers. Note that compliance with 
this requirement does not necessarily guarantee acceptance of the paper; it is still up to the reviewers 
and editors to exercise their own professional judgment on the adequacy of the quantified convergence 
criteria.  

3. Some authors would prefer to refer to other papers on similar problems for the grid convergence test. 
This approach is legitimate in theory, and sometimes in practice, but for reasons noted in the previous 
paragraph, it is difficult and problematical. It is certainly preferable to have every paper self-contained 
in this regard. 

 
 Some of the papers submitted and accepted did not display very convincing convergence results. This 
again alludes to the difference of opinions mentioned previously, and it is a difficult subject. During my 
tenure as associate editor for JFE, I was quite liberal in accepting papers as long as the grid convergence 
numbers were provided so that the reader could judge for him- or herself. There are good and bad, sensitive 
and insensitive indicators of convergence. As noted earlier, it is possible to be fooled by only looking at a 
neighboring problem. An obvious example is that of Poiseuille flow. If one tries to answer the question of 
“how many points are required to be in a boundary layer on an aerodynamics problem” by considering the 
neighboring problem of two-dimensional Poiseuille flow, one quickly comes to the conclusion that a single 
point in the boundary layer gives perfect accuracy! The obvious reason is that the solution to two-
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dimensional Poiseuille flow is a parabola, and therefore any second-order finite-difference method will give 
the exact answer. 
 Likewise, one can erroneously conclude that a uniform mesh is optimal [10]. A not-so-obvious bad 
indicator of grid convergence is the vortex wake solution. Many authors have “pointed with pride” to their 
quite accurate predictions (compared to experiment) of the Strouhal number for the near wake of a circular 
cylinder. It is apparently not very widely recognized that this is an easy calculation, because the frequency 
of the von Kármán vortex wake is essentially an inviscid phenomena, and therefore the accuracy of its 
prediction is not a good indicator of the accuracy of predicted boundary layer heat transfer, friction drag, or 
wake decay. 

IV. Examples of What Can Be Done 

 I would like to point out a few exemplary publications addressing the question of the control of 
numerical accuracy. I have already mentioned the turbulence calculations of Shirazi and Truman [3], 
Schonauer’s ambitious approach [5], and the work of Shih et al [8] in which both the accuracy of the code 
(i.e., freedom from coding errors) and its second-order convergence for a particular problem are 
convincingly demonstrated. Another paper, by Kuruvila and Anderson,” is nicely illustrative of the 
difficulties and pitfalls of doing convergence studies with artificial dissipation terms in the equations. The 
paper by Fujii et al [12] was illuminating in demonstrating the importance of grid resolution for Euler 
equation solutions to the leading edge separation problem. Thareja et al [13] present solution-adaptive, 
nonstructured finite-element solutions of the supersonic blunt body problem, which include, in the 
methodology, the control of numerical accuracy. Dietrich et al [14] presented systematic grid truncation 
error testing of ocean circulation codes with four different methods. This procedure is so rare in the 
geophysical community as to be virtually nonexistent. The paper by Durst and Pereira [15] demonstrated 
that the entire procedure is readily applicable to time dependent problems as well as steady state problems. 
Blottner’s paper [16] demonstrated his thorough tests for hypersonic nose tips. Nguyen and Maclaine-
Cross [17] use Richardson extrapolation to zero mesh size to produce reliable curve fits to incremental 
pressure drop number in heat exchangers from full Navier-Stokes solutions. Finally, any such list, no 
matter how fragmentary, must include the classic study of the natural convection benchmark problem by de 
Vahl Davis [18]. 

V. Conclusions and Recommendations 

 The control of numerical accuracy as addressed in the Journal of Fluids Engineering policy statement 
is a necessary but not sufficient component of the broader problem of code validation and verification. It is 
important to realize, however, that a code can be validated and verified and may be indeed certifiable as 
“error free,” but this does not obviate the need for systematic grid convergence testing (or other systematic, 
quantitative error estimation) in any new application. 
 How far should we go? In research journals, I think a broad application of some numerical accuracy 
control philosophy would do much to improve the quality of published work. (Also, by putting a burden of 
more work on researchers, it would probably cut down on the number of papers. I, for one, would shed no 
tears.) In the long run, I would also be in favor of certification of CFD commercial codes. The American 
National Standards Institute and the American Society of Testing Materials are already involved in such 
certification activities in many areas, including FORTRAN compilers. I have some doubts, however, 
regarding the ability of such organizations to handle certification for complex CFD codes. It is probably 
worthwhile to consider now that AIAA and ASME may be active in the area of CFD code certification (and 
perhaps decertification) in the future. I hasten to add that this is not the kind of work that I would 
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personally enjoy or am qualified to do. But, like it or not, I can envision seeing, in my lifetime, CFD code 
certification by professional societies or joint committees thereof. Note that CFD code certification was 
first suggested by Mehta [19]. 
 I do not particularly like the idea of CFD code certification, and perhaps many readers do not either. 
But users do, and if we do not involve ourselves, I think we will find ourselves frozen out. Clearly, users of 
CFD codes (not fellow CFD researchers, but real engineers interested in building something) want 
something that they can use with ease and confidence. Without a certification program, I am confident that 
simple “market forces” will not enforce high standards, but in fact will strongly favor pseudo-robust codes. 
By “pseudo-robust” I mean a code that appears to give a reasonable answer to most any problem. A truly 
robust code, which really does give a reasonably accurate answer to most any problem, is most difficult to 
achieve as we all know. From the user’s point of view, certification is extremely important. In my own 
experience, it is a major consideration in codes for ground water hydrology studies. Older codes, with 
perhaps a 20-year history and correspondingly archaic FORTRAN styles, are inefficient, clumsy to use, 
unreadable, and therefore virtually un-modifiable; nevertheless, they are certified and they are the standards 
of performance for new codes. 
 Available commercial codes certified by some agency or professional society must include attempts to 
guard against misuse. It is of course impossible to fulfill this goal completely. In fact, the experience of 
many of our professional colleagues suggest that it is well nigh hopeless. (I asked a professional colleague 
at a national laboratory if his code was publicly available, and he said no, but he would give it to me, 
because he knew or had a reasonable expectation that I would not misuse it.) CFD codes are much more 
difficult than linear algebra packages or statistical packages, but there are plenty of horror stories regarding 
the misuse of even these more straightforward codes. The reader may be of the opinion that we should not 
even turn loose on the world a general-purpose CFD code, but rather leave it in the hands of us “experts,” 
at least until we can agree amongst ourselves. Unfortunately this agreement is not forthcoming, and in the 
meantime, commercial codes are already available (none of which is very impressive, in my opinion). 
 One thing that we (professionally) could require is that any code, in order to be certified, have built into 
it automatic error estimators, not as user options, but as hard-wired additional output. Like the 
experimental error bars on data, the error estimates can be ignored or incorporated by the practicing 
engineer according to his judgment, but he must be apprised of the estimates. There is a natural human 
desire for easy and unambiguous answers; it is our professional obligation to refuse to give them, in spite of 
“market forces,” which I do not hold to be sacrosanct. 

Appendix: Editorial Policy Statement on the Control of Numerical Accuracy†  

 A professional problem exists in the computational fluid dynamics community and also in the broader 
area of computational physics. Namely, there is a need for higher standards on the control of numerical 
accuracy. 
 The numerical fluid dynamics community is aware of this problem but, although individual researchers 
strive to control accuracy, the issue has not to our knowledge been addressed collectively and formally by 
any professional society or journal editorial board. The problem is certainly not unique to the JFE and 
came into even sharper focus at the 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent 

                                                
† Originally published by the American Society of Mechanical Engineers as “Editorial Policy Statement on the 
Control of Numerical Accuracy,” by P. J. Roache, K. N. Ghia, and F. M. White, in the ASME Journal of. Fluids 
Engineering, Vol. 108, No. 1, 1986; reprinted with permission. 
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Flows. It was a conclusion of that conference’s Evaluation Committee‡ that, in most of the submissions to 
the conference, it was impossible to evaluate and compare the accuracy of different turbulence models, 
since one could not distinguish physical modeling errors from numerical errors related to the algorithm and 
grid. This is especially the case for first order accurate methods and hybrid methods. 
 The practice of publishing comparisons based on coarse grid solutions, without systematic truncation 
error testing, may have been acceptable in the past. Certainly 10–15 years ago any calculation was of 
interest, and much of the exploratory work deserved publication, as many researchers lacked the 
computational power or funds to do a thorough and systematic error estimation. We are of the opinion that 
this practice, however understandable in the past, is outmoded and that, with powerful computers becoming 
more common, standards should be raised. Consequently, this journal hereby announces the following 
policy: 
 
The Journal of Fluids Engineering will not accept for publication any paper reporting the numerical 
solution of a fluids engineering problem that fails to address the task of systematic truncation error 
testing and accuracy estimation. 
 

Although the formal announcement of this journal policy is new, it has been the practice of many of our 
conscientious reviewers. Thus the present announcement is not a change in policy so much as a 
clarification and standardization. 
 Methods are available to accomplish this task, such as Richardson Extrapolation (when applicable), 
calculations with a high- and low-order method on the same grid, and straightforward repeat calculations 
with finer or coarser grids. As in the case of experimental uncertainty analysis, “…any appropriate analysis 
is far better than none as long as the procedure is explained.”§ Whatever the authors use will be considered 
in the review process, but we must make it clear that a single calculation in a fixed grid will not be 
acceptable, since it is impossible to infer an accuracy estimate from such a calculation. Also, the editors 
will not consider a reasonable agreement with experimental data to be sufficient proof of accuracy, 
especially if any adjustable parameters are involved, as in turbulence modeling. 
 We recognize that it can be costly to do a thorough study, and that many practical engineering 
calculations will continue to be performed on a single fixed grid. However, this practice is insufficient for 
publication in an archival journal. 
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Perspective: Validation - What Does it Mean? 
 

Patrick J. Roache 
Consultant 

 

Abstract 

 Ambiguities, inconsistencies and recommended interpretations of the commonly cited definition of 
validation for CFD codes/models are examined. It is shown that the definition-deductive approach is prone 
to misinterpretation, and that bottom-up descriptions rather than top-down legalistic definitions are to be 
preferred for science-based engineering and journal policies, though legalistic definitions are necessary for 
contracts. 
 
Keywords: validation, calibration 

Introduction 

 Validation: The process of determining the degree to which a model {and its associated data} is an 
accurate representation of the real world from the perspective of the intended uses of the model. 
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  Unfortunately, considerable disagreement exists on what this definition means, or should mean. 
 This definition of validation has been cited extensively in CFD (Computational Fluid Dynamics) and 
other computational modeling fields, and is widely accepted. Despite the apparent clarity of this concise 
one-sentence definition using common terms, there is disagreement on its interpretation among scientists 
and engineers, who are habitually careful readers. There are at least three contested issues: whether degree 
implies acceptability criteria (pass/fail); whether real world implies experimental data; and whether 
intended use is specific or general (even by those who think it is needed at all). This gives 23 = 8 possible 
interpretations of the same definition, without even getting into arguments about what is meant by model, 
i.e. computational, conceptual, mathematical, strong, weak. The job of sorting out claims and arguments is 
further complicated by the fact that principals in the debates have sometimes switched sides on one or more 
of these three issues (myself included). 
 Before examining the definition of validation, we need to make a small distinction on what it is we are 
claiming to validate, i.e. between code and model. A model is incorporated into a code, and the same model 
(e.g. some RANS model) can exist in many codes. Strictly speaking, it is the model that is to be validated, 
whereas the codes need to be verified. But for a model to be validated, it must be embodied in a code before 
it can be run. It is thus common to speak loosely of “validating a code” when one means “validating the 
model in the code,” and vendors like to claim they are providing a “validated code,” and legal and 
regulatory requirements may specify use of “verified and validated codes”. In theory, the same model 
would only have to be validated in one (verified) code to be accepted as validated in another (verified) code; 
in practice for RANS codes, this is unrealistic, so “validating a code” is usually meaningful in context. 

History of the Definition 

 The definition was precisely stated in a 1996 (re-issued in 2003) U.S. DoD Instruction [1; see also 
2,3], which referred to an earlier mini-symposium that used almost the same wording. The DoD re-issue in 
2003 [1] added the bracketed additional phrase {and its associated data} after the word model, which 
would suggest a strong-sense concept of model. The definition was adopted (without the bracketed term) in 
the AIAA Guide for V&V in CFD [4] and in the ASME V&V 10 [5] which was based in many aspects on 
[4].155 The definition is widely used beyond these documents and the observations herein should not be 
construed simply as criticisms of these sources, but rather as cautions that there are inherent problems with 
interpretation. The documents cited [1-5] are uneven in their stated interpretations on these issues, with 
V&V 10 [5] being specific and clear on all three issues. Unfortunately, while acknowledging that a range of 
definitions exist for validation and other V&V terms, [5] does not acknowledge that a range of 
interpretations exist for the same definition. Also, while citing [1-4] for its definition of validation, it does 
not acknowledge the fact that it differs from [1-4] in its interpretation notably on the issue of inclusion of 
pass/fail criteria. It is also a fact that, for each publication, opinions on what the definition means differ 
even among members of the same committee that wrote the document. ASME V&V 20 [6] noted the 
definition but also its range of interpretations, adopting a more general descriptive approach. Likewise, 
neither the ASCE monograph on V&V for free surface flows [7] nor my 1998 book [8] required the 
deductive top-down approach implied by legalistic definitions, using instead a descriptive bottom-up 
approach. It is noteworthy that, in spite of all the agonizing over interpretations, none of the specifics of the 
complete V&V methodology presented in V&V 20 [6] is affected by any of these choices. Furthermore, 
while consistent use throughout the computational communities is desirable, there is no necessity for this 
journal or others to accept a DoD or other definition as canonical, especially when it is easily shown that 

                                                
155 Although [5] cited the 2003 version of [1] it did not include the bracketed term added to the original 
1996 issue of [1]. 
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there are inherent problems with the definition and a wide range of interpretations. (Contracts present a 
different consideration; see below.) 
 Based on my contacts in the V&V community, including committee participation in the writing of [5-
7], professional contacts with the principals of [4], and experience teaching twelve short courses on V&V, I 
believe that most professionals make the following interpretations of the definition upon first reading. 

Issue #1. Acceptability Criteria (Pass/Fail) 

 Regarding the issue of whether acceptability criteria (or adequacy, or pass/fail criteria) are included in 
this definition of validation, initially people generally say “yes” without hesitation. This is due mostly to a 
correct recognition that pass/fail decisions must be made in any engineering project, and reinforced by the 
later phrase “from the perspective of the intended uses of the model” which understandably seems to imply 
such project-specific criteria (see discussion below). However, people quickly see the value of the 
alternative view. Although pass/fail criteria are certainly project requirements, the requirements do not 
necessarily need to be included in the term “validation.” In fact, in the original DoD documents [1-3] the 
term “acceptability” was not used in regard to validation, but in regard to “accreditation” (and which has 
elsewhere been described as “certification”). From [1]: 
 
 Acceptability Criteria (Accreditation Criteria). A set of standards that a particular model, 
simulation, or federation [system of interacting models] must meet to be accredited for a specific 
purpose. 
 Accreditation. The official certification that a model, simulation or federation of models and 
simulations and its associated data are acceptable for use for a specific purpose. 
 
 However, acceptability for accreditation as stated in [1] involved additional criteria besides validation 
accuracy, which supposedly was intended to be included in validation [9]. But close reading of the 
documents themselves [1-3] give no indication of this, and strongly suggest to me that the acceptability 
criteria reside under accreditation (or certification, or perhaps another project-related term) rather than 
validation. The AIAA Guide [4] is somewhat vague (and committee members disagree), and there is 
widespread misunderstanding of [4] on this point (see discussion below under Issue #3). But V&V 10 [5], 
even though inspired by the AIAA Guide [4], strongly includes pass/fail criteria, even to the point of 
insisting that the pass/fail criteria (validation requirements) be set firmly before the comparison to 
experiment, in the description of intended use. No acknowledgement of this departure from [4] is given in 
[5], to the likely confusion of any user-engineer who happens to read both documents and who has other 
things on his mind. It would have been less confusing if the sources each had used different wording for the 
definition, which might alert the user-engineer, rather than use the same “definition” with different 
interpretations of the terms. 
 More important than what the documents state is the fact that people quickly see the advantage of not 
including a pass/fail tolerance while performing validation. Rather, one simply evaluates the agreement 
between computational results and experimental results (with their respective uncertainties - see below), 
and presents the difference as the level of validation. This recognizes the fact that the same validation level 
(e.g., 10% agreement for skin friction coefficient) may be adequate for one application and not for another. 
This is just the kind of validation exercises performed for many years for RANS turbulence models, for 
example.  
 There are two very distinct processes: first, comparison of model predictions with experimental values, 
leading to an assessment of model accuracy, and second, determination of acceptability or pass/fail of that 
accuracy level for a particular application. The methodologies employed in each process have virtually 
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nothing in common. In some usage, a model whose results have been compared to experiments is labeled 
validated regardless of the agreement achieved. In this loosest use of the term, validated then is not a 
quality of the code/model per se, but just refers to the QA (Quality Assurance) process. Carried to an 
extreme, this viewpoint gives the designation validated even to very poor models. Celik [10] has pointed 
out that it would be misleading to assign the inevitably value-laden term “validated” for a code that 
produces unarguably poor results (say wrong qualitative trends, e.g., lift coefficient decreasing with angle 
of attack) just because it has gone through the validation QA process. I agree, and do not recommend this 
usage. A more moderate usage is to call the model validated, regardless of the agreement achieved, but to 
state explicitly that the model is validated to a specified level and within the validation uncertainties 
determined from following the procedures in [6] or other. This way, the validation statement provides a 
quantitative assessment, but stops short of a rigid pass/fail statement, since that requires consideration of 
the design, cost, risk, etc. This usage is well presented by Oberkampf et al. [11], pg. 348. “Stating our view 
succinctly: validation deals with quantified comparisons between experimental data and computational 
data; not the adequacy of the comparisons.” The other extreme makes validation project-specific by 
specifying the error tolerance a priori, e.g. see [5]. This ties a code/model validation rigidly to a particular 
engineering project rather than to less specific science-based engineering (or worse, it neglects the fact that 
agreement may be acceptable for one application and not for another).  
 Since not all comparisons should result in a code being given the value-laden designation of validated, 
some minimal agreement should be required. As a reviewer has noted, since it is impossible to avoid 
attaching a value to validated, it can be argued that it is preferable to attach a well defined criterion from 
the start. But on balance, I think this is outweighed by the disadvantages, as discussed (ephemeral pass/fail 
criteria, applicability of validation results to more than one project, disparate methods for assessing fidelity 
and adequacy). The general (and necessarily vague) level of acceptable agreement must be determined by 
common practice in the discipline. The simulation results with their uncertainties are compared to 
experiments with their uncertainties, and if reasonable agreement as determined by the state-of-the-art 
standards (including at least correct qualitative trends) is achieved, then the code/model can be termed 
validated. This does not necessarily mean that the model will be adequate for all applications. Such a 
project-specific pass/fail tolerance should be relegated to accreditation or certification [8]. The value of this 
pass/fail tolerance tends to vary over time with design decisions, product requirements, and economics, 
even though the objective results of the validation comparison itself have more permanent value. 
 Many discourage the use of the term “validated code” no matter how good the agreement with 
experiment, because it might be misleading or even deliberately misused, e.g. in commercial code 
marketing. But it does not seem realistic to try to outlaw the past participle, and codes that have gone 
through validation will inevitably be referred to as “validated codes.” Nevertheless, as Tsang [12, cited in 
8, page 26] noted, “almost by definition, one can never have a Validated computer model without further 
qualifying phrases.” The qualifications include knowledge of the experimental validation set points, the 
specific validation variables or metrics, what is included in model, and of course the degree of validation 
achieved, which requires stated uncertainties of both computations and experiments. 

Issue #2. Necessity for Experimental Data 

 In the validation definition, most engineers read “real world” to imply real world data, i.e. what most 
people would call experimental data. Surprisingly, not everyone agrees with this interpretation. (In [1-3] the 
distinction was not specifically addressed; in [4,5] the requirement was clear and unequivocal, although 
some members of the committees disagreed.) The apparent motivation is to try to gain the approval implicit 
in “validation” without the onerous requirement for obtaining real experimental data. There are difficult 
problems, e.g. nuclear stockpile, for which further testing is outlawed. It is not always clear what these 
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proponents would substitute. Some look for agreement between different models. As noted in [8, p. 276], if 
one code has been previously validated, it can be regarded as a repository of experimental information, a 
set of second-hand experimental data plus smoothing and interpolation/extrapolation to parameter values 
other  than experimental set-points. But in general, code-to-code comparison is not validation. The 
recommended view, agreeing with [5-8], is uncompromising: no experimental data means no validation. 
 Regarding validation by comparison with a previously validated code, a reviewer has noted that, if a 
second code is being validated at a set point, the original data could be used, not the first code that has been 
“validated” at that same set point. In principle, this would usually be the preferred approach. However, for 
some practical situations the use of a previously validated code could be preferable and certainly more 
convenient and, I believe, acceptable. First, note that previous multiple validation experiments may not 
agree with each other, even within the experimental uncertainties (if indeed these have been presented), and 
they may not be at exactly the same set points. Second, suppose that a new model to be validated is not 
expected to be as accurate as previous models (but perhaps has an advantage of simplicity, or 
computational speed, or numerical stability, or lack of sensitivity to grid resolution and is therefore cheaper 
to run). Then it would make sense to compare the results of the new model with those of a previously 
validated (but perhaps more complex, slower, less robust, or more expensive) model. (A ready example is a 
turbulence model using new wall functions, which could be validated against previously validated models 
employing integration to the wall.) It would be impossible to justify if the new model were intended to be 
more accurate than the old model taken as a benchmark, except as an interim validation exercise used to 
justify further validation work (perhaps with new and improved validation experiments). 

Issue #3. Intended Use 

 The requirement for “intended use” sounds good at first, but it fails upon closer thought. Did D. C. 
Wilcox [13] need to have an “intended use” in mind when he evaluated the k-ω RANS turbulence models 
for adverse pressure gradient flows? He may very well have had uses in mind, but does a modeler need to 
have the same use in mind two decades later? If not, must the validation comparison be repeated? Certainly 
not. 
 The “intended use” phrase also bears on pass/fail criteria (Issue #1), seeming to indicate that pass/fail 
criteria are to be included in the definition of validation. There is widespread misunderstanding of the 
AIAA Guide [4] on this point, as acknowledged by W. Oberkampf [11], a principal architect of [4]. He 
stated that pass/fail criteria are not included: “We argue that this is what the words mean in the definition 
...” The fact that the authors must “argue” the interpretation indicates that the document is unclear, which 
is understandable given the phrase “from the perspective of the intended uses of the model.” Oberkampf 
insists that “intended use” applies not to a pass/fail tolerance but rather to the metrics involved. Although 
this observation is relevant, it is not complete, because the same metrics might be applicable to different 
end uses, just as the same pass/fail tolerances might be. Although [1-4] are not emphatic about specificity 
of intended use, they are suggestive. V&V 10 [5] is admirably clear but unrealistically strong, even to the 
point of insisting on a priori specification of validation criteria, which if taken seriously would effectively 
eliminate the possibility of validation in any basic research sense, in my opinion. All these documents [1-5] 
have a strong orientation to management of large engineering projects, which deters from their applicability 
to basic research, unlike V&V 20 [6]. 
 Clearly, much of the confusion is the result of trying to use the same word for different needs. Project 
oriented engineers are more concerned with specific applications, and naturally tend to rank acceptability 
within validation (which term is used more often than accreditation or certification). Research engineers 
and scientists tend to take a broader view, and often would prefer to use validation to encompass only the 
assessment of accuracy level, rather than to make decisions about whether that level is adequate for 
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unspecified future uses. It is also significant to recognize that these project-specific requirements on 
accuracy are often ephemeral, so it is difficult to see a rationale for a priori rigid specifications of 
validation requirements [5,11] when the criteria so often can be re-negotiated if the initial evaluation fails 
narrowly. 

Recommended Interpretation and Alternative Description 

 My recommendations, consistent with V&V 20 [6], are that choices for the interpretation of the 
validation definition be made as follows.  

 Recommendation on Issue #1.  

 Criteria for acceptability of accuracy (adequacy, or pass/fail criteria, or accuracy tolerance) are not 
part of validation, but analysts performing validation exercises should be wary of appearing to bless a code 
as “validated” when it is clearly unsatisfactory for any reasonable application (e.g. it cannot even predict 
correct qualitative trends). In an engineering project, the acceptability of the agreement is part of the next 
project step, variously called accreditation, certification, or other. It is an engineering management decision, 
not a scientific evaluation. 

 Recommendation on Issue #2.  

 Experimental data is necessary for Validation. Many have said unequivocally [5-8,11] that 
experimental data are the sine qua non of validation. 
 
 No experimental data => No validation 
 
Many other factors remain, of course, including the quality and quantity of the data, the necessity for 
uncertainty estimates for both modeling and experiments [6], the extent of the domain of validation (the 
range of parameter space in the set points of the experiments and the interpolation/extrapolation of 
experimental and computational results), whether previously validated codes can be used as a secondary 
database, whether scaled experiments are adequate, etc. But as a minimum, some experimental data are 
required. This data can include historical observations and already established scientific facts (especially 
obvious for invalidation), as pointed out by a reviewer, but it is noteworthy that [4,5] disagree, adopting a 
literal sense of temporal “prediction” which is at odds with scientific practice. 

 Recommendation on Issue #3.  

 Intended use, at least in its specific sense, is not required for validation. The common validation 
definition could be salvaged by re-defining intended use to include very general intentions, but frankly this 
appears to be a hollow exercise. The fact is that a useful validation exercise does not necessarily require an 
intended use, specific or general. For example, the well-known data on turbulent backstep flow of Driver 
and Seegmiller [14] in the ERCOFTAC database can be used for code/model validation, with neither the 
experimenters in 1985 nor modelers in (say) 2008 having a specific use in mind. This is precisely the 
situation for the Lisbon III Workshop on V&V [15]. 
 However, it is also true and very important that (as recommended strongly in [4-6,11]) experiments 
designed specifically for a validation exercise, and with a specific application in mind, and with 
collaboration between experimenters and modelers in the design of the experiments, are much more likely to 
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produce data on the relevant metrics with relevant precisions than are experiments designed without 
applications in mind. 

 Alternative Description.  

 Alternately, for science-based engineering, we can describe validation rather than rigidly define it. First 
(and virtually universally agreed upon [4-8,11]) is the distinction between verifications and validation. 
Verifications (first of the code and then of particular calculations or solutions) are simply matters of 
mathematics, and address questions of correct coding and discretization accuracy of particular solutions, 
whereas validation involves comparison with reality, i.e. science (or physics, in its most general sense). In 
general terms, validation involves comparison of modeling results with experimental results. This has been 
used in the past, but I agree with [4-6,11] that it is too soft. The trouble (as noted in [11]) is that the 
difference between model result and experiment is too easily taken to be the accuracy when in fact the story 
is more difficult. It is time to improve standards somewhat on even the minimal requirements for the term 
validation.  
 The minimal required improvement is contained in one word: uncertainty. We can describe validation 
(legitimate, minimal validation) as the comparison of model results and their associated uncertainties with 
experimental results and their associated uncertainties. A specific methodology for this comparison 
including interpretation of the answers is given in [6] using accepted, well established quantitative 
techniques for every aspect of the entire process, and using definitions and statistical techniques that are 
consistent between experimental and modeling methodologies. I believe that such a descriptive approach is 
all that is needed for science-based engineering and for journal publication standards. In any case, the 
warning [12] still applies: it is meaningless to talk about “validation” without significant further 
qualifications. 

Calibration is Not Validation 

 Whether  one takes a definition-deduction approach or a less rigid descriptive approach, it is necessary 
to be clear that calibration, the adjustment or tuning of free parameters in a model to fit the model output 
with experimental data, is not validation. (This distinction is emphasized in each of [4-7] but earlier uses 
[8] often described calibration as just validation for a restricted range of physical parameters.) Calibration 
is a sometimes necessary component of (strong sense) model development. But this calibration is not to be 
considered as validation, which occurs only when the previously calibrated model predictions are evaluated 
against a set of data not used in the tuning [4-8]. There is no value in tuning free parameters to obtain a 
drag coefficient to match an experimental value, and then claiming code/model validation because the 
“prediction” agrees with the same experiment. Historically, this has been a common failing of free-surface 
flow modeling projects [7]. Of course, if all point-values and functionals of interest are well matched using 
a small set of free parameters with physically realistic values, this will tend to be convincing in itself, but 
another data set not used in the tuning will be more so. 

Implications for Contractual and Regulatory Requirements 

 Although bottom-up descriptions of validation may be adequate for research journals, rigid and 
legalistic definitions will be required for contracts specifications and regulatory requirements. If a contract 
specifies that a “validated code” must be used in the modeling, then all parties must know what is meant by 
“validation” as well as verification, accreditation, etc. My preferences for the definition interpretations are 
given above, but whatever the contracting or regulating body decides, what is clear from the history of this 
controversy is the following. Although a rigid, legalistic definition may be required, it is not sufficient. As 
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with questions of constitutional law, interpretations will differ. No matter how carefully the words are 
crafted, one cannot expect all readers to make the same interpretations.  
 To better ensure that the intent is correctly interpreted, the contract or regulation specifications should 
amplify the definitions used with specific interpretations. For example, if the above definition is adopted, 
the specifications should not just say “real world” and expect the analyst or contractor to know that 
experimental data is required. The bare legalistic definitions should be expanded to describe the definition, 
as done notably in V&V 10 [5]. The definition - deduction approach alone is not adequate; the human 
capacity for equivocation assures that no legalistic definition is inviolable. 
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pp. 4-10. 
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Abstract 

Verification of Calculations involves error estimation, whereas Verification of Codes involves error 
evaluation, from known benchmark solutions. The best benchmarks are exact analytical solutions with 
sufficiently complex solution structure; they need not be realistic since Verification is a purely 
mathematical exercise. The Method of Manufactured Solutions (MMS) provides a straightforward and 
quite general procedure for generating such solutions. For complex codes, the method utilizes Symbolic 
Manipulation, but here it is illustrated with simple examples. When used with systematic grid refinement 
studies, which are remarkably sensitive, MMS produces strong Code Verifications with a theorem-like 
quality and a clearly defined completion point. 
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Introduction 

 In the semantic tangle of the subject of “Quantification of Uncertainty” (a term which itself generates 
some disagreement) the three most important terms, and the most universally agreed upon, are Verification 
of Codes, Verification of Calculations, and Validation. For reasons both logical and practical, these 
activities must be performed in this order [1,2]. Verification of a Calculation involves error estimation, 
whereas Verification of a Code involves error evaluation, from a known solution. Both Verifications are 
purely mathematical activities, with no concern whatever for the accuracy of physical laws. That is the 
concern of Validation, i.e., the agreement of the mathematics with science.  
 Journal Policy Statements on reporting of numerical uncertainty, of which this journal’s 1986 
statement [3] was the original, refer only to Verification of Calculations; the code used is assumed to be 
correct. “Correct” is perhaps preferable to “accurate.” It can be misleading to describe a code as 
“accurate,” because naive users of commercial software may think that, if the code they use is accurate, 
then their calculation will be accurate. This neglects their own burden to perform systematic discretization 
convergence tests for their particular calculation, i.e. Verification of a Calculation. Determining the 
correctness of the code itself can only be done by systematic discretization convergence tests using a known 
solution or “benchmark” (another term with inconsistent connotations). The best benchmark solution or 
standard of comparison is an exact analytical solution, i.e. a solution expressed in simple primitive 
functions like sin, exp, tanh, etc. Note that benchmark solutions involving infinite series are not desirable, 
typically being more numerical trouble to evaluate accurately than the CFD code itself [1]. It is not 
sufficient that the analytical solution be exact; it is also necessary that the solution structure be sufficiently 
complex that all terms in the governing equation being tested are exercised. For example, some early and 
misleading claims of accuracy of commercial codes which used the notoriously inaccurate first-order 
upstream differencing for advection terms were based on comparisons with Poiseuille, Couette or Rayleigh 
problems, which do not even “turn on” the advection terms. 
 It has often been stated in research journal articles that general accuracy Verification of Codes for 
difficult problems, e.g. the full Navier-Stokes equations of fluid dynamics, is not possible because exact 
solutions exist only for such relatively simple problems that do not fully exercise the code. Many papers 
and reports approach accuracy Verification of Codes in a haphazard and piecemeal way, comparing single-
grid results for a few exact solutions on problems of reduced complexity. In fact, a very general procedure 
exists for generating analytical solutions for accuracy Verification of Codes. I first presented the method in 
[4], and later expanded the applications [1,2]. Although a few respected authorities (e.g., [5-9]) have 
recognized the power of the method, acceptance has been slow and misunderstanding is not uncommon. 
Based on my experience in many discussions with professional colleagues including teaching short courses 
with participations by senior researchers, the misunderstanding is due to the deceptive simplicity 
(elegance?) of the concept. This article is written in an attempt to clarify the concepts with simple 
examples, to dispel concerns often voiced, to add a few fine points, and to provide some recent references. 
It is hoped that the reader will bear with the somewhat conversational style, since the paper is part tutorial, 
part review. 

The methodology provides for convincing, rigorous Verification of the numerical accuracy of a 
code via systematic grid convergence testing. This procedure is straightforward though somewhat tedious 
to apply, and verifies all accuracy aspects of the code: formulation of the discrete equations (interior and 
boundary conditions) and their order of accuracy, the accuracy of the solution procedure, and the user 
instructions. 
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The Method of Manufactured Solutions 

 The Method of Manufactured Solutions (MMS) provides a general procedure for generating an 
analytical solution for code accuracy verification. 
 The basic idea of the procedure is to simply manufacture an exact solution, without being concerned 
about its physical realism. (The “realism” or lack thereof has nothing to do with the mathematics, and 
Verification is a purely mathematical exercise.) In the original, most straightforward and most universally 
applicable version of the method, one simply includes in the code a general source term, Q(x,y,z,t) and uses 
it to generate a non-trivial but known solution structure. We follow the counsel of G. Polya [10]: Only a 
fool starts at the beginning; the wise one starts at the end. 
 We first pick a continuum solution. Interestingly enough, we can pick a solution virtually independent 
of the code or of the hosted equations. That is, we can pick a solution, then use it to verify an 
incompressible Navier-Stokes code, a Darcy flow in porous media code, a heat conduction code, an 
electrode design code, a materials code, etc. 
 We want a solution that is non-trivial but analytic, and that exercises all ordered derivatives in the error 
expansion and all terms, e.g., cross-derivative terms. For example, chose a solution involving tanh. This 
solution also defines boundary conditions, to be applied in any (all) forms, i.e., Dirichlet, Neumann, Robin, 
etc. Then the solution is passed through the governing PDEs to give the production term Q(x,y,z,t) that 
produces this solution. Since this description sounds circular, we will demonstrate with concrete examples. 
In [4] we used Symbolic Manipulation to generate Q, and this is still recommended for complex 
multidimensional CFD codes. However, for illustration purposes, we can consider simple one-dimensional 
transient problems and generate the results by hand, in unambiguous steps. 

Three Example Problems in MMS 

To emphasize the generality of the concept, we pick the first example solution before we specify 
the governing equations. Then we will use this same solution for two different problems, i.e. set of 
governing PDEs and boundary conditions. The chosen solution U(t, x) is the following. 
 

U t x A B B x Ct( , ) sin( ),               (1) 
 
 Example 1 
 First, let us apply this 1-D transient solution to the nonlinear Burgers equation, often taken as a model 
for CFD algorithm development [2]. 
 

u uu ut x xx                (2) 
 
Incidentally, this specified solution U(t, x) is the exact solution for the constant velocity advection equation 
with boundary condition of u(t,0) = A + sin(Ct), so for the high Reynolds number problem (small ) it may 
look “realistic” in some sense, but it is not a solution to our governing Equation (2), and its “realism” or 
lack thereof is irrelevant to the task of Code Verification.  

We determine the source term Q(t, x) which, when added to the Burgers equation for u(t, x), 
produces the solution u(t, x) = U(t, x). We write the Burgers equation as an operator (nonlinear) of u, 

 
L u u uu ut x xx( )     0          (3) 

 
Then we evaluate the Q that produces U by operating on U with L. 
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Q t x L U t x

U t U U x U x
( , ) ( ( , ))

/ / /


        2 2           (4) 

By elementary operations on the manufactured solution U(t, x) stated in Eq. (1),  
 

Q t x C B A B B B( , ) cos( ) [ sin( )]cos( ) sin( )            (5) 
 

If we now solve the modified equation (the Manufactured Solution) 
 

L u u uu u Q t xt x xx( ) ( , )             (6) 
or 

u uu u Q t xt x xx    ( , )           (7) 
 
with compatible initial and boundary conditions, the exact solution will be U(t, x) given by Eq. (1). 
 The initial conditions are obviously just u(0,x) = U(0,x) everywhere. The boundary conditions are 
determined from the manufactured solution U(t, x) of Eq. (1). Note that we have not even specified the 
domain of the solution as yet. If we want to consider the usual model 0 1 x or something like 
  10 100x , the same solution Eq. (1) applies, but of course the boundary values are determined at the 
corresponding locations in x. Note also that we have not even specified the type of boundary condition as 
yet. This aspect of the methodology has often caused confusion. Everyone knows that different boundary 
conditions on a PDE produce different answers; not everyone recognizes immediately that the same solution 
U(t, x) can be produced by more than one set of boundary condition types. The following combinations of 
inflow (left boundary, e.g. x = 0) or outflow (e.g., x = 1) boundary conditions will produce the same 
solution U(t, x) over the domain 0 1 x . 
 
Dirichlet - Dirichlet: 

u t U t A Ct u t A Ct( , ) ( , ) sin( ), ( , ) sin( )0 0 1 1             (8) 
 

Dirichlet - Outflow Gradient (Neumann): 
u t U t A Ct u x t Ct( , ) ( , ) sin( ), / ( , ) cos( )0 0 1 1               (9) 

 
Robin (mixed) - Outflow Gradient (Neumann) at x = : 

au bu c at t given a and b select c a A Ct b Ct
u x t Ct

x     

 

( , ) , [ sin( )] cos( )
/ ( , ) cos( )

0
   

   (10) 

 
For this time-dependent solution, the boundary values are time-dependent. It also will be possible to 
manufacture time-dependent solutions with steady boundary values, if required by the code. 
 
 Example 2 
 To further clarify the concept, we now apply the same solution to a different problem, choosing as the 
new governing PDE a Burgers-like equation that might be a candidate for a 1-D turbulence formulation 
based on the mixing length concept.  
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u uu u x x u x
uu u x u x u

t x xx

x xx x xx

   

    

     

 

/ [( / ) ]
[ ( ) ]

2

2 22
          (11) 

 
Writing the mixing-length model equation as a nonlinear operator of u, 

 
L u u uu u x u x ut x xx x xx( ) [ ( ) ]      2 02 2         (12) 

 
we evaluate the Qm  that produces U by operating on U with Lm . 
 

Qm t x Lm U t x
U t U U x U x x U x x U x
( , ) ( ( , ))

/ / / [ ( / ) / ]


              2 2 2 2 2 22
      13) 

 
By elementary operations on the (same) manufactured solution U(t, x) stated in Eq. (1),  
 

Q t x C B A B B B x B x B( , ) cos( ) [ sin( )]cos( ) sin( ) [ cos ( ) sin( )]      2 2 2     (14) 
 

If we now solve the modified model equation 
 

Lm u u uu u x u x u Qm t xt x xx x xx( ) [ ( ) ] ( , )      2 2 2         (15) 
or 

u uu u x u x u Qm t xt x xx x xx      2 2 2[ ( ) ] ( , )          (16) 
 
with compatible initial and boundary conditions, the exact solution for this turbulent problem again will be 
U(t, x) given by Eq. (1), as it was for the previous laminar problem.  
 Note: the same initial and boundary conditions and boundary values from the previous problem can 
apply, since these are determined from the solution, not from the governing PDE, nor from Q  or Qm . 
  
 Example 3 
 We have shown how the same solution can be used as the exact solution to verify two different codes 
with different governing equations, with different source terms being created to Manufacture the same 
solution. A third example will demonstrate the arbitrariness of the solution form. Rather than the somewhat 
“realistic” solution to the constant velocity advection equation given by Eq.(1), let us consider the 
“unrealistic” but equally valuable solution as follows. 
 

U t x t ee
x( , ) sin( )              (17) 

 
Following the same procedure for the Burgers Equation (2), we evaluate the terms in Eq. (4) from the 
solution Ue of Eq. (17) and obtain 
 

Q t x t e t e t ee
x x x( , ) cos( ) [sin( ) ] sin( )  2            (18) 
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(arranged for readability rather than compactness). This Qe , when added to Eq. (2), produces the 
Manufactured Solution Eq. (17) when compatible initial and boundary conditions are evaluated from Eq. 
(17). 

Application to Verification of Codes 

 Once a non-trivial exact analytic solution has been generated, by this Method of Manufactured 
Solutions or perhaps another method, the solution is now used to Verify a Code by performing systematic 
discretization convergence tests (usually, grid convergence tests) and monitoring the convergence as   0, 
where   is a measure of discretization (e.g. x,  t in a finite difference or finite volume code, and element 
size in a finite element code, etc.). 
 The principle definition of “order of convergence” is based on behavior of the error of the discrete 
solution. There are various measures of error, but in some sense we are always referring to the difference 
between the discrete solution f() (or a functional of the solution, such as lift coefficient) and the exact 
(continuum) solution,  

E = f () - fexact            (19) 
 

 For an order p method, and for a well-behaved problem (exceptions are discussed in Chapters 6 and 8 
of [1]), the error in the solution E asymptotically will be proportional to p. This terminology applies to 
every “consistent” methodology: finite difference methods (FDM), finite volume methods (FVM), finite 
element methods (FEM), block156 spectral, pseudo-spectral, vortex-in-cell, etc., regardless of solution 
smoothness. Thus,  

E = f () - fexact = C p + H.O.T          (20) 
 

where H.O.T. are higher order terms. (For smooth problems, it may be possible in principle to evaluate the 
coefficient C and the H.O.T. from the continuum solution, but as a practical matter, we do not do this in 
the accuracy Verification procedure.) We then monitor the numerical error as the grid is systematically 
refined. Successive grid halving is not required, just refinement. (See [1] for examples, analysis and 
extensive discussion.) Thorough iteration convergence is required. Theoretically (from Eq. 20), values of C 
= error/p should become constant as the grid is refined for a uniformly p-th order method (“uniformly” 
implying at all points for all derivatives). Details and many examples are given in [1]. The following 
summary points from [1] are worth noting. 
 The procedure detects all ordered errors. It will not detect coding mistakes that do not affect the answer 
obtained, e.g. mistakes in an iterative solution routine which affect only the iteration convergence rate. In 
the present view, these mistakes are not considered as Code Verification issues, since they affect only code 
efficiency, not accuracy. 
 The procedure does not evaluate the adequacy of non-ordered approximations, e.g. distance to an 
outflow boundary, distance to an outer (wind-tunnel wall-like) boundary, use of  p y/  0 at a wall as a 
boundary condition (this is not a rigorous physical boundary condition for Navier-Stokes equations). The 
errors of these approximations do not vanish as   0, hence are “non-ordered approximations.” The 
adequacy of these approximations must be assessed by sensitivity tests which may be described as 
“Justification” exercises [1]; these are similar to Verification of Calculations in that they involve only 
mathematics, but are simply the results of calculations. If the code manual says it uses a 2nd order accurate 

                                                
156 Added. 
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discretization of  p y/  0 at walls and the MMS procedure shows that it does, then the Code is Verified 
on this point. 
 When this systematic grid convergence test is verified (for all point-by-point values), we have verified  
  (1) any equation transformations used (e.g., nonorthogonal boundary fitted coordinates),  
  (2) the order of the discretization,  
  (3) the encoding of the discretization, and  
  (4) the matrix solution procedure. 

  This technique was originally applied in [4] to long Fortran code produced by Artificial Intelligence 
(Symbol Manipulation) methods. The original 3-D nonorthogonal coordinate code contained about 1800 
lines of dense Fortran. It would be impossible to check this by reading the source code, yet the procedure 
described Verified the code convincingly. Roundoff error was not a problem. 
 The arbitrary solution, produced inversely by the specification of the source term Q, has been aptly 
described by Oberkampf et al. [5] and Reed et al. [9] as a “Manufactured Solution.” The approach was 
independently developed and named the “Prescribed Solution Forcing Method” by Dee [11]. Others who 
independently developed the same philosophy and essentially the same methodology are Ethier and 
Steinman [12] and Powers [13-16]. The first systematic exposition of the method with application to 
multidimensional nonlinear problems appears to be [4], but in retrospect, it seems that early instances of 
the use of what we now call the Method of Manufactured Solutions were cited in 1972 (the original version 
of [2], p. 363-365). Although the authors did not mention the method they used, it seems clear that they 
used this approach to generate an ad hoc exact solution for time-dependent model equations. Obviously, the 
simple solution form was chosen first, then passed through the PDE to generate the problem; see the 
“Errata and Addenda” section of the website www.hermosa-pub.com/hermosa for references and details. 
Undoubtedly, many of the non-infinite-series classical solutions in engineering were obtained this way, i.e. 
beginning with a solution form. What is strange is that the notion persisted, often repeated, that we did not 
have any non-trivial solutions to the full nonlinear Navier-Stokes equations, when all we have to do is 
“complicate” the problem a little with the addition of a source term, and we can generate all the solutions 
we want. The key concept is that, for Verification of Codes, these solutions need not be physically realistic. 
 The technique is applicable to systems of equations, including full Navier-Stokes in general non-
orthogonal coordinates (e.g., see [17,18]), provided that the code is capable (or modifiable) to treat source 
terms in each PDE. 
 The technique of Code Verification by monitoring grid convergence is extremely powerful. Upon initial 
exposure to the technique, engineers are often negative about the method because they intuit that it cannot 
be sensitive enough to pick up subtle errors. After exposure to numerous examples, if they remain negative 
it is usually because the method is excessively sensitive, revealing minor inconsistencies such as first-order 
discretizations at a single boundary point in an elliptic problem that effects the size of the error very little 
(as correctly intuited) but still reduces the rate of convergence to first order for the entire solution. For 
examples, see [1]. 
 The fact that the Manufactured Solution may bear no relation to any physical problem does not affect 
the rigor of the accuracy Verification of Codes. The only important point is that the solution (manufactured 
or otherwise) be non-trivial, i.e., that it exercise all the terms in the error expansion. The algebraic 
complexity may be something of a difficulty, but is not insurmountable, and in practice has been easily 
handled using Symbolic Manipulation packages like Macsyma, Mathematica, Maple, etc. Using the source-
code (Fortran) writing capability of Macsyma, it is not even necessary for the analyst to look at the form of 
Q. Rather, the specification of the solution (e.g., tanh function) to the Symbolic Manipulation code results 
in some complicated analytical expression that can be directly converted by the Symbolic Manipulation 
code to a Fortran (or Pascal, C, etc.) source code segment, which is then readily emplaced in a source code 
module (subroutine, function, etc.) that then is called in the accuracy Verification of Code procedure. (This 
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“emplacement” can be performed by hand by the analyst, without actually reading the complicated source 
code expressions, or can itself be automated in the Symbolic Manipulation code.)  
 The procedure has been applied successfully to nonlinear systems of equations, with separate Q’s 
generated for each equation. Both unsteady and steady solutions are possible. (It may be useful to avoid 
exponential solution growth in time so as to avoid confusion with instabilities; e.g., see the fully 3-D 
incompressible Navier-Stokes analytical solutions of Ethier and Steinman [12].) Nonlinearity is an issue 
only because of uniqueness questions; otherwise, the source term complexity may be worse because of 
nonlinearity, but that is the job of the Symbolic Manipulation code. Non-uniqueness could be an issue 
because the code could converge to another legitimate solution other than the Manufactured Solution, 
producing a false-negative accuracy Verification test for a correct code. However, it would be difficult to 
contrive a situation in which a false positive accuracy Verification was obtained. In much experience, non-
uniqueness has not been an issue. In [4], we applied the procedure to the nonlinear (quasi-linear) PDEs of 
the elliptic grid generation method for non-orthogonal coordinates. Here, the Manufactured Solution was an 
analytical 3-D coordinate transformation; see examples in [1]. 
 While the simple example problems herein were chosen for transparency, complex nonlinear systems 
(like Navier-Stokes equations in non-orthogonal coordinates) benefit from use of computer Symbolic 
Manipulation routines to perform the differentiation and algebra which generate the source term. As noted 
above, in this approach it is not necessary to even examine the source term; using the Fortran or C code 
writing capabilities of software packages like Macsyma, Maple, etc. a subroutine can be produced to 
generate the pointwise values of the source terms for inclusion in the governing PDEs. For coupled 
nonlinear PDEs like those of 3-D elliptic grid generation equations, the pointwise evaluation requires 
simultaneous solution of 3 coupled (non-dimensional) nonlinear equations at each point. We have always 
used full Newton-Raphson iteration methods, the Jacobians of which are also produced by Symbol 
Manipulation and Fortran source code writing, so the process remains automated; i.e., one never performs 
any algebra or calculus manipulations by hand. In fact, for our work in grid generation via variational 
methods [19-24], we never even looked at the governing PDEs themselves. We considered only the 
variational principle itself. The Symbolic Manipulation toolkits developed by Prof. Steinberg were used to 
automatically generate the PDEs by (symbolic) differentiation of the variational equations to produce the 
Euler-Lagrange equations, to substitute 2nd order difference expressions for the PDEs, to gather terms, to 
write Fortran subroutines for their evaluation, to generate a specified Manufactured Solution (i.e. “a 
continuum grid” or parameterization which, when discrete values are evaluated, produces a computational 
grid), to write Fortran code for the source term including Newton-Raphson point solutions, and to perform 
the entire Code Verification procedure, without the researcher ever having to look at either the continuum 
or discretized PDEs or source terms. 
 Note that the Manufactured Solution should be generated in original (“physical space”) coordinates 
(x,y,z,t) . Then the same solution can be used directly with various non-orthogonal grids or coordinate 
transformations. 
 The only disadvantage of the procedure is the requirement that the CFD code being Verified must 
include accurate treatment of a source term and that the code’s boundary condition values not be hard-
wired. Many codes are built with source terms included, and many algorithms allow trivial extension to 
include Q’s. However, in directionally-split algorithms such as Approximate Factorization [2] the time-
accurate treatment of Q(x,y,z,t) involves subtleties and complexities at boundaries, especially for non-
orthogonal coordinates [2,18]. Thus, CFD code extensions may be required in order to apply this procedure 
involving “Manufactured Solutions” for Code Verification. Likewise, some groundwater flow codes are 
built with hard-wired homogeneous Neumann boundary conditions, f/n = 0. In order to use an arbitrary 
solution function, non-homogeneous boundary values like f/n = g would be required. Alternately, one 
could restrict the choice of Manufactured Solution functions to fit the hard-wired values.  



Appendix C. Tutorial on ... Method of Manufactured Solutions 
 

 

441 

 Likewise, to test periodic boundary conditions, one must chose a periodic function for the 
Manufactured Solution.  
 The paper by Pelletier and Ignat [8] (see also [1], p. 162-163) will be of interest to turbulence modelers 
interested in Code Verification. It provides simple analytical solutions for an incompressible free shear 
layer applicable to k-, k- and k- models.  
 The practical difficulties arising from large numbers of option combinations are discussed extensively 
in [1]. Briefly, option combinations are countable, and pessimistic computer science conclusions about 
complex codes being unverifiable are based on unrealistic conditions like “arbitrary complexity.” 
Furthermore, the number of option combinations required often can be greatly reduced by “partitioning the 
option matrix” [1] based on common sense and knowledge of code structure (a “glass box” philosophy [7] 
as opposed to the more demanding “black box” philosophy). Failing this, codes can be Verified only for a 
subset of option combinations. In any case, these issues are an essential part of Code Verification by any 
method; they are not unique to the MMS, and in fact the generality of the MMS approach will reduce the 
difficulties arising from option complexity because less testing will be required for each option combination 
compared to the usual haphazard and piecemeal approach to Code Verification. 
 Also see [1] for the following topics: early applications of MMS concepts, discussions and examples of 
mixed 1st- and 2nd-order differencing, the small parameter (high Reynolds number) problem, economics of 
dimensionality, applications of MMS to 3-D grid generation codes, effects of strong and inappropriate 
coordinate stretching, debugging with Manufactured Solutions (when the Code Verification initial result is 
negative), examples of many manufactured or otherwise contrived analytical solutions in the literature, 
approximate but highly accurate solutions (often obtained by perturbation methods) that can also be 
utilized in Code Verification, the possibility of a useful theorem related to MMS, special considerations 
required for turbulence modeling and other fields with multiple scales, example of MMS Code Verification 
with a 3-D grid-tracked moving free surface (see [17]), code robustness, examples of the remarkable 
sensitivity of Code Verification via systematic grid convergence testing, and several methodologies for 
Verification of Calculations, including the recommended use of the Grid Convergence Index (GCI) for 
uniform reporting of systematic grid convergence studies. 

Recent Work and Further Discussion 

 Blind Study 

 Salari and Knupp [17] have exercised the MMS in a blind study, in which one author (Knupp) 
modified a CFD code previously developed and Verified by the other (Salari), deliberately introducing 
errors. Then the code author tested the sabotaged code with the MMS. This exercise was not performed on 
simple model problems, but on a full time-dependent, compressible and incompressible, Navier-Stokes code 
with plenty of options. In all, 21 cases were studied, including one “placebo” (no mistake introduced) and 
several that involved something other than the solution (e.g., wrong time step, post-processing errors). 
Several formal mistakes (not order-of-convergence errors) went undetected, as expected.  
 Two cases showed possible limitations or cautions of MMS. Case E.4 involved an error in a DO loop 
for updating density arrays. Although MMS was successful, it would not have been if my suggestion (on 
page 78 of [1]) had been followed to use exact continuum solutions as the initial conditions to reduce run 
time. (This is a caution note not just for the MMS but for any Code Verification by systematic grid 
convergence testing using any benchmark solution.) Also, Case E.12 showed that an error in a convergence 
test of one variable (a “.le.” test replaced with a “.ge.” test) could go undetected on a particular problem 
because the convergence test was successfully implemented for another variable. 



Appendix C. Tutorial on ... Method of Manufactured Solutions 
 

 

442 

 All ten of the OAM (Order-of-Accuracy Mistake) errors, i. e. all that could prevent the governing 
equations from being correctly solved, were successfully detected. In addition, several less serious mistakes 
were detected using the procedure. 
 The report also discusses error (and mistake) taxonomies, provides examples and Manufactured 
Solutions (with source terms) from compressible Navier-Stokes codes as well as heat conduction and 2-D 
Burgers equation codes in both Cartesian and curvilinear coordinates, and discusses approaches for 
developing Manufactured Solutions without using source terms. 
 From the Abstract: “The principle advantage of the MMS procedure over traditional methods of Code 
Verification is that code capabilities are tested in full generality. The procedure thus results in a high degree 
of confidence that all coding mistakes which prevent the equations from being solved correctly have been 
identified.” 
 The understanding and experience of the authors is profound, and the report should be read in its 
entirety by anyone interested in pursuing the Method of Manufactured Solutions. 

 Two Multidimensional Features 

 In the first 1-D example problem above, we noted that the Manufactured Solution, since it is analytic, 
can be applied over any range of the dependent spatial variable x, e.g. the domain could extend over x  
[0,1] or x  [-,+] etc. This feature extends to multidimensions, e.g. the same multidimensional analytic 
solution could be applied to a square driven cavity problem, a rectangular cavity, a backstep, a wing, etc. 
Also, multidimensional problems might require a little more thought to assure that all terms of the 
governing equations are exercised. For example, a Manufactured Solution of form U(t,x,y) = F1(t) + F2(x) 
+ F3(y) will not be adequate to exercise governing equations containing cross derivative terms such as 
  2u x y/ since these are identically zero no matter how complex are the F’s. 

 Mixed Order Methods 

 Roy [25,26] has shown how to treat mixed-differencing (e.g. first-order upstream differencing for 
advection and second-order differencing for other terms) in the systematic grid convergence tests. These 
two papers present the resolution, in an elegant manner, of a long-standing and practical difficulty in grid 
convergence studies and the GCI (Grid Convergence Index), namely, the treatment of mixed-order 
convergence. The mixed order behavior can arise either from the explicit use of 1st-order advection 
discretization and 2nd-order diffusion, or from the 1st-order observed convergence rate of nominally 2nd-
order methods caused by shocks. The procedure simply involves another grid level to evaluate the two 
leading coefficients in the error expansion. The analysis includes non-integer grid refinement factors r. The 
papers also demonstrate how non-monotonic convergence occurs from mixed-order methods in the non-
asymptotic range. The method is applicable to both Verification of Codes and Verification of Calculations, 
and would enable more accurate (less conservative) error estimation by way of the GCI [1] for QUICK and 
similar methods using 2nd order accurate diffusion terms and 3rd order accurate advection terms. 

 Radiation Transport Code including Eigenvalue Problems 

 Pautz [27] presented his experience applying MMS to the radiation transport code ATTILA. The 
application was inspired by Salari and Knupp [17] and contains some early 1970’s references on the basic 
ideas, but these are “...more limited than the more recent and general treatment by Salari and Knupp.” 
 The Code Verification described includes angular flux, scattering cross sections, and spherical 
harmonics. In the approach used, by choosing the term f(r) = 1 (vs. a more general form) in the assumed 
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form of the Manufactured Solution, one can isolate spatial differencing terms (they cancel) and Verify 
whether the code handles angular terms correctly. 
 The code uses 3-D tetrahedral elements (utilizing linear discontinuous finite element discretization) in 
space and discrete ordinates in the angular discretization. The study treated the following features: Steady 
State - Monoenergetic, Steady State - Multigroup, Monoenergetic K-Eigenvalue, Gray Infrared.  
 The experience with the MMS approach was quite successful. With f(r) = 1, the author discovered 
coding mistakes in input routines (and a divide by zero for a particular combination of input options). Also, 
the procedure revealed mistakes in discretization of certain boundary data for the gray infrared problem. 
The approach Verified 2nd order convergence for norms and 3rd order convergence for average scalar flux. 
A subtle aspect required for successful application of the MMS procedure was the consistent finite element 
weighting on the MMS source term. Based on earlier 1-D analysis in the literature, it was expected that all 
the examined quantities (norms and average scalar flux) would exhibit 3rd order convergence, but the 
results of the MMS procedure demonstrated only 2nd order convergence for the norms in multidimensions. 
 The author concluded that MMS is “... a very powerful verification tool” [27]. Further,  [pers. comm.] 
the author says “The power and conceptual simplicity of MMS make it an indispensable tool for code 
development” and recommends that MMS be required in any formal Code Verification system. 

 Nonhomogeneous Boundary Conditions 

 An arbitrary Manufactured Solution will not necessarily have homogeneous boundary conditions, e.g. u 
 0 or u/x 0. To use such a solution, the code would require this capability. This might be inconvenient, 
e.g. many CFD codes have hard-wired no-slip conditions at a wall, e.g. u = 0. Rather than modify the code, 
some thought will produce Manufactured Solutions with homogeneous boundary values. 

 Nonlinear Boundary Conditions 

 So-called “radiation” outflow conditions are usually linear and are already covered by the previous 
discussion. Nonlinear boundary conditions, e.g. simple vortex conditions at outflow, or true (physical) heat-
transfer radiation boundary conditions, are possible. It may be possible to select a Manufactured Solution 
that meets the nonlinear boundary condition; otherwise, a source term would have to be added (if it is not 
already present) in the nonlinear boundary equations to retain the generality of the MMS. 

 Shocks 

 Shock solutions are treatable by the MMS, with additional considerations. See pages 89-90 of [1], 
which include the work of J. Powers and associates [13-16]. The simplest approach may be to Verify the 
shock capturing algorithms separately on inviscid benchmark problems such as oblique shock solutions, if 
shock curvature is not viewed as a major question, or if it is, by using attached curved shock solutions 
obtained by the method of characteristics and/or detached bow shock solutions obtained by the classical 
inverse method. The benchmark solutions may involve asymptotic approximations in geometry or Mach 
number, e.g. an analysis [16] neglecting terms of O( ) 2  where   1 2/ .M  This approximation can be 
made very accurate by choosing high M, say M ~ 20, for the Code Verification exercise. Note again the 
distinction of mathematics vs. science; it is not a concern that the code being tested might be built on 
perfect gas assumptions that are not valid at such high M. This does not affect the mathematics of Code 
Verification; the code would not be applied at such high M when accuracy of the physics becomes 
important, during Code Validation.  
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 The assumption involved in this approach is that the option matrix of the code may be partitioned (see 
[1], Chapter 6 for an example). That is, the Verification of the shock-capturing algorithm and coding will 
not be affected by the later inclusion of viscous terms, boundary conditions, etc. Other option-partitioning 
assumptions will occur to the reader: separated Verification of a direct banded Gaussian elimination routine 
in a FEM code; Verification of shock-capturing algorithm separate from non-ideal gas effects; radioactive 
decay option (which is dimensionless) verified separately from spatial discretization of flow equations. This 
partitioning approach requires the “black-box” Verification philosophy to be modified to a “glass-box” [7], 
i.e. some knowledge of code structure is required to justify the approach, and it will be more difficult to 
convince reviewers, editors, contract monitors, regulators, etc. that the approach is justified. The work 
savings can be enormous, of course, avoiding the factorial increase of complexity inherent in option 
combinations.  
 Another straightforward approach for shocks that does not involve partitioning the option matrix is to 
generate a Manufactured Solution that is in fact (in the continuum) C  smooth, but that has such strong 
gradients in some region that it appears as a shock over the targeted range of grid resolutions. The possible 
difficulty here is that some shock capturing algorithms are based on the conservation equations without 
source terms, e.g. Godunov’s method and modern variants, and these could conceivably fail where source 
terms are present. Any shock-capturing algorithm based purely on geometric limiters will be oblivious to 
the source terms and should work without modification. 

 Requirement for Source Terms 

 In the version demonstrated, the MMS requires that the code be capable of treating source terms in 
each PDE. For some engineering codes, this is always the case, e.g. time-dependent chemistry codes, grid 
generation codes based on elliptic generation. Another approach to MMS developed by Knupp (see [17] 
and [1], Chapters 3 and 6) is applicable to variable coefficient problems, e.g. groundwater transport codes 
or heat conduction codes with variable properties. In this method, a Solution is Manufactured by solving 
directly for the distribution of variable coefficients that produces it. Generally, for Navier-Stokes codes, 
distributed source terms are non-physical and would not have been included, so these codes would have to 
be modified to use the method. For codes developed “in house,” this is very little trouble. The only tricky 
situation we know of occurs with implicit Approximate Factorization codes built for second-order time 
accuracy, as noted above and in [1]; in this case, the consistently second-order treatment of source terms is 
subtle. Still, the trouble of adding source terms is small compared to the alternative of a haphazard and 
piecemeal approach to Code Verification. It is certainly trivial for FEM code using direct solvers. For 
general purpose commercial codes, it is not an undue hardship on vendors to be required to include source 
terms so that users can Verify the Codes themselves. (CFD Software vendors are notoriously uninterested 
in performing V&V and in sharing results with customers, apparently for good reasons.) 

 Solution Realism 

 The MMS as presented generates solutions to PDEs, modified to include source terms for all dependent 
variables, with no concern for realism of the solution. Thus, acceptance requires that the judge recognize 
that Code Verification is a purely mathematical exercise. Physical realism and even physical realizability 
are irrelevant. Actually, there is no requirement that the Manufactured Solution look unrealistic, and we 
can invent appealing solutions if necessary to satisfy managers, regulators, public stakeholders, etc. But it 
is worthwhile to understand that this “realism” is mere window dressing. It is also risky, in that it 
encourages a dangerous misconception and opens the door to criticism and arguments about adequate 
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“realism,” which after all is a qualitative concept and again opens the door to piecemeal and perpetual 
Code Verification exercises.  
 Furthermore, “realistic” solutions can actually be less desirable. For example, a realistic solution for 
Navier-Stokes equations would have a boundary-layer behavior at walls. But then the terms neglected in 
classical boundary layer theory (e.g., p/y) will not be strongly exercised in the code, and a minor error 
might conceivably slip by undetected, e.g. a one-sided difference expression for p/y near the wall thought 
to be 2nd order but actually 1st order will not affect the answer if  p/y = 0 +O ( )2 whereas an 
“unrealistic” solution based on tanh, etc. would exercise these terms. 

 Code Verification with a Clearly Defined Completion Point 

 As noted earlier, it is now well-recognized that benchmark solutions for Code Verification must exhibit 
sufficiently complex structure that all terms in the governing equation being tested are exercised. What 
apparently is not so widely recognized today is that, once a code (or rather, a specific set of code option 
combinations) has been convincingly Verified on such a solution, it is nearly pointless to continue 
exercising it on simpler problems. I say “nearly” because the exercises have some value, but should not be 
thought of as Verification, but as Confirmation exercises; see Chapter 1 of [1]. In the present view, Code 
Verification has a theorem-like quality, and therefore terminates. Like a high-school student plugging 
numbers into the solution for the quadratic equations, a code user who performs Confirmation exercises 
gains confidence in the code and in his ability to set up the code and to interpret the results. Such 
Confirmation exercises are valuable, indeed necessary, as part of user training, but these should not be 
confused with Code Verification. Similarly, we recognize that simple problems (e.g. 1-D linear wave 
propagation) are useful in algorithm development, in exploring algorithm and code characteristics, and in 
comparing performance of different codes, but once again, these comparison exercises should not be 
confused with Code Verification. For example, one could have three codes of 1st, 2nd and 4th order 
accuracy, each of which was rigorously Verified to be so. Then a comparison exercise based on simple 
wave propagation with a linear advection-diffusion equation would be expected to show increasing 
accuracy; however, this does not alter the previously determined and completed Code Verifications. 

Proof? 

 Does such a Code Verification process deserve the term “proof”? This is another semantic question 
whose answer depends on the community context. Logicians, philosophers and pure mathematicians clearly 
view “proof” differently from engineers, with an often other-worldly standard. For example, Fermat’s Last 
Theorem is easily demonstrable; anyone can readily convince themselves of its correctness, and a 
straightforward computer program can be written to convincingly demonstrate its correctness for 
systematic millions of cases. No one, not even the philosophers or logicians or pure mathematicians, doubts 
it. Indeed, if one were to put forward a counter-proof, it would be rejected by all. Yet only recently has a 
book-length “proof” been put forward (and doubts about it remain). Since some philosophers maintain that 
it is not possible even in principle to prove relativity, or Newton’s laws of gravity (which are certainly 
provable within engineering accuracy) they are not going to accept the notion of proof of correctness of a 
complex code, i.e. Verification of Code. 
 The notion of proof is at the heart of very important criticisms, not just of the subject MMS, but of the 
concepts of Code Verification and especially Certification [1] for large public-policy projects. One might 
agree with some philosophers who maintain it is not possible to prove relativity or Newton’s Laws, but 
would one be willing to cancel a public policy project (e.g. a nuclear waste project) because the modeling 
used Newton’s Laws? Presumably not, but stakeholders are willing to cancel such projects under the guise 



Appendix C. Tutorial on ... Method of Manufactured Solutions 
 

 

446 

of unprovability of code correctness. The harm is done when these standards for proof of philosophers, 
mathematicians or logicians are applied to down-to-earth engineering projects. If we accept such out-of-
context standards for proof, we cannot do anything, literally. For example, we have no proof of 
convergence for real systems, because the Lax Equivalence theorem only holds for linear systems. The 
word “proof” is itself a technical term, with different appropriate standards in logic, pure mathematics, 
applied mathematics, engineering, criminal law vs. torts vs. civil law (e.g. “beyond a reasonable doubt”), 
etc. The first definition in one dictionary for “proof” is “The evidence or argument that compels the mind to 
accept an assertion as true.” In this sense, if not in a strict mathematical sense, one could claim that the 
MMS approach can provide proof of Code Verification. 
 I am unhesitating in claiming “convincing demonstration” and “robust Verification” for the present 
MMS approach. A mathematical proof would require the formalism of a theorem; as noted, it would seem 
that a theorem is possible, for some related problem(s). Further, if one allows the legitimacy of a non-
mathematical proof in principle, then I would claim that this method provides it. It is highly unlikely that a 
code embodying the Burgers equation (2) and passing the Verification test for the solution of the above 
example could be wrong (without a contrived counter-example). More complex codes with option 
combinations require more tests, obviously. Computer Scientists like to negate the possibility of complete 
Code Verification by considering codes of “arbitrary complexity” or “arbitrary number of options,” but in 
fact real codes have a countable, exercisable number of options; in any case, a code can be conditionally 
Verified just for those sets of options exercised. Geometry complexity is hard to address in general, but 
once again the claim of Code Verification can be conditionally stated to restrict geometry families to those 
tested. In practice, difficulties with complex geometries (e.g. singularities) are often not Code Verification 
issues at all, but are simply difficulties with Verification of Calculations; i.e. they are not issues of code 
correctness. 

An Alternative View on Code Verification with a Clearly Defined Completion Point  

 The present view of Code Verification as a theorem-like process with a fixed termination is not 
universally accepted. In an alternative view [5-7,28] held by respected authorities, Code Verification (and 
Validation) are “ongoing activities that do not have a clearly defined completion point” [28], more akin to 
accumulating evidence for a legal case than to proving a theorem [6,7]. Both viewpoints recognize, 
obviously, that if the code is modified, it is a new code (even if the name of the code remains) and the new 
code must be re-Verified. Also, both viewpoints recognize that all plausible non-independent combinations 
of input options must be exercised so that every line of code is executed in order to claim that the entire 
code is Verified; otherwise, the Verification can be claimed only for the subset of options exercised. And 
both viewpoints recognize the value of ongoing code exercise by multiple users, both in an evidentiary 
sense and in user training. In this alternative view these activities could be part of formal Code Verification 
itself, rather than as Code “Confirmation” as in the present view [1].  
 The decision whether or not to include these activities under “Code Verification” rather than “Code 
Confirmation” is semantic but it must be recognized that it has practical and possibly serious 
consequences. For example, contractual and/or regulatory requirements for delivery or use of a “Verified 
Code” might be ambiguous in this view, since “Code Verification” by definition is never-ending. Also, any 
test (even a superficial one) could be claimed as “partial Verification.” However, some advantages exist for 
this view, e.g. encourages more precision of the meaning of “Verified Code,” and it more explicitly recog-
nizes the value of ongoing code exercise by the user community. Both viewpoints recognize that ongoing 
code use and exercise can possibly uncover mistakes missed in the Code Verification process (just as a 
theorem might turn out to have a faulty proof or to have been misinterpreted) but in this alternative view 
Code Verification cannot be completed, except by specification (perhaps negotiated) of the meaning of 



Appendix C. Tutorial on ... Method of Manufactured Solutions 
 

 

447 

“Verified Code.” Verification of individual calculations, and certainly Validations, are still viewed as 
ongoing processes in both views, of course. [1,2,5-7,28] 

Concluding Remarks 

 The Method of Manufactured Solutions for Code Verification is typically met with skepticism, but in 
the experience of Oberkampf and Trucano [7] and my own, people who actually try it are enthusiastic. The 
MMS enables one to produce many exact analytical solutions for use as benchmarks in systematic 
discretization refinement tests, which tests are remarkably sensitive for Code Verification. The method is 
straightforward and, when applied to all option combinations in a code, can lead to complete and final Code 
Verification, with a well-defined completion point. It eliminates the typical haphazard, piecemeal and 
never-ending approach of partial Code Verifications with various highly simplified problems that still leave 
the customer unconvinced. 
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APPENDIX  D. 
 

§  BASIC FORMULAS FOR V&V 
 
 
 
 The discussions of V&V semantics, philosophy, disputes, and approaches can obscure the fact that 
straightforward applications of V&V formulas are often possible. This appendix provides a compendium of 
these most straightforward formulas. Only a brief description of the terms is given here. The original 
equation numbers are retained so that the reader can easily refer to the main text for further discussions. 

D.1 CODE VERIFICATION 

Measure of Discretization Error 
 The basic measure of discretization error for the quantity f is the difference between the discrete 
solution f () (or a functional of the solution) and the exact (continuum) solution,  
 

exactffE  )(          
     (3.3.1) 

 

For a consistent order p method, and for a well-behaved problem  
 

...)( TOHCffE pexact          (3.3.2) 
 

where H.O.T. are higher order terms.  
 

Method of Manufactured Solutions (MMS) 
 From Appendix A, the Method of Manufactured Solutions gives a means of constructing an exact 
solution. For 1-D time-dependent example problems, the chosen solution U(t, x) was the following. 
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U t x A B B x Ct( , ) sin( ),                (1) 

 
This solution is applied to the nonlinear Burgers equation, 
 

u uu ut x xx               (2) 
 
 We determine the source term Q(t, x) which, when added to the Burgers equation for u(t, x), produces 
the solution u(t, x) = U(t, x). We write the Burgers equation as an operator (nonlinear) of u, 

 
L u u uu ut x xx( )     0              (3) 

 
Then we evaluate the Q that produces U by operating on U with L. 
 

Q t x L U t x
U t U U x U x

( , ) ( ( , ))
/ / /


        2 2        (4) 

 
By elementary operations on the manufactured solution U(t, x) stated in Eq. (1),  
 

Q t x C B A B B B( , ) cos( ) [ sin( )]cos( ) sin( )          (5) 
 

If we now solve the modified equation (the Manufactured Solution) 
 

L u u uu u Q t xt x xx( ) ( , )               (6) 
or 

u uu u Q t xt x xx    ( , )              (7) 
 
with compatible initial and boundary conditions, the exact solution will be U(t, x) given by Eq. (1). 

D.2 SOLUTION VERIFICATION 

Generalized Richardson Extrapolation 
 Without assuming the absence of odd powers in the Taylor series expansion, the usual Richardson 
Extrapolation is generalized to p-th order methods and r-value of grid ratio as follows. 
 

f f f f
rexact p 

1

1 2

1
         (5.4.1) 

 
If the next term in the series of Eq. (5.3.1) is zero, e.g. if centered differences were used, then the 
extrapolation is (p + 2) order accurate. But generally, and notably if upstream-weighted methods for 
advection have been used, the extrapolation is (p + 1)-order accurate. 
 

Grid Convergence Index (GCI) 
 The (original, most conservative) Grid Convergence Index for the fine grid solution is  
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GCI fine grid 


F
r

Fs p s


1
3,          (5.6.1) 

 
or if observed p (minimum three grids) is dependable, the more optimistic value Fs = 1.25 is recommended. 
 If the convergence conditions are optimal and the extrapolated (or corrected) solution will be used in 
place of f1, Eq. (5.6.1) may be excessively conservative. There are presently two possible heuristic 
extensions for the GCI. The first is 
 

3/|||][|][ 1  gridfineEsolutionedextrapolatGCI     (5.6.1.1) 
 
which is based on Fs = 3, but Fs = 1.25 is perhaps justifiable. An alternative is 
 

||)1(||][|)1(][ 1  ss FgridfineEFsolutionedextrapolatGCI    (5.6.1.2) 
 
with no limitation stated for Fs but only Fs = 1.25 seems appropriate and consistent. These heuristic 
uncertainty estimates for the extrapolated solution are not as well founded as those for the fine grid 
solution, either in theory or experience. 
 If the coarse grid solution f2 will be used instead of the fine grid solution f1 (usually estimated for 
nearby problems) the GCI reported must be the following. 
 

GCI coarse grid GCI fine grid r p       (5.7.3a) 
 
 The summary recommendations (Section 5.9.2) on the Factor of Safety for the GCI are as follows. 
 
(a) Use Fs = 1.25 for convergence studies with a minimum of three grids to experimentally confirm that 
the observed order of convergence pobs for the actual problem is reasonable, and 
(b) use Fs = 3 for two-grid convergence studies (since a pobs cannot be calculated and therefore there is no 
way to demonstrate that the grids are in or at least near the asymptotic regime). 
 
 Fs = 1.25 should not be used if the results from the minimum three grids produce a suspicious observed 
p. It is imprudent to use observed p > theoretical p in the GCI formulas. 
 

Effective Grid Refinement Ratio 
 Use of GCI in an unstructured grid convergence study requires a heuristic definition of effective r. 
 

D

N
Nreffective

/1

2

1








        (5.10.3.3.1) 

 
Extraction of Observed Order of Convergence p 

 If the grid refinement is performed with constant r (not necessarily r = 2), the order can be extracted 
directly from three grid solutions. With “1” being the solution on the finest grid, 
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 A generalization of this procedure, not restricted to constant r, is possible using the more general 
procedure of solving the following nonlinear equation for p. 
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           (5.10.6.3) 

 
Usual solution techniques can be applied, e.g., direct substitution iteration, Newton-Raphson, etc. (even 
graphical). r ~ 2 will be easier to solve than r ~ 1, and r >> 2 is probably not of much interest. For well 
behaved synthetic cases, direct substitution iteration with a relaxation factor  ~ 0.5 works well. With  = 
previous iterate for p, the iteration equation is  
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            (5.10.6.5b) 

 
Grid Refinement to Achieve Target Accuracy 

 Once p is known with some confidence, one may predict the next level of grid refinement r* necessary 
to achieve a target accuracy, expressed as a target Error Estimate E1 or GCI1, call it GCI*. With GCI23 
being the value for the previous two grids,  
 

1/r p* 
GCI
GCI

*

23

            (5.10.6.6) 

 
Extracting Observed p when Exact Solution is Known 

 For special cases in which an exact solution is known (e.g. in Code Verification, or for special metrics 
like dilatation = 0 for incompressible flow) the observed p may be extracted from only two grid solutions 
by  
 

)ln(/)1ln(
)/()( 121

rdp
ffffd exact




        (5.10.6.7) 

 
Error Estimation without Explicit Evaluation of p 

 The following formula for the error estimate does not involve r or p (although this could be misleading, 
since constancy of r and p are necessary requirements).  
 

E1 = [f2 - f1]2 / [f3 - 2f2 + f1]        (5.10.11.4) 
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Characterization of Apparent Grid Convergence Behavior 
 The characterization of apparent grid convergence behavior is based on the discriminating ratio R, 
from which we recognize four apparent convergence conditions. 
 

]/[][ 3221 ffffR          (5.11.1.2a) 
(i)   Monotone convergence for  0 < R < 1       (5.11.1.2b) 
(ii)   Oscillatory convergence for R < 0 and |R| < 1     (5.11.1.2c) 
(iii)  Monotone divergence for  R > 1        (5.11.1.2d) 
(iv)  Oscillatory divergence for  R < 0 and |R| > 1     (5.11.1.2e) 

 
Least Squares GCI 

 The formulas for Least Squares GCI are too complex to repeat here. See Section 5.11. 
 

Incremental Cost of Grid Convergence Studies 
 Consider a base grid of 200 cells (or time steps) in each computational dimension, and coarsen by ~ r = 
1.3 to produce the grid sequence n = 1,2,3,4 with N(n) = 200, 154, 118, 90. With the cost of computing a 
solution on the base grid n = 1 denoted as Cost(1), we have the Cost(n) given by  
 

)1(4)1( 3.1
)1()1()(   nnD

Cost
r

CostnCost
        (5.17.1) 

 
Normalizing the cost of computing a solution on the base grid n = 1 to Cost(1) = 1, the Cost for each grid 
and the total cost  for the 4 grid sequence is 
 

516.1
043.0,123.0,350.0,1)(


nCost

      (5.17.1) 

D.3 VALIDATION 

 If the three errors (from the discretization or numerical solution, the input parameters, and the 
experimental Data) num , input  and D are effectively independent, then the corresponding (standard) 
uncertainties  unum , uinput  and uD can be easily combined by the usual statistical assumption. 
 

222
Dinputnumval uuuu            (11.5.1) 

 
 Eq. (11.5.1) for combining standard uncertainties extends to “expanded” or probabilistic uncertainties 
with the same requirement that the errors num , input  and D are effectively independent. 
 

222
Dinputnumval UUUU          (11.9.1a) 
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Interpretation of Validation Results using Probabilistic Uncertainties; 
 We use the specific and common engineering target Uval with 95% confidence. Note that once a 
validation effort reaches the point where the simulation value S and the experimental value D of a 
validation variable have been determined, the sign and magnitude of E = S - D are known. Now, (E  Uval) 
defines an interval within which model falls, with ~95% “level of confidence”, or certainty,  
 

%95~],,[ levelconfidenceUEUE VALVALdelmo  .      (11.10.1) 
 Case 1. If 

E Uval            (11.10.2) 
then probably model  E. 
 
 Case 2. If  

E Uval            (11.10.3) 
 
then probably model is of the same order as, or less than, (num + input - d). 
 

Extending the Domain of Validation and Reporting New Modeling Results 
 The objective is to estimate the Validation Uncertainty at a new application point (A) that does not 
correspond to an experimental set point. Known values at A are denoted by subscript A, and interpolated 
values there by subscript Ai. The new computation result SA cannot reduce uncertainties at the validation 
points 1,2,3,4. It can only add new uncertainties at the application point A. The relation is 
 

Umodel,A = {Umodel,Ai
2+ Ufit

2 + Unum,A
2 + Uinput,A

2}1/2       (11.12.3.1) 
 
where Ufit = 2 ufit., the standard deviation of the least squares fit of the interpolation (may be small or zero). 
 The modeler reports new results at the application point A as follows. 
(1) If the modeler decides to use the corrected solution SCA at A, with 
 

SCA = {SA + model,Ai }             (11.12.3.2) 
 
then the reported results would be 

SCA  Umodel,A          (11.12.3.3) 
 
(2) If the modeler decides to use the new calculated solution SA at A, then the reported solution and 
uncertainty would be  

SA  some combination of {Umodel,A and |model,Ai |}      (11.12.3.4) 
 
At the time of this writing, a proper combination has not been determined. A possibly justifiable 
combination  of unlike terms U and δ would use RMS, 
 

SA  {Umodel,A
2+ model,Ai

2}1/2         (11.12.3.5a) 
 
A more conservative combination would be 
 

SA  {Umodel,A + |model,Ai |}         (11.12.3.5b) 
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APPENDIX  E. 
 

Δ  BIOGRAPHICAL SKETCH OF LEWIS FRY 
RICHARDSON 

 
 
 
 Lewis Fry Richardson (1881–1953) is a central figure in this book because of his papers on the 
“deferred approach to the limit”, now more commonly known as “Richardson Extrapolation” (Richardson, 
1910, 1927. See especially Chapter 5.) However, the present minor biographical sketch and tribute has 
little to do with error estimation, but much to do with personal admiration. 
 Considered for his scientific contributions and for all his humanity, Richardson is a singular figure of 
the 20th century. When I wrote the first edition of my CFD book in 1972, I opined that Richardson’s 50-
page paper presented to the Royal Society in 1910 “must be considered the cornerstone of modern 
numerical analysis of partial differential equations... He treated the iterative solution of Laplace’s equation, 
the biharmonic equation, and others. He distinguished between steady-state problems ‘according as the 
integral can or cannot be stepped out from a part of the boundary’, i.e., between hyperbolic and elliptic 
problems, in modern terminology. He carefully treated numerical boundary conditions, including those at a 
sharp corner and those as infinity. He obtained error estimates and gave an accurate method of 
extrapolating answers toward the zero grid space limit, and further suggested checking the accuracy of 
numerical methods with exact solutions of simple geometries such as a cylinder. Finally, he was the first to 
actually apply these methods to a large-scale practical problem, that of determining stresses in a masonry 
dam.” (Roache, 1972, p. 2.) Richardson had a hard time getting it published; one reviewer wanted Part A 
omitted and Part B condensed, while the second reviewer wanted Part B omitted and Part A condensed. 
(Ashford, 1985, p. 23.) 
 I also noted in a footnote (Roache, 1972, p. 2) that “Richardson presented what, in modern vocabulary, 
must be called a ‘cost-effectiveness’ study of the method, using human computers.” 
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 “So far I have paid piece rates for the operation [Laplacian] of about n/18 pence per coordinate point, 
n being the number of digits. The chief trouble to the computers has been the intermixture of plus and 
minus signs. As to the rate of working, one of the quickest boys averaged 2,000 operations [Laplacian] per 
week, for numbers of three digits, those done wrong being discounted.” (Richardson, 1910, p. 325.) 
 O. Zienkiewicz, a dominant figure in Finite Element theory and applications, told me that he began his 
career as one of Richardson’s later “computing boys.” As I noted in (Roache, 1972) and even more 
applicable today and to the subject of the present book, “We may all be thankful that social conditions have 
changed since 1910. Many a computational fluid dynamicist would end up in the poorhouse if he were paid 
a certain fee per calculation, with ‘those done wrong being discounted.’ ” 
 At that time, I knew nothing of Richardson’s personal life, and I was unenthusiastic (see p. 177 of 
Roache, 1972) about Richardson Extrapolation! In Mandelbrot’s book on Fractals (Mandelbrot, 1977) he 
includes a biographical sketch of Richardson because of his major conceptual contributions to this most 
avant-garde area of mathematics, fractals or fractal sets (terms coined subsequently by Mandelbrot). Fluid 
dynamicists recognize Richardson “for some of the most profound and most durable ideas regarding the 
nature of turbulence, a field into which he introduced a notion of self-similarity” (Mandelbrot, 1977, p. 30). 
His name is perpetuated in the Richardson Number, the fraction of turbulent energy from temperature 
gradients vs. velocity gradients. But I recently found out that the he also made major contributions to the 
field of experimental psychology, and the intellectual area in which Richardson is most widely known - his 
books and papers (Richardson, 1960a,b, 1961) being a canonical reference - is the sociometric area of 
quantitative peace studies! The processes in the theory of arms races are sometimes called “Richardson 
Processes.” (See Boulding, 1978, p. 157.) 
 Richardson earned his B. A. in 1903 at Kings College, Cambridge with studies in physics, 
mathematics, chemistry, biology, and zoology. In his patent applications in 1912, he identified himself as 
“physicist.” Later, after a career change, at the age of 47 he earned a degree in psychology. 
 His first scientific position was at the British Meteorological Office. He wrote the first book on 
numerical weather prediction (Richardson 1922, republished in 1965). His turbulence studies, which earned 
him election as a Fellow of the Royal Society of London, first elucidated the concept of energy cascade 
from low to high frequencies. The second section of his numerical weather prediction book was titled “Does 
the Wind Possess a Velocity?”, an ostensibly foolish question that leads to the concept (though not the 
terminology) of fractals. As Mandelbrot (1977, p. 270) stated: “More important, at least to me, is that most 
of Richardson’s arguments can very easily be translated into the language of the “fractal” vision of 
turbulence.” His fractal concept is even more accessible in his (posthumously published) work on map 
metrics. Mandelbrot (1977) titles his own expository second chapter, “How Long is the Coast of Britain?”, 
citing Richardson’s work and his key (fractal) recognitions: that determination of coastline length from 
maps depends on the size of the calipers, i.e. on the measuring unit ; that, over a physically practical 
range of parameters, the imputed length does not converge as   0; and that the characteristics of the 
coastline are consistent with the concept of fractal dimension. Mandelbrot’s Plate 32 reproduces 
Richardson’s empirical data, found among his papers after he died, on the rate of increase of the measured 
length of coastlines (Australia, South Africa, Germany, West Coast of Britain, and Portugal) as the caliper 
length  decreases. (By contrast, the measured “coastline” of a circle converges nicely as   0.) 
 Richardson was a Quaker and a conscientious objector in the Second World War, but put his life on 
the line in an ambulance unit for three years. After the war, he resigned from the Meteorological Office 
because it was being merged into the Air Ministry. He then took up the study of the psychology of armed 
conflicts between nations, self-publishing a small book entitled Mathematical Psychology of War, and 
supporting himself by college teaching until he received an inheritance that allowed him to pursue his peace 
studies full time. From his study of the statistics and dynamics of war, he became the originator of the 
classical predator - prey equations. 
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 His clearly expository papers have breadth and originality that are simply startling. Besides the 
numerical and meteorological work, his papers cover the following sampled diverse subjects: the 
measurement of mental “nature” [in the “Nature vs. Nurture” debate] and the study of adopted children; 
international voting power; thresholds when sensation is regarded as quantitative; the quantitative mental 
estimation of hue, brightness or saturation; the analogy between mental images and sparks; a quantitative 
view of pain; mathematical psychology of war; mental periodicities; the distribution of wars in time; chaos, 
international and inter-molecular; war-moods; variation of the frequency of fatal quarrels with magnitude; 
statistics of deadly quarrels; the problem of contiguity in population maps; the outcome of arms races 
(could an arms race end without fighting?); the nature of historical “fact” (is it possible to prove any 
general statements about historical fact?). He also had two patent applications for acoustic devices warning 
ships of possible collisions with large objects, above and below the water. He was inventive as an 
experimentalist, including measurements of turbulent dispersion, meteorology, and albedo. He tinkered with 
building his own analog computer in his retirement (Hunt, 1998, p. xxxiii). 
 Mandelbrot (1977) stated that “Lewis Fry Richardson was a great scientist whose originality ... mixed 
with eccentricity, and who did not in his lifetime achieve the fame he deserves... His work is characterized 
by the conception and execution of experiments of classic simplicity, and by respect for the facts thus 
revealed. He never hesitated to use precise and refined concepts when he deemed them necessary.” In 
regard to the claim of “experiments of classic simplicity”, a famous Richardson anecdote is his (last) field 
experiment in turbulent dispersion; with H. Stommel, he threw parsnips from a pier into a lake, observed 
their dispersion with an ingenious non-optical measuring instrument of his own design, and confirmed his 
famous 4/3 power law for turbulence. 
 He also had a delightful sense of humor. His Mathematical Gazette article (Richardson, 1925 in 
Ashford et al, 1993) on “How to Solve Differential Equations Approximately by Arithmetic” was a tutorial 
written for an audience of mathematicians in a day when numerical methods were not the fashion, and their 
lack of mathematical elegance was frowned upon. Richardson begins thus. “I. The first obstacle may be 
one of sentiment. It is said that in a certain grassy part of the world a man will walk a mile to catch a 
horse, whereon to ride a quarter of a mile to pay an afternoon call. Similarly, it is not quite respectable to 
arrive at a mathematical destination, under the gaze of a learned society, at the mere footpace of arithmetic. 
Even at the expense of considerable time and effort, one should be mounted on the swift steed of symbolic 
analysis. The following notes are written for those who desire to arrive by the easiest route, and who are 
not self-conscious about the respectability of their means of locomotion.” 
 Richardson’s (1922) book on numerical weather prediction, “arguably the first modern treatise in... 
dynamic meteorology” (Somerville, 1996, p. 61) is a classic, in part due to what he himself described as his 
“fantasy.” “After so much hard reasoning, may one play with a fantasy? Imagine a large hall like a theatre, 
...” filled with 64000 human computers! This vision of massively parallel computation includes 
consideration of unbalanced processor loads (some people calculate faster than others), inter-processor 
communication band widths (posting of results on “numerous little ‘night signs’ so neighbouring computers 
can read them”), a hierarchical control structure (“each region is coordinated by an official of higher rank” 
and a conductor in a central pulpit who regulates the slide-rule wielding, calculator-punching processors by 
shining “a beam of rosy light upon any region that is running ahead of the rest, and a beam of blue light on 
those who are behind”), and information processing (“four senior clerks” who collect the weather prediction 
and are “dispatching it by pneumatic carrier to a quiet room” whence it is “coded and telephoned to the 
radio transmitting station”). His “fantasy” includes humane considerations: “Outside are playing fields, 
houses, mountains and lakes, for it was thought that those who compute the weather should breathe of it 
freely.” 
 His vision is charming, yet he was known for being caustic at times, and was never shy of controversy. 
He started a big one in 1922 with his experimental psychology paper entitled “Imagery, conation and 
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cerebral conductance.” His interest at this time was in the quantitative measurement of thought itself and of 
subjective sensation, including color (hue, brightness, saturation), loudness, touch, and pain. His ideas 
sharply divided the scientific community, many of whom thought the entire concept was nonsense. In 1932, 
the British Association for the Advancement of Science appointed a committee (including Richardson) to 
resolve the problem. Six years later, they had come to no conclusion! After eight years, they had made 
“some progress” but were still unable to agree on “certain important points.” (Ashford, 1985, pp. 130–133, 
147–149.) His concepts are now well accepted. To the last, he was disputatious; in a letter written three 
days before he died to a friend and fellow war researcher Quincy Wright, Richardson chided him harshly 
for clinging to the 19th century concept of “balance of power” and ignoring the concept of stability. 
(Ashford, 1985, p. 235.) 
 Except for his books, his entire published works (including journal letters and posthumously published 
work) are available in a two-volume set (Ashford et al, 1993). His work has the quality of perpetually 
renewing in interest. Mandelbrot (1977, p. 270) noted that his turbulence papers “remain interesting; each 
fresh glance at them seems to show some angle that has passed unnoticed.” I re-read his classic 1910 paper 
2 decades after I had already opined (in 1972) that it was the foundation of my own field of CFD, and was 
astounded at how much I had overlooked or failed to appreciate in several previous unhurried readings. A 
short and readable biography was written by Hunt (1998) in the 1998 Annual Review of Fluid Mechanics. 
The full biography entitled “Prophet or Professor? The Life and Work of Lewis Fry Richardson” was 
written by Ashford (1985); eleven years later, the mathematician and humanist Philip J. Davis still 
considered the book worth reviewing (and his life reflecting upon) in a SIAM NEWS review titled 
“Weather, War, and Mathematics” (Davis, 1996). Davis also reviewed a newer popular science book on 
climate change by Somerville (1996), who also considers Richardson “profoundly original” (p. 57) and “a 
special case in the spectrum of humanity” who “makes ordinary obsessive scientists...look normal by 
contrast” (p. 151).  
 In 2006, P. Lynch (2006) published an unusual technical-historical book entitled The Emergence of 
Numerical Weather Prediction: Richardson’s Dream. Lynch, like the others cited earlier, identifies 
Richardson as the originator of the concept of numerical weather prediction and tells the story of his trial 
forecast with a complete reconstruction of these hand calculations and analysis of the causes of its failure. 
Lynch goes on to describe how advances in better understanding of the dynamics of the atmosphere, 
development of stable computational algorithms, regular observations of the free atmosphere, and of course 
computers, enabled the first computer weather forecast to be made by 1950. He then describes 
developments over the next 50 years up to current practice, the fulfillment of Richardson’s dream of 
weather prediction and climate modeling. 
 Richardson’s other activities and interests included participation in the simplified spelling movement, 
rational language movements (Ido and Esperanto), Eugenics Societies (when eugenics was still politically 
correct and in fact espoused by most leading liberals), hiking and scouting (he was a serious naturalist), 
writing one unpublished play (he also used Socratic dialogue in his treatise on arms races), and of course 
religion and philosophy. One might think that his Quaker religion defined him, yet he did not fail to reflect 
on his religious inheritance, and he rejected much of it; his religious philosophy was far from naive (e.g., 
see Ashford, 1985, p. 69). 
 Davis (1996) gave this admiring observation. 
 
Richardson was a man who walked independently, who openly admitted his failures ... even publishing 
them. He was an unorthodox scientist, never in the mainstream. He never played it safe. 
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ERRATA

Page 125. Table 10.5.1.1 is missing. It did appear in the 1998 edition, 
Roache, P. J. (1998), Verification and Validation in Computational Science and 
Engineering, Hermosa Publishers, New Mexico, 1998.

Pages 135 and 452. Equation 5.10.6.1, the denominator term (f2 - f3) should be (f2 - f1). 
This equation was correct in the precursor 1998 book.

Page 361. Case 2. E g. 11.10.3 gives the condition for Case 2 of a validation exercise. "If
... then probably δmodel is of the same order as, or less than, (δnum + δinput  - δd)." This 
follows ASME V&V20-2009, page 40, Eq. 6-2-2. See also page 355, Eq. 11.8.1.4. The 
statement is not so much erroneous as of very limited utility. Other efforts to expand the  
interpretation Case 2 have been given by two references below. Basically, all the 
necessary information is contained in Eq. 11.10.1, and any engineer or scientist should be
able to interpret this simple interval of uncertainty about the expected value for δmodel . 
See also the discussion in the Section 11.11. For suggestions on  specific though 
somewhat arbitrary demarcation criteria, see the following two publications.

Roache, P. J. (2016), "Verification and Validation in Fluids Engineering: Some 
Current Issues,"ASME J. Fluids Eng. 2016; FE-16-1206. DOI 1001205.

Roache, P. J. (2017), "Interpretation of Validation Results Following ASME 
V&V20-2009," ASME J. Verification, Validation and Uncertainty Quantification, June 
2017, Vol 2, 024501.

Pages 365 and 454. Equation 11.12.3.2, the + sign should be a – sign. Also, be warned 
that the notation used on pp 365-366 is clumsy.

2

N coarse N fine r % error in E1  103

25 100 4 –9.5993
33 100 3.0303 –5.6013
50 100 2 –2.4713
90 100 1.1111 –0.7680
99 100 1.0101 –0.6351

Table 5.10.1.1. The improvement in the accuracy estimate from small r for grid coarsening. Steady-
state Burgers equation U Ux + Uxx / Re = 0 with U(0) = 1 and U(1) = 0 (suggestive of stagnation flow), 
Re = 10, p = 2. The error shown is the % error in the Richardson Extrapolated value (and therefore the
 error estimator E1) for the one-dimensional “shear” dU / dx at x = 1. Note that the error estimate from 
r = 1.1111 (a factor 0.9 coarsening) is 3.2 times as accurate (2.4713/0.7680 ~ 3.2) as the error estimate
 from r = 2 (a factor 0.5 coarsening). 



 
Minor typos undetected by a spell-checker are not mentioned herein. E. g. "gird" (5x) for
"grid" (2201x), "we am ..." on page 336, etc.

ADDENDA including some publications after 2009      

Page 107. General references cited in Section 5.1.1 should have included 
Roache, P. J. (2004), “Calculation Verification: an Overview”, Proc. Workshop 

on CFD Uncertainty Analysis, 21-22 October 2004. Instituto Superior Técnico, Lisbon, 
Portugal.

Page 155, Section5.12. The alternative approach to solution verification of Sinclair et al. 
(2006) has been refined and successfully applied at stress concentrations in 2D and 3D in 
the following references.

Sinclair, G. B., Beisheim, J. R., and Roache, P. J. (2016), "Effective Convergence 
Checks for Verifying Finite Element Stresses at Two-Dimensional Stress 
Concentrations," ASME Journal of Verification, Validation and Uncertainty 
Quantification, Dec. 2016, 041003.

Beisheim, J. R., Sinclair, G. B., and Roache, P. J. (2018), "Effective Convergence 
Checks for Verifying Finite Element Stresses at Three-Dimensional Stress 
Concentrations,"ASME Journal of Verification, Validation and Uncertainty 
Quantification, Sept. 2018, 034501.

Page 287, Chapter 9.  References cited in Ch. 9 should have included 
Roache, P. J. (2004a), “Building PDE Codes to be Verifiable and Validatable,” 

Computing in Science and Engineering, Special Issue on Verification and Validation, 
September/October 2004, pp 30-38.

The following are excerpts from this article. Some of these points were made 
elsewhere in the book, but here are more specific.

The New Paradigm of Experiments Designed Specifically for 
Code Validation

In my opinion, the most revolutionary concept in computational physics during 
my career, other than simulation itself, has been the new paradigm of experiments 
designed specifically for validation. The new paradigm recognizes that requirements for 
validation are distinct and that validation experiments are much easier in some respects 
but more demanding in others. 

In aerodynamics, for example, the emphasis in pre-computational days was on 
wind-tunnel experiments, which attempted to replicate free-flight conditions. Great effort 
was expended on achieving near-uniform inflow and model fidelity, and on minimizing 
wall and blockage effects. The latter required small models, which sacrificed parameter 
fidelity (Reynolds number) and aggravated geometric fidelity. 

The new paradigm approaches the problem differently, sacrificing some fidelity 
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between the wind-tunnel flow and free flight, but requiring that more nearly complete 
details of the experimental conditions and field data be obtained. No longer is it so 
important to achieve uniform inflow, but it is critical to report in detail what those 
spatially varying inflow conditions are, so that they may be input to the computational 
simulation. The idea is that if the validation is good (by whatever criteria are appropriate)
for a flow perturbed from the free-flight conditions, it will probably be good for the free-
flight condition. Thus, blockage effects are not such major issues (and the tunnel wall 
itself may be modeled), and models can be larger (or tunnels smaller and therefore 
cheaper), thereby improving fidelity of Reynolds number and model geometry. 
Analogous situations occur in other experimental fields.

Unrealistic Expectations Placed on Experimentalists
It is unrealistic, even arrogant, for a code builder or user to require an 

experimentalist to match idealized boundary conditions. Simple constant-value boundary 
conditions that are a mere convenience for the code builder can require major effort, cost,
and time for an experimentalist; they often compromise other more desirable qualities of 
the experiment, and in fact may be literally impossible to achieve. A major contribution 
by the code builder to the synergistic cooperation between computationalists and 
experimentalists (which is also part of the new paradigm) is achieved by the relatively 
simple work of building the code with general boundary conditions. This also happens to 
be what is most needed for independent code verification (or confirmation) using the 
MMS (Method of Manufactured Solutions).

Is Western Culture at Risk?
In an age of spreading pseudoscience and anti-rationalism, it behooves those of us

who believe in the good of science and engineering to be above reproach whenever 
possible. Public confidence is further eroded with every error we make. Although many 
of society’s problems can be solved with a simple change of values, major issues such as 
radioactive waste disposal and environmental modeling require technological solutions 
that necessarily involve computational physics. As Robert Laughlin [2002] noted in this 
magazine, “there is a serious danger of this power [of simulations] being misused, either 
by accident or through deliberate deception.” Our intellectual and moral traditions will be
served well by conscientious attention to verification of codes, verification of 
calculations, and validation, including the attention given to building new codes or 
modifying existing codes with specific features that enable these activities.

R.B. Laughlin (2002), “The Physical Basis of Computability,” Computing in 
Science & Eng., vol. 4, no. 3, 2002, pp. 22–25.

Page 365, Section 5.15. The ratio of the actual error to the estimated error is referred to 
as an "effectivity index" e by Prof. D. Pelletier and others. It has been used as a Figure 
of Merit for single or small sample studies. Note that as Δ → 0, then e → 1 for any 
ordered error estimator, but the GCI or similar uncertainty estimators will not approach 1;
rather, as Δ → 0, GCI → Fs.
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Ch. 3 and Appendix C: Method of Manufactured Solutions (MMS)

Roache, P. J. (2019a), "The Method of Manufactured Solutions for Code 
Verifications", Ch. 12 in Beisbart and Saam (2019). See below.

Most of this article repeats the material of Ch. 3 and Appendix C, but it also 
includes references to  novel applications including ice flow models (next).

Bueler, E., Brown, J., and Lingle, C. (2007), "Exact solutions to the 
thermomechanically coupled shallow-ice approximation: effective tools for verification", 
Journal of Glaciology, Vol. 53, No. 182, 2007 pp. 499-516.

The authors developed a realistic MMS solution to verify a code for solving 
glacial ice flows. Solution realism was important to gain acceptance at a time when the 
glaciology science community was skeptical of models and verifications. The 3D time-
dependent model involves many difficult features: a free boundary, thermomechanical 
coupling between a highly nonlinear power law viscosity and the temperature 
distribution, and coupling between energy conservation and thin-layer mass conservation 
PDEs with integrals in the nonlinear PDE coefficients. The solution realism aided 
acceptance and interpretation of controversial temperature "spokes" in ice flows found by
several investigators.

K. I. Aycock, N. Rebelo, B.A. Craven (2020),  "Method of manufactured 
solutions code verification of elastostatic solid mechanics problems in a commercial 
finite element solver," Computers and Structures, 229, 106175.

This article demonstrated rigorous code verification by MMS for difficult 3D 
solid mechanics problems with various FEM discretizations and  nonlinear constitutive 
equations. MMS was once again shown to be sensitive to even minor errors in 
documentation of the continuum equations being solved, and applicable to commercial 
codes even when the source code is not accessible. Also, the authors used MMS to 
investigate the sensitivity of convergence order to quantitatively minor changes to the 
underlying mathematical model. 

The authors conclude that MMS "provides a powerful tool for investigating 
whether the equations solved by the numerical model match those a user intends to solve.
This is especially relevant for the verification of commercial codes..." They also discuss 
subtleties of implementing the MMS analytical source terms into commercial software. 
Overall, this paper is an exemplar of MMS concepts and is of interest to V&V specialists 
outside of solid mechanics.

For another application of MMS outside of code verification, see also Eça et al 
(2019) below under the "General" heading.

General

C. Beisbart and N. J. Saam (2019),Computer Simulation Validation: 
Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives, 
Springer-Verlag, Berlin, 2019.

5



This 1074 page encyclopedic compilation of 43 chapters by 53 contributors 
covers not only validation per se but prerequisite verification of codes and of solutions, 
plus related issues such as predictive capability, applications, credibility, stakeholder 
issues, statistical aspects, and philosophical considerations that are both serious and 
professional.

Oberkampf, W. L. (2019),"Simulation Accuracy, Uncertainty, and Predictive 
Capability: A Physical Science Perspective," Ch. 3 in Beisbart and Saam (2019).

Rider, W. J. (2019),"The Foundations of Verification in Modeling and 
Simulation", Ch. 11 in Beisbart and Saam (2019).

Roache, P. J. (2019), "Validation in Fluid Dynamics and Related Fields", Ch. 27 
in Beisbart and Saam (2019).

Beisbart, C. (2019), "Should Validation and Verification be Separated 
Strictly,"Ch. 42 in Beisbart and Saam (2019).

Eça, L., Vaz, g., and Hoekstra, M. (2020), "A Contribution for the Assessment of 
Discretization Error Estimators Based on Grid Convergence Studies," ASME Journal of 
Verification, Validation and Uncertainty Quantification, Vol. 3,June, 2018, 021001.

This is an exceptionally thorough work on grid convergence studies using RANS 
turbulence models.

Eça, L. (2020), "2nd Workshop on the Assessment of Multivariate Metric for 
Validation at Multiple Set Points," Proc. of V&V Verification and Validation Symposium,
ASME V&V 2020, May 20-22, 2020, Baltimore, USA.

Eça, K. Dowding, and P.J. Roache (2020), "On the Interpretation and Scope of the
V&V20 Standard for Verification and Validation in Computational Fluid Dynamics and 
Heat Transfer," Proc. of V&V Verification and Validation Symposium, ASME V&V 2020,
May 20-22, 2020, Baltimore, USA.

Eça,L.  (2020), “Overview of the 2018 Workshop on Iterative Errors in Unsteady 
Flow Simulations”  Proc. of V&V Verification and Validation Symposium, ASME V&V 
2020, May 20-22, 2020, Baltimore, USA..

Eça,L.,  G. Vaz, S. L. Toxopeus, M. Hoekstra (2019), "Numerical Errors in 
Unsteady Flow Simulations," ASME Journal of Verification, Validation and Uncertainty 
Quantification, June 2019, Vol. 4, DOI 021001.

This paper thoroughly considers all numerical errors including round-off, 
statistical, iterative, and time and space discretization errors. The authors make good use 
of the Method of Manufactured Solutions beyond the purpose of code verifications.

 ASME V&V 10.1-2012 (2012), An Illustration of the Concepts of Verification 
and Validation in Computational Solid Mechanics, American Society of Mechanical 
Engineers (ASME), New York.

This ASME Standard presents a lucid and thorough illustration of  V&V concepts
applied in computational solid mechanics. Topics include development of a V&V plan, 
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model development, code verification, calculation verification, and two broadly differing 
approaches to validation, the first using only opinions of subject matter specialists to 
estimate uncertainties, the second using actual uncertainty data. Finally, in both 
approaches, the Validation Area Metric is used to assess the model. Unfortunately, this 
Area Metric may be shown to be misleading, as in the following manuscript (available 
from the author at hermosa@sdc.org).

Roache, P. J. (2020), "Critique of the Validation Area Metric and ASME V&V 
10.1-2012." In review.
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